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Abstract. Brick masonry is a multicomponent composite material, characterized by a marked 

inhomogeneity, a highly anisotropic behavior arising from the complex interactions between 

joints and bricks, and a considerable spatial variability of material properties, particularly 

relevant in the case of historical masonries. The focus of this paper is on the interdependence 

between the spatial variability of mechanical properties of joints and the overall homogenized 

response of a given volume element of masonry. It is assumed that mechanical properties of 

bed joints may vary according to a fixed probability distribution and correlation function and 

the mechanical response of the volume element is investigated in terms of the overall elastic 

stiffness. As confirmed by preliminary results, the spatial variability of the mechanical 

properties may affect the overall response of a masonry wall.  
 

 

1 INTRODUCTION 

Experimental and numerical results [1-3], referred either to single constituents or to full-

sized masonry walls, have shown remarkable spatial variations of constitutive variables, i.e. 

Young modulus, tensile and compressive strength among others, also in case of new structures, 

as well as geometrical variations of the masonry arrangement [4]. In the case of historical 

masonries, such variability can cause even more relevant effects, especially due to the role of 

ageing processes, that can locally affect the mechanical characteristics of bed and head mortar 

joints.  

Based on the aforementioned considerations, the focus of this paper is on the 

interdependence between the spatial variability of mechanical properties of joints and the 

overall response of a given volume element of the masonry. To this aim, a well established 

computational homogenization technique is combined with a properly conceived stochastic 

procedure. It is assumed that elastic properties of bed joints may vary according to a fixed 

probability distribution and correlation function. The mechanical response, in terms of overall 

elastic stiffness of the selected volume element, is investigated as a function of mean, variance 

and correlation length of the elastic properties of the joints, in a realistic range according to 

values experimentally observed. 
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2  ELASTIC PROPERTIES OF A VOLUME ELEMENT 

Although geometrical and mechanical characteristics of both components of  a given volume 

element and their related uncertainties may play a relevant role on the overall behavior, the 

most pronounced uncertainties on the global elastic behavior of masonry are likely due to 

available information about deformability of joints and its spatial variability.  

To this aim, for the volume element (Fig. 1, L0=26 cm) of a regular masonry made of bricks 

and mortar joints with running bond arrangement, the sensitivity of homogenized elastic 

properties is investigated as a function of mechanical characteristics of bed mortar joints, 

varying with a given standard deviation E around a mean value E. A constant value =0.2 has 

instead been assigned to the Poisson coefficient of joints and elastic parameters of bricks have 

also been considered as constant, Eb=6000 MPa and b=0.2. 

Each bed joint (with a total length L0, see Fig. 1) is discretized in 10 parts (x=2.6 cm), 

assigning to each of them the elastic modulus E in the mean point, as obtained by a random 

generation of E(x) (see Sect. 3.2) in the interval 0 ≤ x ≤ L, with L >> L0 and a sampling step 

x=x/100.  

In the numerical investigation described below a mean value E=500 MPa was assumed, 

with standard deviation varying between E = 0.07 E and E = 0.35 E and six different 

correlation lengths (Lc1=0.26 cm, Lc2=0.65 cm, Lc3=1.3 cm, Lc4=2.6 cm, Lc5=5.2 cm, Lc6=13 

cm). 

Namely, for a given E and correlation length Lc, a random realization of E(x) was obtained 

for L= 1300 cm. From each one of these random realizations, 25 pairs of statistically 

independent sub-intervals E(x) with the same correlation length were then extracted and 

assigned as random E(x) to the bed joints of the volume element, while for head joints a constant 

value E=E was assumed. 

As an example, the random variables E(x) for correlation lengths Lc1=0.26 cm and  Lc6=13 

cm are reported in Fig. 2. 

The mean and standard deviation of the homogenized elastic parameters (Sect. 3) of the 

selected volume element, obtained with 25 independent realizations of E(x) on the bed joints, 

are reported in Sect. 3.2 as a function of standard deviation E and correlation length Lc. 

  

Figure 1: selected volume element: L0 = 26 cm  
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(a) 

(b) 

Figure 2: realizations of the random vector E(x) for two different correlation lengths;  

a) Lc1=0.26 cm; b) Lc6=13 cm 

3 HOMOGENEIZED ELASTIC PROPERTIES OF MASONRY ASSEMBLY 

The homogenization of the masonry material is performed resorting to a first order 

computational homogenization technique. Consistently with the classical approach [5-6], the 

composite material is described at two scales of interest, the microscopic and the macroscopic 

scale, as a Cauchy continuum. At the microscopic scale, the actual material is thoroughly 

described, in terms of geometric and constitutive parameters characterizing both blocks and 

mortar joints, while at the macroscopic one the heterogeneous material is ideally replaced by 

an equivalent homogeneous material, able to reproduce the overall elastic response of the 

composite material.  

The classical first order multiscale scheme is briefly recalled in the framework of a strain 

driven approach. FE elastic analyses are exploited to evaluate the effective elastic properties of 

the masonry characterized by spatial variability of the elastic constants in the mortar joints. 

A one to one correspondence is established between a macroscopic point of the first order 

homogenized continuum and the corresponding material portion at the microscopic scale.  

At the typical material point 𝐗 = {𝑋, 𝑌}𝑇  at the macroscopic level, the displacement vector 𝐔 =

{𝑈, 𝑉}𝑇 is defined and the strain vector results as 
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𝑬 = {
𝐸𝑋𝑋

𝐸𝑌𝑌

𝛤𝑋𝑌

}=D {
𝑈
𝑉

},     where   D=[

∙,𝑋 0

0 ∙,𝑌

∙,𝑌 ∙,𝑋

], 

 

(1) 

 

 

with D being the kinematic operator. 

The overall linear elastic constitutive equations in the general anisotropic case depends on 

the overall elasticity tensor  C  as  

 

𝜮 = {
𝛴𝑋𝑋

𝛴𝑌𝑌

𝑇𝑋𝑌

}=C {
𝐸𝑋𝑋

𝐸𝑌𝑌

𝛤𝑋𝑌

},     where   C=[
𝐶𝑋𝑋𝑋𝑋 𝐶𝑋𝑋𝑌𝑌 𝐶𝑋𝑋𝑋𝑌

𝐶𝑋𝑋𝑌𝑌 𝐶𝑌𝑌𝑌𝑌 𝐶𝑌𝑌𝑋𝑌

𝐶𝑋𝑋𝑋𝑌 𝐶𝑌𝑌𝑋𝑌 𝐶𝑋𝑌𝑋𝑌

]. 

 

(2) 

 

 

On the other hand, at the microscopic scale the corresponding strain 𝜺 and stress 𝝈 measures 

are similarly defined together with the local elasticity matrix c. 

In the case of a periodic continuum the vector 𝑬 is used as input quantity for the periodic cell 

and a properly defined boundary value problem is solved with periodic boundary conditions at 

the microscopic level. By evaluating the local response in terms of stress distributions, it is 

possible to detect the associated averaged elastic stress components and consistently deriving 

the components of C by exploiting a properly defined macro-homogeneity condition. 

Nevertheless, in the case at hand, owing to the random distribution of the Young modulus 

along the mortar joints, the running bond masonry material is only characterized by geometric 

periodicity, while it is not periodic with respect to constitutive behavior. In this framework the 

classical concept of Representative Volume Element (RVE), well established for periodic 

heterogeneous media, loses its validity. The RVE cannot be a-priori recognized and becomes 

itself an unknown of the problem, together with the estimation of the homogenized elastic 

moduli, i.e. the components of C. 

The RVE can be approached by using a finite size scaling of the so-called statistical volume 

element (SVE) [7-8] through two hierarchies of constitutive bounds, stemming from the 

solution of Dirichlet and Neuman boundary value problems at the microscopic level, 

respectively. The key idea is considering a trial portion of the heterogeneous material of a given 

characteristic size and keep enlarging such portion until the solution of both of Dirichlet and 

Neuman boundary value problems have fulfilled a properly defined convergence criterion.  

The Dirichlet boundary conditions imposed along the boundary of the SVE can be written 

as 

 
𝑢 = 𝐸𝑋𝑋𝑥 + 𝛤𝑋𝑌𝑦
𝑣 = 𝛤𝑋𝑌𝑥 + 𝐸𝑌𝑌𝑦

  , 

 

(3) 

while the Neumann boundary conditions result as 
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𝑡𝑥 = 𝛴𝑋𝑋𝑛𝑥 + 𝑇𝑋𝑌𝑛𝑦

𝑡𝑦 = 𝑇𝑋𝑌𝑛𝑥 + 𝛴𝑌𝑌𝑛𝑦
, 

 

(4) 

 

with (𝑡𝑥 , 𝑡𝑦) the components of tractions and (𝑛𝑥 , 𝑛𝑦) the components of the outward normal. 

The macroscopic stress 𝜮 and strain 𝑬 measures are linked to the respective microscopic 

ones 𝝈 and 𝜺  through the so-called spatial averages, as follows 

 

𝜮 =
1

𝜔
∫ 𝝈 𝑑𝜔,   

𝜔
 𝑬 =

1

𝜔
∫ 𝜺 𝑑𝜔,   

𝜔
 

 

(5) 

 

Finally, the homogenized moduli can be obtained via the macro-homogeneity condition, 

accounting for infinitesimal deformation gradients. Such well-known condition establishes a 

correspondence between the average internal work over a portion of material at the microscopic 

level and the mechanical internal work density at the macroscopic point, as 

 

𝑬𝑻𝜮 =
1

𝜔
∫ 𝜺 𝑻𝝈 𝑑𝜔.   

𝜔

 

 

(6) 

 

In this preliminary work the focus is on the definition of the procedure to evaluate the 

homogenized elastic moduli valid for the masonry characterized by random distribution of 

mortar joints elastic moduli, rather than detecting the RVE for such material. This is why we 

consider only one portion of the heterogeneous material, the one depicted in Figure 1. 

Furthermore, in order to obtain a synthetic description of the degree and direction of 

anisotropic behavior [9-10] of the elastic homogenized response, we evaluate 𝐸ℎ𝑜𝑚(𝜃) and 

𝜈ℎ𝑜𝑚(𝜃)  as a function of the counterclockwise angle 𝜃 between the standard basis (𝒆𝑥 , 𝒆𝑦) and 

the basis (𝒂𝑥 , 𝒂𝑦) rotated of 𝜃 about an axis through the origin. More specifically, 𝐸ℎ𝑜𝑚(𝜃) and 

𝜈ℎ𝑜𝑚(𝜃)   are obtained for tension applied along the direction identified by the unit vector 𝒂𝑥 

inclined at an angle 𝜃 with respect to 𝒆𝑥 . 
The homogenized elastic compliance tensor 𝑫 = 𝑪−1 in the rotated reference system 

becomes 𝑫𝜃 and the arising angular variation of the Young modulus and of the Poisson’s ratio 

are consistently evaluated as 

 

𝐸ℎ𝑜𝑚(𝜃) =
1

𝐷𝑋𝑋𝑋𝑋
𝜃 ,      𝜈ℎ𝑜𝑚(𝜃) = −

𝐷𝑋𝑋𝑌𝑌
𝜃

𝐷𝑋𝑋𝑋𝑋
𝜃 , 

 

(7) 

 

where 𝐷𝑋𝑋𝑋𝑋
𝜃  and 𝐷𝑋𝑋𝑌𝑌

𝜃  are the components of 𝑫𝜃. 
The graphical representation of 𝐸ℎ𝑜𝑚(𝜃) and 𝜈ℎ𝑜𝑚(𝜃)    versus 𝜃  is very suitable for an 

interesting physical interpretation. If the material is isotropic, indeed, the polar plot has the form 
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of a unitary circle, while deviations from a perfect circle evince the degree and direction of 

anisotropic behavior. 

3.1 Reference case: homogeneous elastic properties of bed and head joints  

As a reference case, a constant value E(x) = E has been assigned to both head and bed joints.  

The variation of Young modulus E0() and Poisson coefficient () as a function of the angle 

  are reported in Figure 3(a) and 3(b), respectively.  

As shown by such figures, the equivalent stiffness of the selected volume element attains 

maximum and minimum values for  = 0 (stress-strain parallel to the bed joints) and  = /2 

(stress-strain orthogonal to the bed joints), respectively, while maximum values of Poisson 

coefficient are attained in pseudo-diagonal directions. 

      

Figure 3: Reference case E(x)= E : Young modulus and Poisson coefficient as a function of  

3.2 Random elastic properties of bed joints     

Stationary Gaussian realizations of the Young modulus  

 

𝐸(𝑥) = �̅� + 𝑒(𝑥) 

 

(8) 

have been generated with �̅�  the mean value and e(x) a stationary zero mean process obtained 

as the output of a first order linear scalar stochastic differential equation (Ornstein – Uhlenbeck 

process) [11] 

𝑑𝑒(𝑥)

𝑑𝑥
= −λ𝑒(𝑥) + 𝑊(𝑥) 

 

(9) 

where  >0 and W(x) a zero mean Gaussian stationary white noise input process with constant 

spectral density Sw()=S0 and correlation functions Rw(l) =〈𝑊(𝑥)𝑊(𝑥 + 𝑙)〉 =2 S0 (l), where 

𝛿(∙) stands for the Dirac’s delta distribution.  
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The spectral density 𝑆𝑒(𝜔) and the covariance function 𝐶𝑒(𝑙) of the stationary process e(x) 

are as follows 

𝑆𝑒(𝜔) =
2 𝜋𝑆0

𝜔2 + λ2
 

 

(10) 

𝐶𝑒(𝑙) = 〈𝑒(𝑥)𝑒(𝑥 + 𝑙)〉 =
𝜋𝑆0

λ
exp (−λ|𝑙|) 

 

(11) 

For the same input white noise W(x) different correlated random realizations of E(x) have 

been obtained for different values of the parameter  and intensity 𝑆0. 

The correlation length Lc is the inverse of  (𝐶𝐸(𝑥) = 𝐶𝑒(𝑥)) 

 

𝐿𝑐 =
1

𝐶𝐸 (0)
∫ 𝐶𝐸(𝑙)𝑑𝑙

+∞

0

=
1

λ
 

 

(12) 

 

 

while the standard deviation of E(x) 

 

𝜎𝐸
2 = 𝐶𝐸(0) =

𝜋𝑆0

λ
 

 

(13) 

 

 

As described in Sect.2, for each standard deviation E and correlation length Lc 25 

independent realizations of the elastic modulus E(x) of the bed joints have been considered for 

the volume element in Fig.1.  

For each case the elastic tensor of the volume element has been obtained with the 

homogenization procedure described in Sect. 3 and boundary conditions of the Dirichlet type. 

The mean values of the homogenized elastic modulus Ehom() and Poisson coefficient 

hom() in the considered set of 25 independent realizations almost coincide, as expected, with 

the values E0() and 0() of the reference case (Sect. 3.1), independently from the correlation 

length Lc or the variation coefficient CV = E/E. Therefore they are not reported here. 

A significant dependence has instead been found for the standard deviation Ehom() and 

hom()  of the homogenized elastic modulus Ehom() and Poisson coefficient hom().  

Standard deviations of Ehom() and hom(), normalized with respect to the values E0() and 

0() of the reference case (constant E(x) = E, Sect. 3.1) are described below for each angle  

as a function of the correlation length Lc (Fig. 4a, 5a) and of the variation coefficient CV = E/E 

of the random variable E(x) (Fig. 6a, and 7a).  

Due to the almost perfect coincidence of the mean values of Ehom() and hom() with E0() 
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and 0(), as already discussed, Fig. 4a, 5a, 6a, 7a also represent for each angle  the ratios 

between the standard deviations of Ehom() and hom() and their mean values �̅�hom (𝜃) and 

̅hom (𝜃), respectively. 

The same variables Ehom() and hom() are also shown in Fig. 4b, 5b, 6b, 7b without 

normalization, with the homogenized elastic modulus Ehom()  shown in the non-dimensional 

form Ehom() /E, with E = 500 MPa denoting the mean value of E(x).  

 

       

 (a)                                                                                       (b)  

Figure 4: Standard deviation Ehom() of the homogenized Young modulus Ehom()  for Dirichlet boundary 

conditions, for CV=E/E = 0.14 and different correlation lengths LC [cm]: a) Ehom() normalized with respect to 

E0() of the reference case with constant E(x); b) Ehom() normalized with respect to the mean value E of  E(x).  

 

It can be observed (Fig. 4a) that for different correlation lengths the standard deviation 

Ehom() of the homogenized Young modulus Ehom() is not negligible with respect to its mean 

value �̅�hom (𝜃), with a maximum of about 5 % for Lc = 13 and  around /2. A similar behavior 

is observed (Fig. 5a) for the standard deviation hom()  of the homogenized Poisson coefficient 

hom(). 

Figures 6a-7a describe the dependence of the homogenized Young modulus and Poisson 

coefficient on CV = E/E, i.e. the variation coefficient of the random elastic modulus E(x) of 

the bed joints of the volume element in Figure 1. 

As expected, the ratios between the standard deviations Ehom(), hom() of Ehom() and 

hom() and their mean values �̅�hom (𝜃) and ̅hom (𝜃) increase for an increasing CV. Maximum 

values around 5 % have been found for CV = E/E = 0.35, corresponding to the limit case of a 

random variable E(x) oscillating between values slightly larger than zero and 2E. 
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(a)                                                                                 (b)  

Figure 5: Standard deviation hom() of the homogenized Poisson coefficient hom()  for Dirichlet boundary 

conditions, for E/E = 0.14 and different correlation lengths LC [cm]:  a) hom()  normalized with respect to 0()  
of the reference case with constant E(x); b) hom().  

 

     

 (a)                                                                                 (b)  

Figure 6: Standard deviation Ehom() of the homogenized Young modulus Ehom()  for Dirichlet boundary 

conditions for Lc=0.26 cm and different ratios CV=E/E: a) Ehom() normalized with respect to E0() of the 

reference case with constant E(x); b) Ehom() normalized with respect to the mean value E of  E(x). 
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 (a)                                                                                 (b)  

Figure 7: Standard deviation hom() of the homogenized Poisson coefficient hom()  for Dirichlet boundary 

conditions for Lc=0.26 cm and different ratios CV=E/E:  a) hom()  normalized with respect to 0() of the 

reference case with constant E(x); b) hom().  

 

4 CONCLUSIONS 

- The paper examines the interdependence between the spatial variability of mechanical 

properties of joints and the overall homogenized response of a given volume element 

of regular masonry. 

- Mechanical properties of bed joints is assumed to vary according to a fixed probability 

distribution and correlation function. 

- A well established computational homogenization technique is applied. 

- The mechanical response, in terms of overall elastic stiffness of the selected volume 

element, is investigated as a function of mean, variance and correlation length of the 

elastic properties of the joints. 

- As confirmed by preliminary results, the spatial variability of the mechanical properties 

may affect the overall response of a masonry wall.  

- Such preliminary results encourage further research on historical masonry with larger 

spatial variability of the elastic properties. 
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