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Abstract

In this work a generalized anisotropic elastoplastic constitutive model for the large strain analysis of ®ber-reinforced composite

materials in the frame of the mixing theory and the ®nite element method is presented. The isotropic equivalent formulation proposed

assumes the existence of a ®ctitious isotropic space where a mapped ®ctitious problem is solved. Both real anisotropic and ®ctitious

spaces are related by means of linear fourth-order transformation tensors that contain the complete information about the real an-

isotropic material. Details of the numerical implementation of the model into a non-linear or large strain ®nite element solution scheme

are provided. Application examples showing the performance of the model for analysis of ®ber reinforced composite materials are

given. Ó 2000 Elsevier Science S.A. All rights reserved.

1. Introduction

The use of composite materials in structures has signi®cantly increased during the past few years. This
trend is mainly due to the fact that composite materials have properties which are very di�erent from
conventional isotropic engineering materials.

Composite materials present high strength to weight and high sti�ness to weight ratio, are corrosion
resistant, thermally stable and are well suited for structures in which weight is a fundamental variable in the
design process. Structural components requiring high sti�ness and strength, impact resistance, complex
shape and high volume production are suitable candidates to be manufactured using composite materials.
This explains why aerospace, automotive and marine industries have taken advantage of the special
characteristics of these materials [1,30]. Components manufactured with composite materials are tough and
durable, exceeding in many occasions the performance of metal parts.

In the redesign process of a structural component using composite materials, simple replacement of the
component is not enough. Due to the special characteristics of these materials (high anisotropy and high
strength ratio between matrix and ®bers) the redesign of the component is necessary. Furthermore, ana-
lytical techniques for components manufactured with composite materials are entirely di�erent from
conventional methods of analysis used for isotropic materials and require specialist knowledge. The design
process of components made up of composite materials is nowadays mostly based on empirical methods.
The absence of numerical simulation tools for the non-linear analysis of the behavior of composite ma-
terials is observed in the literature.
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Several attempts using the ®nite element method (FEM) for the analysis and design of composite ma-
terial components have been carried out in the past few years. The correlation between analytical and
measured results is de®cient [1,15]. The inability to simulate the behavior of highly non-linear anisotropic
materials is the main problem with conventional FEM codes. This is extremely important in ®ber-rein-
forced materials, which are strongly anisotropic.

To simulate the non-linear constitutive behavior of composite materials, it is necessary to consider many
of their relevant features such as: (a) high anisotropy with permanent directional strains; (b) existence of
several compounding substances; (c) one-directional plastic ¯ow of ®bers; (d) debonding, leading to loss of
kinematic compatibility; (e) local buckling; (f) tendency of the ®bers to arrange in the direction of the higher
stress; and (g) large strains. All of these phenomena produce loses in the global strength and sti�ness and
are mainly responsible for the non-linear behavior of composite materials.

A general constitutive model for composite materials is proposed in this work. The model takes into
account the relevant characteristics of the behavior of composite materials by combining the mixing theory
with a general anisotropic elastoplastic constitutive model. A new procedure for treating anisotropy e�ects
by means of an equivalent isotropic formulation is presented. The implementation of the model in a general
non-linear ®nite element solution scheme is straightforward and some examples of the application are
shown.

The layout of the paper is the following. In Section 2 an overview of di�erent constitutive models for
composite materials is given. A constitutive model based on the mechanics of a continuum medium for each
point of the solid is used in this work. Section 3 describes the mixing theory chosen where the proposed
anisotropic elastoplastic constitutive model is implemented. The behavior of composite materials assumes
that each compound participates in the whole composite in the same volume proportion and with inde-
pendent constitutive laws: elastic, elastoplastic, etc. In Section 4 the anisotropic elastoplastic constitutive
model in large strains proposed to simulate the reinforcement phase is detailed. Section 5 describes the
implementation of the constitutive model in the context of the mixing theory. In Section 6 details of the
numerical implementation of the model into a general non-linear, large strain ®nite element solution scheme
are provided. In Section 7 application examples showing the performance of the model for the analysis of
carbon-epoxy ®ber-reinforced composite structures are given.

2. Constitutive models for composite materials

Micro- and macro-models constitute the alternatives to study the mechanical behavior of composite
materials. Micro-models focus on the study at the micro-mechanical level of the interatomic bounding and
on the integrity of the composite beyond the damage point limit [24]. Although micro-models are quite
expensive for practical purposes they can be successfully used for modeling the behavior of composite
materials.

Macro-models express the whole composite behavior as that of a single material. Most macro-
mechanical models are based on the mixing theory. This theory allows to study the behavior of composite
materials as a combination of individual compounds each one with its own constitutive law satisfying an
appropriate closing equation. This equation establishes the inter-material kinematic conditions. In this
work perfect compatibility between the di�erent compounds is assumed.

An alternative procedure used for the analysis of composite materials is the homogenization method
[12,34,37,38]. This method has been typically used to analyze materials made up with periodic character-
istics. Basically it consists of ®nding the solution of a cell that governs the properties of the composite. This
methodology was used by Larson [16] for the study of the transport of neutrons in a non-homogeneous
medium. Len'e and Leguilllon [18] and Len'e [17] used this method for the computation of the properties of
a material made up of linear elastic components. The homogenization method is not satisfactory for the
analysis of long ®ber-reinforced composites due to the high computational costs.

The PAM-FISS code [7,36] used a bi-phase constitutive model assuming a fragile behavior of the ma-
terial. The strength and sti�ness of a composite are computed by adding the e�ect of an orthotropic matrix
material and a unidimensional ®ber. Matrix and ®bers may have di�erent rheological constitutive laws and
can fail independently therefore simulating a fragile material. With the objective to capture cracks, fracture
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mechanics is used. This methodology requires re-meshing techniques which lead to considerable compu-
tational cost.

Ali [1] treats composite materials as a stack of plies with di�erent orientations of the principal materials
directions of each plie. In the analysis he considers that each sheet presents an orthotropic linear elastic
behavior. Haug et al. [11] have used the PAM-FISS bi-phase model assuming that both the matrix and
®bers have a behavior characterized by a degradation of sti�ness modeled by a damage constitutive law.

In this work, the non-linear behavior of composite materials is modeled by means of the mixing theory
acting on a general anisotropic elastoplastic constitutive model formulated in large strains. The anisotropic
elastoplastic constitutive model is considered one of the ``base'' models which can be included in the mixing
theory. In Section 3 the characteristics of the mixing theory used are described.

3. Mixing theory ± general de®nition

Composite materials are made of substances of inorganic or organic types. Their state of atomic balance
depends on the di�erent interatomic bonds giving place to amorphous or crystalline materials.

The mechanical characteristics of these materials result from their intrinsic properties (macroscopic
structure, bond type, crystalline structure, etc.). Material behavior is also in¯uenced by extrinsic properties
such as: characteristic of the production process, microporous size and distribution, microcracks, initial
stress states, etc.

The behavior of the composite is a function of the proportion of the total volume and morphologic
distribution of the compounding substances.

Mixing theory is considered adequate to simulate the behavior of composite materials. This theory is the
appropriate one to explain the behavior of a point of a composite based on the physical±mathematical
structure of the mechanics of a continuum. Mixing theory is based on the principle of interaction of the
compounding substances that constitute the material with the following hypotheses: (i) in each in®nitesimal
volume of a composite material participate a ®nite number of compounding substances; (ii) each substance
participates in the behavior of the composite in the same proportion as its volumetric participation; (iii) all
compounds have the same strains (closing equation or compatibility concept); (iv) the volume occupied by
each compound is much smaller than the total volume of the composite.

The second hypothesis implies a homogeneous distribution of all substances in a certain region of the
composite. The interaction between the di�erent compounding substances, each one with their own con-
stitutive (``base'') model, yields the behavior of the composite which depends on the percentage volume
occupied by each substance and their distribution in the composite.

Trusdell and Toupin [39] studied the mixing theory providing the background of the work of Ortiz and
Popov [31]. The results obtained by Trusdell also constitute the base of the work of Green and Naghdi [10]
and Ortiz and Popov [32] for bi-phase materials. The model presented here is a more general one and it
allows to represent the non-linear constitutive behavior of a material made up of n anisotropic phases
undergoing large strains.

3.1. The closing equation

Classic mixing theory is based on the combination and interaction of the basic substances that make up
composite materials [10,29,32,39]. It also assumes that in each material point all the component substances
contribute at the same time and with their own constitutive law in the assigned volume proportion. This
allows to combine materials with di�erent constitutive behavior (i.e. elastic, elastoplastic, elastobrittle,
elastodamage, etc.).

In this work it is assumed that all phases in the mixture have the same strain ®eld. This assumption is
valid in the absence of atomic di�usion. The atomic di�usion phenomena take place at high temperatures.
In this analysis, a moderate temperature below melting point is considered. The strain compatibility
condition must be ful®lled in the referential and updated con®gurations for each phase. In the updated
con®guration the condition can be written as [23,39]
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eij � eij

ÿ �
1
� eij

ÿ �
2
� � � � � eij

ÿ �
n
: �1�

The Almansi's strain tensor can be written as

eij � 1

2
gij
h
ÿ bij

ÿ �ÿ1
i
; �2�

where b � FFT is the left Cauchy±Green strain tensor, gij is the spatial metric tensor given by

gij � Iij � dij
0 if i 6� j;
1 if j � j

�
�3�

and F is the deformation gradient, which can be computed as

FiJ � oxi

oXJ
: �4�

In the referential con®guration the closing equation proposed is

EIJ � EIJ� �1 � EIJ� �2 � � � � � EIJ� �n; �5�
where the Green±Lagrange strain tensor is de®ned as

EIJ � 1

2
CIJ� ÿ GIJ �; �6�

where G is the material metric tensor, de®ned as

GIJ � IIJ � dIJ
0 if I 6� J ;
1 if I � J

�
�7�

and C�FTF is the right Cauchy±Green strain tensor. The relationship between Almansi's and Green±
Lagrange strain tensors is shown in Appendix A.

Taking into account the de®nition of the right Cauchy±Green deformation tensor and Eq. (5), the
closing equation is obtained in terms of the deformation gradient as

F � F1 � F2 � � � � � Fn: �8�
It is important to note that the strain compatibility condition chosen holds only for materials with

parallel behavior. The above closing equation is therefore not valid for composites with short ®bers re-
inforcement and in this case a correction in the properties of each compound is needed to maintain the same
closing equation.

3.2. The free energy function

Composite materials that ful®ll Eqs. (1) and (5) also satisfy the basic condition of additivity of the free
energy of their components [39]. In the updated con®guration this can be expressed as

mw ee; h; am� � �
Xn

c�1

kcmcwc e; ep� �c; h; am
c

� �
; �9�

where m and mc are the density of the composite and of each of the phases in the updated con®guration,
respectively, wc the free energy corresponding to each one of the compounding substances of the mixture, kc

the volumetric participation coef®cient, ep� �c the plastic deformation of each phase and am
c are the internal

variables of each phase which de®ne the physical behavior of the phase.
The mixing theory used here is based on the principle that all the substances contribute to the behavior

of the composite proportional to the relative volume that they occupy. The volumetric participation co-
e�cient is de®ned as
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kc � dVc

dV0

; �10�

where Vc is the volume of each phase and V0 is the total volume of the composite.
The mass conservation law establishes that

dv
dV
� detF � J ; �11�

where v and V are the volumes in the updated and referential con®gurations, respectively. The relation
between the volume in the updated and reference con®gurations for each phase can therefore be expressed by

dvc

dVc
� J : �12�

Substituting Eq. (12) into (10) gives

kc � 1

J
dvc

dV0

� dvc

dv0

; �13�

where v0 is the total volume of the composite in the updated con®guration. Eq. (13) shows that the vol-
umetric participation coe�cient remains constant in both updated and reference con®gurations.

The volumetric participation coe�cient of each phase should satisfy the following condition:Xn

c�1

kc � 1: �14�

Mixing theory is only valid in case all the phases of the composite material are compressible or in-
compressible. In the presence of compressible and incompressible phases the closing equation does not hold
as the incompressible phases do not admit a state of volumetric strains compatible with the compressible
phases. This situation violates the strain compatibility condition.

3.3. Constitutive equation

The stress state of the composite is obtained starting from a hyperelastic model satisfying the dissipation
condition of the second principle of thermodynamics, i.e.

r � m
ow
oe
�
Xn

c�1

kcmc
owc

oe
�
Xn

c�1

kcmc r� �c: �15�

The tangent constitutive tensor of the composite is given by

cT � o2w
oe
 oe

�
Xn

c�1

kc cT
ÿ �

c
; �16�

where cT� �c is the anisotropic tangent constitutive tensor of each phase. The relationship between the
constitutive tensors in the reference and updated con®gurations are shown in Appendix A.

Fig. 1 shows a schematic ¯ow diagram for the non-linear solution of a multiphase material. It can be
seen that each phase can have its own constitutive model and is independent of other phases.

4. Anisotropic elastoplastic model for a single phase

The constitutive model presented in this section is one of the ``base'' models which can be introduced in
the mixing theory previously presented. This model is adequate to simulate the non-linear constitutive
behavior of highly anisotropic materials.

E. Car et al. / Comput. Methods Appl. Mech. Engrg. 185 (2000) 245±277 249



Modeling the behavior of an elastic anisotropic solid does not present big di�culties. In this case, it is
possible to use the general elasticity theory [14,22,33], etc.

The formulation of a constitutive law adequate to simulate the non-linear behavior of orthotropic or
anisotropic solids is a problem of higher complexity. The ®rst attempts to formulate yield functions for
orthotropic materials were due to Hill who was able to extend the isotropic Von Mises model to the or-
thotropic case [13]. The main limitation of this theory is the impossibility of modeling materials that present
a behavior which not only depends on the second invariant of the stress tensor, i.e. the case of geomaterials
or composite materials.

The anisotropic theory presented here is based on the ideas proposed by Betten [2,3] and uses the concept
of mapped stress tensor. This concept makes it possible to use the advantages and algorithms of the well-
known isotropic formulations; it consequently has many computational advantages.

In previous works the authors have developed a generalization from the isotropic plasticity theory to the
anisotropic case [27,28]. The basic idea consists in modeling the behavior of a solid in the real anisotropic
space through an ideal solid in a ®ctitious isotropic space. The main hypothesis is that the elastic strains are
the same in both spaces, which introduces a limitation in the anisotropic mapped theory. This limitation

Fig. 1. Schematic ¯ow diagram for the non-linear solution of a multiphase material formulated in the reference and updated con-

®gurations.
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emanates from the necessary proportionality between the strength limit and the elasticity modulus for each
material direction.

The constitutive model presented in this work is a generalization of the classical plasticity theory and it is
useful to simulate high anisotropic materials, such as ®ber-reinforced composites.

All the information on the material anisotropy is contained in fourth-order transformation tensors re-
lating the stresses and strains in the real (anisotropic) and ®ctitious (isotropic) spaces. The parameters
which de®ne the transformation tensors can be found from adequate experimental tests. The constitutive
model in the ®ctitious isotropic space is de®ned using the same yield function, plastic potential and inte-
gration algorithms developed for standard isotropic materials.

4.1. Yield and potential function

The elastic free energy is de®ned in terms of a simple quadratic potential. This assumption restraints the
validity of the model to the small elastic strain range, whereas large plastic strains can be tackled with [8,19].

The yield and potential functions are de®ned in the updated con®guration in the following way:

Yield function : f r; am
r

ÿ � � 0;

Potential function : g r; am
r

ÿ � � K; �17�
where r is the Cauchy stress tensor.

The yield and plastic potential functions are isotropic if the invariance conditions

f aipajqrpq; a
m
r

ÿ � � f rpq; a
m
r

ÿ � � 0 �18�
g aipajqrpq; a

m
r

ÿ � � g rpq; a
m
r

ÿ � � K �19�
are satis®ed for any orthogonal transformation aikajk � dij where aij is a unit diagonal tensor and dij is the
Kronecker tensor.

4.2. Space transformation

Traditional procedures to obtain the constitutive equations for anisotropic elastoplastic materials are
based on the description of a yield and plastic potential surfaces in terms of the characteristic properties of
the material. Satisfying the invariance conditions are in these cases di�cult.

A procedure that guarantees satisfying the invariance conditions consists of de®ning the properties of the
real anisotropic solid in terms of a ®ctitious isotropic solid through a linear relationship between the real
and ®ctitious stresses spaces [4,26] (see Fig. 3)

rij � ar
ijklrkl: �20�

From Eq. (20)

rij rkl� �ÿ1 � ar
ijkl: �21�

In the above rkl and rij are the stress tensors in the real anisotropic and ®ctitious isotropic spaces, re-
spectively, and ar

ijkl is a fourth-order tensor called space transformation tensor, which relates the stress in the
real and ®ctitious spaces. In the following ��� and ��� denote variables in the ®ctitious isotropic space and the
real anisotropic space, respectively. The space transformation tensor is de®ned in the updated con®guration
as

ar
ijkl � f ij fkl� �ÿ1

; �22�
where f ij and fkl are the yield strengths of the material in the isotropic and anisotropic spaces, respectively.

The relationship between Almansi's elastic strains in both spaces is de®ned as

e e
ij � ae

ijkle
e
kl: �23�
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This assumption implies non-uniqueness of elastic strains when the change of space is produced. In
Eq. (23) ae

ijkl is the fourth-order strain transformation tensor. This tensor can be derived from Eq. (20) as
follows:

ar
ijkl � rij rkl� �ÿ1 � cikrse e

rs

ÿ �
cjlmnee

mn

ÿ �ÿ1

� cikrse e
rs ee

mn

ÿ �ÿ1
cjlmn

ÿ �ÿ1

� cikrsae
rsmn cjlmn

ÿ �ÿ1 �24�
and hence

ae
rsmn � cikrs� �ÿ1ar

ijklcjlmn; �25�
where cikrs and cjlmn are the constitutive tensors in the ®ctitious and real spaces and relating stresses and
strains in the standard manner as

rij � cijklekl; �26�
rij � cijklekl: �27�

Note that cijkl includes the actual properties of the material. The choice of cijkl can be arbitrary and for
this purpose the property of any known material can be chosen.

The relationship between the constitutive tensor in the real and the ®ctitious spaces is deduced from
Eq. (24) as

cjlmn � ar
ijkl

� �ÿ1

cikrsae
rsmn: �28�

Note that the anisotropic constitutive tensor c is expressed in a local reference system. This means that
prior to the derivation of ae and ar it is necessary to transform of c to a global reference system, i.e.,

cijkl � Rirjs crspq

ÿ �
loc

Rkplq; �29�
where �crspq�loc is the local anisotropic constitutive tensor. The rotation tensor is de®ned as

Rijkl � rikrjl; �30�
where rik � cos��~ei�glob; �~ej�loc� and~ei is the unit vector corresponding to the kth component of the global
reference coordinate system chosen. The rotation tensor R takes into account the angles between the local
principal directions of the anisotropic material and those of the global coordinate system.

The transformation of Eq. (20) leads to changes in the shape of the yield surface. This can be observed in
Fig. 2 for di�erent yields functions. The space mapping allows to represent appropriately high anisotropic
yield and potential surfaces, such as in the case of ®ber-reinforced composites where the relationship
r � rii=rii is large. Note in Fig. 2 the loss of strength in a given direction for the case of the Von Mises
associate plasticity yield function, while in the normal direction the plastic ¯ow increases in the same
proportion.

4.3. Constitutive equation

In this section the free energy function for each of the anisotropic phases of a composite is derived. This
function is then used to de®ne the stress state from Eq. (15).

4.3.1. Basic aspects
The constitutive equation for an anisotropic material is obtained by writing the dissipation of an iso-

thermic elastoplastic process in the real anisotropic space. The dissipation expression is obtained taking
into account the ®rst and second principles of thermodynamics.

The ®rst principle postulates the balance of the energy, demanding the conservation of the total internal
energy of the system. The local Eulerian form of the energy rate can be expressed by [19,21].
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m _w � r : d� mr ÿ div �q� ÿ m _ghÿ mg _h; �31�
where _w is the internal speci®c energy, r the Cauchy stress tensor, d the velocity gradient, r the speci®c
internal source of heat, q the conductivity heat ¯ow and w is the Helmholtz free energy density.

The second principle establishes that for an irreversible process the change in the internal production of
entropy should be bigger or the same than the change of introduced entropy [21,25]. This gives the speci®c
local dissipation as

N � ÿ _hgÿ _w� r : d

m

� �
ÿ 1

hm
q � rh: �32�

4.3.2. Helmholtz's free energy function de®nition
In the de®nition of Helmholtz's free energy, it is not correct to use as a free variable the elastic Green±

Lagrange strain tensor as this is a�ected by the plastic ¯ow through the plastic component of the defor-
mation gradient Fp. A more convenient form of Helmhotlz's free energy is

w � w ee; h; ai� �; �33�
where h is the absolute temperature, ee the Almansi's strain tensor and ai is a set of internal plastic vari-
ables.

4.3.3. Hypothesis of uncoupled elasticity
The hypothesis of uncoupled elasticity transforms Eq. (33) into

w ee; h; a� � � we ee; h� � � wp ai; h� �: �34�

Fig. 2. Changes in the shape of several yield functions. r is the relationship between the ®ctitious isotropic and the real anisotropic

yield stresses.
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This assumption is based on the fact that the necessary energy levels to distort the crystalline net, re-
sponsible for the elastic strains, are di�erent from the necessary energy levels for the intercrystalline slip.
This splitting has been used by several authors and is the base of di�erent computational models
[8,9,19,20,25].

The free variables of the problem are the temperature h and the elastic part of Almansi's strain tensor
which is de®ned as

ee � eÿ ep � 1

2
I
ÿ ÿ bÿ1

�ÿ Z t

0

_ep dt; �35�

where ep is the plastic strain in the updated con®guration, b the left Cauchy±Green tensor and _ep is the rate
of change of plastic strains in the updated con®guration.

4.3.4. Dissipation expression
The rate of change of the free energy function is given by

_w � ow
oee

de � ow
oh

_h� ow
oai

_ai; �36�

where de � Lv�ee� is the rate of change of the elastic part of the strains. The term Lv denotes the standard
Lee derivative (see Appendix A). Substituting Eq. (36) into (32) gives the expression of the dissipation as

N � r : d

�
ÿ ow

oee
dem
�
ÿ m _h

ow
oh

�
ÿ g

�
ÿ m

ow
oa

_aÿ 1

h
q � rh P 0: �37�

Taking into account the additive decomposition of the velocity gradient tensor d � de � dp [8] Eq. (37)
becomes

N � r

�
ÿ m

ow
oee

�
: de ÿ m _h

ow
oh

�
ÿ g

�
� r : dp ÿ m

ow
oa

_aÿ 1

h
q � rhP 0; �38�

Eq. (38) is known as the Clasius±Duhem inequality. In continuum mechanics this inequality must be
satis®ed for every possible process, since d and _h represent arbitrary temporary changes of the free variables
of the problem. Eq. (38) imposes restrictions in the form of the constitutive equations and it is satis®ed only
if the multipliers of de and _h are null. This allow to de®ne the constitutive equation in general form as

r � m
ow
oee

; g � ow
oh
: �39�

The expression of the free energy function is derived in Section 4.3.5.

4.3.5. Free energy expression. Special case: small elastic strains and isothermal state
Composite materials are usually subjected to small elastic strains. Thus the elastic part of the defor-

mation gradient Fe tends to unity and the elastic part of the left Cauchy±Green tensor �be�ÿ1
tends to the

spatial metric tensor g. In this case the distinction between intermediate and deformed con®gurations is
irrelevant.

However, the plastic strains continue being ®nite and therefore it is necessary to keep the presence of the
right Cauchy±Green tensor C in the material expression of the constitutive model to preserve the physical
meaning of the model.

For the case of small elastic strains it is enough to characterize the elastic component of the free energy
by means of a quadratic function of the elastic part of Almansi's strain tensor, i.e.

we � 1

2m
ee : c : ee: �40�

The expression of the free energy function can be rewritten taking into account the hypothesis of un-
coupled elasticity (Eq. (34)), the expression of the elastic part of the free energy (Eq. (40)) and the rela-
tionship between the constitutive tensors in the real and ®ctitious spaces (Eq. (28)). This gives
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w � 1

2m
ee : c : ee� � � wp �41�

� 1

2m
ee : ar� �ÿ1

: c : ae� �
h i

: ee � wp a� �: �42�

The constitutive equation in the real anisotropic space is obtained substituting Eq. (42) into (39), i.e.,

r � m
ow
oee
� ar� �ÿ1

: c : ae� �
h i

: ee � ar� �ÿ1
: c

h i
: e e � ar� �ÿ1

: r; �43�

Eq. (43) shows that the stresses in the real anisotropic space are obtained by transformation of the stresses
in the ®ctitious isotropic stress state through �ar�ÿ1

.

4.4. Flow rule. Evolution law for the internal variables

The rate expression of the plastic strain is de®ned by

dp � _ep � _k
og
or
: �44�

All the relevant information on the material anisotropy properties is contained in the two fourth-order
tensors ar and ae. The expression of the plastic potential function for the anisotropic solid is written in
terms of these tensors and the Cauchy stress tensor as

g r; a� � � g r; ar; a� � � g r; a� � � K: �45�
Substituting Eq. (45) into (44) the rate of the plastic Almansi strains is

_ep � _k
og
or
� _k

og
or

:
or

or
� _k

og
or

: ar � _e
� �r

: ar; �46�

where � _e�r is the plastic ¯ow normal to the isotropic potential function g.
The evolution law of the plastic internal variables is given by

_a � _k hi
ÿ �

r
:
og
or
� _k hi
ÿ �

r
:
og
or

:
or

or
� _k hi
ÿ �

r
:
og
or

: ar; �47�

where �hi�r is a second-order tensor to be determined for each one of the i internal variables. In the simplest
case of plasticity theory this tensor takes the form of the Cauchy stress tensor. In this case the evolution law
of the internal variables can be written as

_a � _kr :
og
or
: �48�

The additivity strain concept (see Eq. (35)) allows to extend the transformation rule de®ned for the total
strains to their plastic part, i.e.,

_ep � ae : _ep � _kae :
og
or

: ar � ae : _e
� �r

: ar; �49�

where _ep is the plastic strain tensor in the ®ctitious space.

4.4.1. Dissipation in isotropic ®ctitious space. Uniqueness of dissipation
In this section the invariance of the dissipation through the thermodynamic process is shown. As a

consequence it is concluded that it is irrelevant to write the constitutive model in either the anisotropic or
isotropic spaces.

The expression of the mechanic dissipation in the ®ctitious isotropic space can be written taking into
account the following transformations
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r � ar : r; �50a�
e � ae : e: �50b�

The rate of change of plastic strains in the ®ctitious isotropic space is given by

_ep � _kae :
og
or

: ar: �51�

Taking into account Eq. (38), the plastic dissipation in the real anisotropic space for the isothermal
process is

Nmec � r : dp ÿ m
ow
oa

_a P 0: �52�

The dissipated mechanical power can be written in the ®ctitious isotropic space by substituting in
Eq. (52) the ¯ow rule, the evolution law of the internal variables and taking into account Eqs. (50a) and
(50b), i.e.

r : _ep � ar� �ÿ1
: r

h i
: ae� �ÿ1

: _ep
h i

� _k ar� �ÿ1
: r : ae� �ÿ1

: ae :
og
or

: ar � _kr :
og
or
� r : _e

� �r
: �53�

Substituting this expression into Eq. (52) and using Eq. (44) gives

Nmec � r : dp ÿ m
ow
oa

_a � r : _e
� �r

ÿ m
ow
oa

_a � Nmec P 0; �54�

Eq. (54) shows that the dissipation is an invariant of the thermodynamic process. Therefore, its value is
independent of the space where it is computed.

Helmholtz's free energy in an isothermal process can be expressed in the isotropic ®ctitious space by

w e e; a� � � 1

2m
e e : c : e e� � � w

p

am� � �55�

and hence the constitutive equation in the ®ctitious isotropic space is given by

r � m
ow e e; a� �

oe e � c : e e: �56�

Taking into account Eqs. (28) and (50b) Cauchy's stress tensor in the ®ctitious isotropic space is given by

r � ar : cr : ae� �ÿ1
h i

: ae : ee� � � ar : cr : I : ee � ar : cr : ee � ar : r: �57�

The previous expression and Eq. (54) show that it is equivalent to write the constitutive model in the
anisotropic real space or in the isotropic ®ctitious one. Obviously writing the constitutive models in the
isotropic ®ctitious space allows to pro®t from the advantages and algorithms used for isotropic materials.

4.5. Tangent constitutive equation

The expression of the tangent constitutive equation is obtained by performing the temporal derivative of
Eq. (43), i.e.

_rij � orij

oee
kl

_ee
kl

� orij

orrs

orrs

oe e
mn

oe e
mn

oee
kl

_ee
kl

� ar
ijrs

� �ÿ1

crsmnae
mnkl _ee

kl

� ar
ijrs

� �ÿ1

crsmn e
:

kl

�
ÿ _ep

kl

�
: �58�
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This equation can also be obtained considering Eq. (50a) relating the Cauchy stress tensor in the ®cti-
tious and real spaces. Taking into account that the stress transformation tensor between spaces ar is time
independent and the plastic consistency condition, the rate constitutive equation in the ®ctitious isotropic
space is obtained as

_r � c� �ep : _e; �59�

where c� �ep
is the tangent elastoplastic constitutive tensor in the ®ctitious isotropic space given by

cep
ijkl � cijkl ÿ

cijrs�og=orrs�
ÿ � �of =orrs�crskl

ÿ �
�of =orpq�cpqln�og=orln� ÿ

P
n�of r=oam

s � hm
tu

ÿ �
r
�og=ortu�

: �60�

The rate expression of Cauchy's stress tensor in the anisotropic space is obtained taking into account
Eq. (50a), i.e.,

_rij � ar
ijkl

� �ÿ1

cep
klrs

_ers: �61�

Combining Eqs. (61) and (50b) leads to the ®nal expression of the rate constitutive equation in the
anisotropic solid as

_rij � ar
ijkl

� �ÿ1

cep
klrsa

e
rspq _epq � cep

ijpq _epq �62�

with

cep
ijpq � ar

ijkl

� �ÿ1

cep
klrsa

e
rspq; �63�

Eq. (62) shows that the expression of the tangent elastoplastic anisotropic tensor is a function of the
tangent elastoplastic constitutive tensor in the ®ctitious isotropic space through ar and ae.

In order to simulate the constitutive behavior of highly anisotropic composite materials the constitutive
model here proposed only requires the de®nition of the following material properties in the real and ®c-
titious spaces:
· Real anisotropic space.
� Initial constitutive tensor in local coordinates clocal.
� Yield strength ryield.
� Rotation tensor R.

· Fictitious isotropic space.
� Yield function f �r; a� � 0.
� Plastic potential function g�r; a� � 0.
� Yield strength ryield.
Fig. 3 shows the operations to be performed for an anisotropic compounding of a composite material.

The ®rst operation is to transport the strain tensor from the reference con®guration to the updated
con®guration using a ``push forward'' operation (see Appendix A). In step 2 a trial stress r� is computed.
Next the trial stresses r�, the strains e and the constitutive tensors c are transported from the real an-
isotropic updated con®guration to the ®ctitious isotropic space using tensors ar and ae. In the ®ctitious
isotropic space the yield condition must be satis®ed. Otherwise an elastoplastic problem must be solved
providing a new stress state r and the tangent elastoplastic constitutive tensor �c�ep

. In step 3 the new
stress state and the tangent elastoplastic constitutive tensor must be mapped to the real anisotropic up-
dated con®guration using �ar�ÿ1

and �ae�ÿ1
tensors, giving r and �c�ep

. In step 4 r and �c�ep
are mapped to

the reference anisotropic con®guration. Finally the residual force is computed and a convergence check is
performed.
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4.6. Integration of the constitutive equation

A material with inelastic behavior requires the numerical integration of the constitutive equation in a
discrete sequence of time steps.

The result of the integration algorithm is a non-linear function that de®nes the stress tensor in terms of
the history of strains until the current time step. This integration algorithm allows to treat the elastoplastic
problem as an equivalent elastic problem in the time step.

The tangent operator used in the linearized problem should be obtained by linearizing the response
function consistently with the integration algorithm of the constitutive equation. The use of the consistent
tangent operators preserves the quadratic convergence of iterative solution schemes based on Newton
methods.

In the proposed constitutive model the integration of the constitutive equation is carried out in the
®ctitious isotropic space by means of ``return mapping algorithm'' using the backward-Euler scheme [5]. In
the solution of elastoplastic problems that require incremental constitutive equations the consistency be-
tween the tangent operator and the integration algorithm plays a fundamental role [5,35]. In the proposed
model consistent tangent operators have been used to preserve the quadratic convergence of Newton
methods.

5. Composite constitutive model

The large strain anisotropic elastoplastic constitutive model presented in the previous section is one of
the ``base'' model used in the mixing theory. In particular, in the case of ®ber-reinforced composite ma-
terials a constitutive model for each phase is considered (see Fig. 4). A standard isotropic plasticity model

Fig. 3. Scheme of the elastoplastic anisotropic constitutive model.
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has been chosen for the matrix material, whereas the behavior of the ®ber reinforcement is modeled by
means of the anisotropic elastoplastic model here proposed.

6. Numerical implementation of the proposed model

In this section the basic steps for the implementation of the constitutive model into a standard elasto-
plastic ®nite element program are given.

Box 1.

Numerical implementation (1)
± De®nition of the yield stress tensors in the real anisotropic space and the isotropic ®ctitious space

for each phase of the composite material

f; f

Fig. 4. Constitutive model for ®ber reinforced composite materials.
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± De®nition of the constitutive tensor in the real anisotropic space, of the constitutive ®ctitious
isotropic tensor in the reference con®guration and of the rotating tensor for each phase of the material

c; �c�loc; R

± Compute the anisotropic constitutive tensor in the global coordinate system for each phase of the
composite material

c � R : �c�loc : R

± De®nition of the mapping tensors for each phase of the composite material

ar � f 
 �f�ÿ1
; ae � c� �ÿ1

: ar : c

± Compute the anisotropic and isotropic constitutive tensors from the mixing theory

c �
Xn

c�1

kc c� �c; c �
Xn

c�1

kc c� �c

H LOOP OVER LOAD INCREMENT n� 1, Max. Load increment
� LOOP OVER ITERATION: i� 1, Max. number of iterations

1. Compute sti�ness matrix

n K�e�
� �i ) n�K�i � Anelem

e�1 K�e�
� �i

2. Compute strain increments in the reference con®guration

n�DU�i�1 � n
K� �i

h iÿ1

� Fresid� �i; n �U�i�1 � n�DU�i � n�DU�i�1

n�E�i�1 � 1=2 FTF
ÿ ÿ I

�
3. Push-forward of the strain tensor to the updated con®guration

n�e�i�1 � ~/ n�E�i�1
h i

4. Integration of the constitutive equation in the updated con®guration
| LOOP OVER EACH PHASE OF COMPOSITE MATERIAL: j� 1, NCOMP

(a) Compute elastic trial stress

n
r�� �i�1

h i
c
� c� �c :

n�e�i�1
h

ÿ n ep� �
i

(b) Transform predicted stresses to the ®ctitious isotropic space

n
r�� �i�1

h i
c
� ar� �c :

n
r�� �i�1

h i
c

(c) Integration of the constitutive equation

n
r�� �i�1

h i
c
) n

r� �i�1
h i

c

n c� �ep� �i�1

c � c

"
ÿ c : �og=or�� � 
 �of =or� : c

ÿ �
�of =or� : c : �og=or� ÿPn�of=oam

s � : hm� �r : �og=or�

#
c

(d) Back transformation of stresses and tangent elastoplastic constitutive tensor to the real
anisotropic space

n�r�i�1
h i

c
� ar� �ÿ1
h i

c
:

n
r� �i�1

h i
c

n �c�ep� �i�1

c � ar� �ÿ1
h i

c
: n c� �ep� �i�1

c : ae� �c�
| END LOOP OVER EACH PHASE OF COMPOSITE MATERIAL
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7. Numerical examples

7.1. General description

In this section application examples using the proposed model are presented. The examples consist in
the numerical simulation of the non-linear behavior of a specimen made up of composite material
subjected to a tension state. The simulations have been carried out using a ®nite element mesh of
standard four node rectangular ®nite elements with 1988 elements, 2097 nodes and 4194 degrees of
freedom. This mesh is similar to the one used in a study carried out by the European Space Agency [36].
(see Fig. 6a).

The test is carried out on specimens of carbon-epoxy T300/914C that present a notch in the central area
of the specimen. The reinforcement are carbon ®bers. The angle orientations of the carbon ®bers in the
di�erent tests specimens are: 0°, 10°, 45° and 90° related to the longitudinal axis of the sample.

The test consists in a tensional state imposing a displacement on the top of the specimen. In Fig. 5
dimensions of the specimen, a detail of the central area and the points in which the experimental measures
were carried out are observed.

In the notched area a stress concentration is generated which perturbs the matrix. This situation gen-
erates stresses that exceed the elastic limit of the matrix. In unidirectional ®ber-reinforced composite ma-
terials cracks always start in the matrix and tend to advance parallel to the ®ber direction. This behavior is
the opposite to that observed in tests carried out on homogeneous isotropic specimens.

The resin behaves as an isotropic material with an elastoplastic constitutive law, while ®bers behave as
an anisotropic elastoplastic material [6].

In each numerical simulation the previously described constitutive model is used. The mechanical
properties of each phase (matrix and ®ber) are summarized in Tables 1 and 2. Numerical results presented
can be divided in two groups:

5. Compute composite stresses and constitutive tensor according to the mixing theory

n�r�i�1 �
Xncomp

i�1

kc
n�r�i�1
h i

c

n c� �ep� �i�1 �
Xncomp

i�1

kc
n �c�ep� �i�1
h i

c

6. Pull back of stresses and tangent elastoplastic constitutive tensor to the reference
con®guration

n�S�i�1 � /
 

n�r�i�1

n�C�i�1 � /
 

 
n�c�i�1

7. Compute the residual force in the reference con®guration and check convergence

n F �e�resid

h ii�1

)n Fresid� �i�1 � Anelem
e�1 F �e�resid

h ii�1

If Fresidk k > 0?) i � i� 1 Go back to �1�
else converged solution for the nth increment

n � n� 1 Compute new load increment

� END LOOP OVER EACH EQUILIBRIUM ITERATION
H END LOOP OVER LOAD INCREMENTS
STOP
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· Graphic results, in which the deformation of the specimen as well as iso-surfaces of the ®nal stress, strain
and equivalent plastic states are presented.

· Quantitative results, in which numerical X±Y curve are plotted and compared with experimental results.
The experimental data have been obtained from the ESI Project Nb ED/83-383/RD/MS and ED/84-415/
RD/MS and from a research project carried out by the European Space Agency [36].

Table 1

Material properties of epoxy resin

Young modulus 13,000 MPa

Poisson coe�cient 0.325

Yield stress 43.323 MPa

Post yield behavior law Exponential with softening

Fracture energy 5 N/m

Vm 52.5%

Fig. 5. Specimen geometry. Dimensions and detail of the central part.

Table 2

Material properties of carbon ®ber

Young modulus 239,551 MPa

Poisson coe�cient 0.0

Yield stress 300 MPa

Post yield behavior law Linear with hardening

Vf 47.5%
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7.2. Test of T300/914C specimens with 0° ®ber angle

A sample of carbon epoxy with 0° ®bers related to the longitudinal axis of the specimen is submitted to
an imposed displacement on the top.

It is considered that the resin behaves as an isotropic Von Mises material with an elastoplastic behavior
law. The mechanical properties of the epoxy resin are given in Table 1.

It is considered that the ®ber behaves as an anisotropic elastoplastic material. The mechanical properties
used in the numerical simulation are summarized in Table 2.

An incremental analysis considering 30 displacement increments was performed. The total displacement
imposed at the top of the specimen was 0.385 mm.

Fig. 7. Test of T300/914C specimen with 0° ®ber angle. Detail of deformation at the notch.

Fig. 6. (a) Finite element mesh used in numerical tests. (b) Test of T300/914C specimen with 0° ®ber angle. Deformation (ampli®ed 50

times).
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Figs. 6b and 7 show the deformation of the specimen in the ®nal state, and a detail of the deformation in
the notched zone, respectively. These ®gures present a displacement ampli®cation factor of 50 illustrating
the most important phenomena obtained in the analysis.

In Fig. 6b is clearly observed that due to the vertical position of the carbon ®bers the external faces of the
specimen do not deviate from the vertical axis of the specimen. Deviation does take place when the ®bers
are inclined with respect to the longitudinal axis of the sample (see tests with ®bers at 10° and 45°, Figs. 14
and 21a).

For the 0° case four cracks start in the notch root and progress parallel to the longitudinal axis of the
specimen coincident with the reinforcement direction. The origin of two of the cracks can be appreciated in
Fig. 7. They start in the notch root and spread in the direction of the longitudinal axis.

In Fig. 8a contours of the displacements norm are presented. It is observed that in the central area of the
specimen the displacement ®eld presents a soft gradient, with four areas clearly distinguished where dis-
placement gradients are high. These areas begin in the root of each notch and progress parallel to the
longitudinal axis of the specimen, coincident with the reinforcement direction.

Fig. 8. Test of T300/914C specimen with 0° ®ber angle: (a) Contours of displacement norm. (b) Equivalent plastic strain contours.

Fig. 9. Test of T300/914C specimen with 0° ®ber angle. Contours of equivalent plastic strain in ®bers.
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The equivalent plastic strain contours in the composite are plotted in Fig. 8b. The areas with higher
straining are in the notch root due to the concentration of stresses. Plasticity e�ects progress in a parallel
direction to the longitudinal axis of the sample.

Fig. 9 shows the plasticity levels in ®bers clearly indicating the regions where the debonding phenomenon
has taken place. One of the reasons of the non-linear behavior of reinforced composite materials is due to
the phenomenon of crack propagation in the matrix and the relative displacement between ®ber and matrix.
The phenomena of matrix cracking and debonding or slip between ®bers and matrix reduce the global
sti�ness and leads to inelastic or not recoverable strains. This phenomenon is taken into account here by
limiting the load capacity of the ®bers due to the inability of the matrix to transmit the loads. More details
about modeling of this phenomenon will be reported in a future work. Fig. 9 also clearly shows that cracks
progress from the root of the notch, due to the concentration of stresses in this area, towards the center of
the specimen. The debonding phenomenon prevents ®bers reaching the maximum yield stress as the matrix

Fig. 10. Test of T300/914C specimen with 0° ®ber angle. (a) Contour of rxx stress in the composite. (b) Contour of ryy stress in the

composite.

Fig. 11. Test of T300/914C specimen with 0° ®ber angle. Detail of ryy stress contours at the notch.
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is not able to transfer the load to the ®ber. This also leads to a change in the slope of the load±displacement
curve (Fig. 12).

In Figs. 10a and b contours of rxx and ryy stresses in the composite are plotted. The stress concentration
in the notched area as well as the changes in the stress state taking place in the cracked area are shown.

In Fig. 11 a detail of the ryy stresses in the vicinity of the notched area is shown.
Some experimental and numerical results are compared in Figs. 12 and 13. The curve in Fig. 12 shows

the force vs. the displacement at the top of the specimen. A comparison between experimental results, the
results obtained with the mixing theory considering a linear elastic behavior for each phase and the pro-
posed non-linear model is presented. Results using the linear elastic model provide upper limit values.

At high load levels a non-linear behavior is observed in experimental tests due to debonding phenomena
between ®bers and matrix. Numerical results detect with remarkable agreement the onset of this non-linear

Fig. 13. Test of T300/914C specimen with 0° ®ber angle. COD vs. displacement at the top of the specimen.

Fig. 12. Test of T300/914C specimen with 0° ®ber angle. Load vs. displacement at the top of the specimen.
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phenomenon. In Fig. 13 curves relating the displacement at the top level of the specimen and the crack
opening displacement (COD) in the central area are plotted (see Fig. 5).

The overall agreement between experimental and numerical results obtained with the full non-linear
model can be considered satisfactory.

Fig. 15. Test of T300/914C specimen with 10° ®ber angle: (a) Contours of displacement norm. (b) Equivalent plastic strain contours.

Fig. 14. Test of T300/914C specimen with 10° ®ber angle. Deformation (ampli®ed 30 times).
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7.3. Test of T300/914C specimens with 10° ®ber angle

The numerical simulations have been carried out considering a total of 50 time displacement increments.
The total imposed displacement at the top level was 0.59 mm.

In Fig. 14 the deformed sample is presented. This ®gure presents an ampli®cation factor of the dis-
placements of 30 times. Note that due to the position of the carbon ®bers, the external faces of the specimen
deviate with the vertical axis of the sample. This phenomenon is due to a tendency of the ®bers to be re-
oriented in the direction of the applied force.

In Fig. 15a the displacements norm contours are plotted. In the same ®gure, it can be observed that the
displacement ®eld presents discontinuities in the central area of the specimen. In this region a crack starts
along the reinforcement direction.

In Fig. 15b contours of the equivalent plastic strain are presented. Note the areas in which plastic
straining has taken place. It is observed that due to the imposed displacement conditions, plastic straining

Fig. 16. Test of T300/914C specimen with 10° ®ber angle. Contours of plastic deformation in the composite.

Fig. 17. Test of T300/914C specimen with 10° ®ber angle: (a) Contour of rxx stress in the composite. (b) Contour of ryy stress in the

composite.
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takes place in the right upper part and the left lower zone of the specimen and it progress in a direction
coincident with the reinforcement orientation.

Fig. 16 shows the plastic strains in the composite. It is observed that plastic strains take place in the right
upper and left lower corner zones and progress towards the center of the specimen.

In Figs. 17a and b contours of rxx and ryy stresses are presented. An induced directionality is observed in
the material.

The experimental and numerical results are compared in Figs. 18±20.
In this case analytical results present a good agreement with those obtained experimentally, except for

the case of Fig. 19 in which a higher crack opening can be observed in the notched area on the right-hand
side of the specimen. It is necessary to highlight that the experimental results do not show symmetry and the
crack opening displacement is di�erent at the left and right top sides. This could be due to measurement
errors or discontinuities in the material. This phenomenon is not observed in the numerical simulation and

Fig. 18. Test of T300/914C specimen with 10° ®ber angle. Load vs. displacement at the top of the specimen.

Fig. 19. Test of T300/914C specimen with 10° ®ber angle. COD vs. displacement at the top of the specimen (right-hand side).

E. Car et al. / Comput. Methods Appl. Mech. Engrg. 185 (2000) 245±277 269



symmetric results have been obtained. The size of the crack opening displacements is the same for both top
sides.

A comparison between numerical and experimental results for the right top side of the specimen is shown
in Fig. 19. A non-gradual increase of the displacements ®eld is observed in experimental results at the ®nal
stage of the test. In Fig. 20 numerical results agree well with experimental values.

7.4. Test of T300/914C specimens with 45° ®ber angle

An incremental analysis has been performed with a total of 50 displacement increments. The total im-
posed displacement at the top level was 0.59 mm.

Fig. 20. Test of T300/914C specimen with 10° ®ber angle. COD vs. displacement at the top of the specimen (left-hand side).

Fig. 21. Test of T300/914C specimen with 45° ®ber angle: (a) Deformation (ampli®ed 25 times). (b) Detail of deformation at the notch.
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In Figs. 21a and b the deformed sample and a detail of the notched area are presented, respectively.
These ®gures present a displacement ampli®cation factor of 25 times. Note the rotations of the external
faces due to the 45° direction of the reinforcement. This phenomenon takes place due to a tendency of the
®bers to be reoriented in the direction of the applied force.

In Fig. 22a contours of the displacements norm are presented. Strain localization can be appreciated in
the central area of the sample. This agrees with experimental results. Note that the cracks progress along
the reinforcement direction.

In Fig. 22b contours of the equivalent plastic strain are observed. It is appreciated that plasticity
is associated with the matrix materials and progresses normally to the reinforcement direction. This
phenomenon takes place when the ®bers try to align with the force direction. This produces changes in the
stress ®eld in the matrix generating plastic strains and debonding.

Fig. 23 shows the plasticity levels in the ®bers clearly indicating the regions where the debonding phe-
nomenon has taken place.

Fig. 22. Test of T300/914C specimen with 45° ®ber angle: (a) Contour of displacement norm. (b) Equivalent plastic strain contours.

Fig. 23. Test of T300/914C specimen with 45° ®ber angle. Contours of equivalent plastic strain in ®bers.
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In Figs. 24a and b contours of rxx and ryy stresses are presented. Again an induced directionality is
observed in the material.

The experimental and numerical simulation results are observed in Figs. 25±27. As in previous cases
experimental results are compared with those obtained numerically using the proposed non-linear model
and a simpler model based on the mixing theory and assuming a linear behavior for both ®ber and matrix.

Analytical results present a good agreement with experimental values in this case. Note the symmetry of
the experimental results. This phenomenon is also observed in the numerical results and the values of the
crack opening displacements are the same for both sides of the specimen (Figs. 26 and 27).

Fig. 25. Test of T300/914C specimen with 45° ®ber angle. Load vs. displacement at the top of the specimen.

Fig. 24. Test of T300/914C specimen with 45° ®ber angle: (a) Contour of rxx stress in the composite. (b) Contour of ryy stress in the

composite.
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7.5. Test of T300/914C specimens with 90° ®ber angle

An incremental analysis has been performed with a total of 40 displacement increment. The total im-
posed displacement at the top level was 0.385 mm.

In Fig. 28a and b the deformed sample and a detail of the notched area are presented. These ®gures
present an ampli®cation factor of the displacements of 200 times.

Fig. 28a shows the straining in the central area of the sample oriented in a perpendicular direction to the
longitudinal axis, coincident with the direction of the reinforcement.

In Fig. 29a the displacements norm contours are plotted. In the same ®gure it can be observed that the
displacement ®eld presents discontinuities in the central area of the specimen. In this region a crack starts
along the reinforcement direction.

Fig. 27. Test of T300/914C specimen with 45° ®ber angle. COD vs. displacement at the top of the specimen (left-hand side).

Fig. 26. Test of T300/914C specimen with 45° ®ber angle. COD vs. displacement at the top of the specimen (right-hand side).
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In Fig. 29b contours of the plastic internal variable are shown. It can be appreciated that plastic strains
start at the notch root and progress parallel to the reinforcement towards the center of the specimen.

In Figs. 30a and b contours of rxx and ryy stresses are plotted. In both ®gures the stress concentration due
to the presence of the notch which generates plastic strains in the matrix can be appreciated.

The experimental and numerical simulation results are compared in Fig. 31. The curve shows the force
vs. the displacement at the top of the specimen. The curve show the comparison between experimental

Fig. 29. Test of T300/914C specimen with 90° ®ber angle: (a) Contours of displacement norm. (b) Detail of equivalent plastic strain

contours at the notch.

Fig. 28. Test of T300/914C specimen with 90° ®ber angle: (a) Deformation (ampli®ed 200 times). (b) Deformed detail at the notch.
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results, the results obtained with the mixing theory considering a linear elastic behavior for each phase and
the proposed non-linear model. The numerical simulation using a linear elastic behavior gives the upper
limit response as in previous examples.

8. Concluding remarks

The conventional techniques used for the analysis of simple isotropic materials are not valid for the non-
linear analysis of composite materials.

In this work and as an alternative to more standard models the non-linear behavior of composite ma-
terials is modeled by means of a modi®ed mixing theory, acting on a general anisotropic elastoplastic
constitutive model formulated in large strains.

Fig. 30. Test of T300/914C specimen with 90° ®ber angle: (a) Contour of rxx stress in the composite. (b) Contour of ryy stress in the

composite.

Fig. 31. Test of T300/914C specimen with 90° ®ber angle. Load vs. displacement at the top of the specimen.
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The use of an auxiliary ®ctitious isotropic space simpli®es both the formulation of the non-linear
constitutive model and the computational implementation into standard non-linear ®nite element codes.

The examples presented show that the constitutive model is appropriate for the analysis of composite
materials in linear and non-linear regimes. The formulation is quite general and it allows to reproduce
complex non-linear phenomena in composite materials such as anisotropy, large strains, plasticity and
damage.
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Appendix A. Transport operators

Concept of Lie's derivative

Operator Index notation Compact notation

e � /
!

E� � eij � F ÿT
iI EIJ F ÿ1

jJ e � FÿT � E � Fÿ1

E � /
 

e� � EIJ � F T
iI eijFjJ E � FT � e � F

r � 1
J /
!

S� � rij � 1
J FiISIJ F T

jJ r � 1
J F � S � FT

S � J/
 

r� � SIJ � JF ÿ1
iI rijF ÿT

jJ S � JFÿ1 � r � FÿT

c � /
!

!
C� � cijkl � FiI FjJ FkKFlLCIJKL

C � /
 

 
c� � CIJKL � F ÿ1

iI F ÿ1
jJ F ÿ1

kK F ÿ1
lL cijkl
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