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RESUMEN

El presente trabajo pretende ser una contribucién al campo de la distribucién automatica
en planta asistida por ordenador. La elaboracidn del método de generacidn que se expone
a continuacién, ha exigido el desarrollo de varios algoritmos originales para el manejo de.
grafos, como por ejemplo, el que determina las caras de un grafo planar, o el que comprueba
la planaridad de un grafo ante la introduccién de nuevas aristas. Mediante este nuevo
procedimiento es posible la representacién grafica de una distribucién en planta que satisface las
restricciones impuestas por el disefiador, aunque el grafo correspondiente a tales restricciones
no sea planar maximo, Unicamente ha de ser biconexo y planar.

SUMMARY

This paper means to be a contribution to the field of automatic space-planing. The method
of generation we expose has required the development of several new algorithms, for instance
the one that computes the faces of a planar graph and the one that tests the planarity of a
graph when new sides are added. Our method makes posible the graphics representations of a
floor plan layout satisfying the restrictions imposed by the designer when the graph associated
to these restrictions is planar and biconected but not necesarily a plana maximal graph.

INTRODUCCION

En la década de los afios setenta fueron numerosos los investigadores que mostraron
su entusiasmo e interés por la aplicacién del ordenador en el campo del disefio
arquitectonico y auguraban su radical transformacién. Sin embargo, este cambio no
se ha producido hasta el momento; mientras, en otras disciplinas —ajenas al quehacer
arquitectdénico—, el ordenador se ha convertido en una poderosa herramienta de ayuda
al diseiio.

Las primeras aplicaciones practicas aparecidas en el mercado para la utilizacién del
ordenador en las tareas propias de la elaboracién del proyecto arquitecténico, fueron
principalmente dirigidas al campo del calculo de estructuras, confeccién de mediciones
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y presupuestos, dibujo, etc., no satisfaciendo —ninguno de estos— las condiciones que
un programa de CAD para el disefio arquitecténico debe poseer.

Segin Mitchell’ un programa de este tipo debe ser capaz de realizar las siguientes
operaciones:

1. Almacenamiento, recuperacién y manipulacién de los datos que nos describen el
objeto de diseno.

2.  Generacién automdtica de soluciones al problema de disefio.

3. Evaluacién de las distintas soluciones generales segtn las condiciones, restricciones
y objetivos impuestos.

En general, los programas de CAD que se ofrecen en el campo de la arquitectura
son Unicamente capaces de realizar las operaciones descritas en el primer punto aludido
por Mitchell, dado que la mayor parte de estos han sido desarrollados, mediante la
extrapolacién, a partir de programas especificos de ingenierfa. Por consiguiente, dichos
programas no suelen ajustarse a las necesidades del disefio arquitecténico.

Asi pues, nuestra labor de investigacién se centra en el desarrollo de procedimientos
englobados en los dos iltimos puntos sefialados por Mitchell, es decir, en los aspectos
que més especificamente distinguen el proceso de disefio arquitecténico de otros procesos
de disefio. Entre los problemas que pueden ser abordados en esta etapa se encuentran
los de generacién y optimizacién de esquemas de distribuciones espaciales en planta
que satisfagan una serie de restricciones y requisitos impuestos por el disehador.

GENERACION AUTOMATICA DE ESQUEMAS DE DISTRIBUCION

Estado actual del problema

En los dltimos quince afios han sido numerosas las propuestas de métodos para la
generacién automdatica —mediante ordenador— de distribuciones espaciales en planta
que cumplan con una serie de restricciones impuestas “a priori”.

Estas restricciones, como proponen algunos autores —Levin®, Krejcirik’, Eastman?,
Shavid y Gali'?>~- son de una naturaleza tal que permiten plantear el problema de la
generacién de soluciones como un problema de optimizacién, mientras que otros tratan
este problema de forma radicalmente distinta: consideran que dichas restricciones sélo
seran las debidas a la adyacencia entre locales, orientacién, accesibilidad entre los
mismos y limitaciones dimensionales. Asi tratan el problema, entre otros, Grason'®,
Mitchell, Steadman y Ligget?, Flemming®, Gilleard* y Sendra™.

Todos estos autores citados en el segundo grupo coinciden en diferenciar dos etapas
muy claras en el proceso generador global: una primera etapa “adimensional” en la que
se generan una o todas las soluciones de distribucién en planta que cumplan con los
requisitos impuestos, y una segunda etapa “dimensional” en la que se dimensionan los
esquemas adimensionales generados. '

De igual forma, casi todos los autores se basan en la teoria de grafos para expresar
y procesar las condiciones de adyacencia y orientacion entre los distintos locales que
componen la planta. Ademds tratan con plantas de contorno rectangular constituidas
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por locales o espacios también rectangulares. No obstante, esta limitacién se puede
superar mediante la introduccién de rectangulos ficticios, consiguiéndose asi plantas en
forma de L,U,T u otras formas irregulares.

Descripcién general del método desarrollado

El trabajo que se presenta supone un nuevo método de distribucidén espacial en
planta de edificios asistido por el ordenador, mediante el cual es posible mejorar el
andlisis previo en el proceso de disefio; e indudablemente repercute en una mejora del
resultado final.

Pasemos pues, a describir este método. Podriamos considerarlo dividido en las
siguientes etapas:

1. Introduccién de las condiciones iniciales. Se definen las relaciones mas importantes
de adyacencia y orientacién entre los espacios componentes. Todos estos datos se
estructuran segun un grafo abstracto inicial.

2. Test de conectividad. Se comprueba si €l grafo inicial es conexo. Si no lo fuera, se
introducirian nugvas relaciones de adyacencia para lograr que lo sea.

3. Comprobacién de la biconectividad. De igual forma que en la etapa anterior, si
el grafo no es biconexo, se introducirdn nuevas relaciones para que tenga esta
propiedad.

4. Comprobacién de la planaridad. Si el grafo no es planar, se sustituirdn o eliminaran

las adyacencias que lo impiden. A

Generaciéon de las caras. Una vez comprobada la planaridad del grafo de adyacencia

se genera un posible conjunto de caras.

6. Obtencidn del grafo dual o del pseudo dual. Se comprueba si el grafo de adyacencia
posee una unica representacién en el plano y al mismo tiempo se extrae su dual.
Si el grafo no estd triangulado, se obtiene ademds su pseudo dual. En esta etapa
se ofrece la posibilidad de generar todas las representaciones planas del grafo de
adyacencia, en el caso de que no fuese tnica.

7. Trazado del pseudo-dual o del dual. Si el grafo de adyacencia no es un grafo
triangulado trazaremos su pseudo-dual, en caso contrario, representaremos su dual.
Estos trazados seran los primeros esquemas de distribucién en planta. Habria que
destacar en esta etapa, que los trazados de las plantas que se obtienen, no han
de tener un contorno rectangular, sino que automadaticamente se genera una planta
de contorno irregular y con espacios interiores vacios (patios) que cumple con los
requisitos impuestos; si el grafo de adyacencia no es un grafo triangulado.

8. Introduccién de nuevos requisitos. A la vista de los esquemas de distribucién
en planta se introducirdn nuevos requisitos de adyacencia, comprobandose al
mismo tiempo si dichos requisitos son compatibles con la planaridad del grafo
de adyacencia. Si lo fuera, trazarfamos el nuevo esquema de planta mediante la
repeticidn de las etapas 6 y 7.

(@51

Todo este procedimiento general, que hemos descrito, se ha desarrollado mediante la
elaboracién de un programa de ordenador que realiza todas las operaciones necesarias



4 ’ J. CANIVELL

para la generacién de los ‘esquemas de distribucién en planta, de forma totalmente
automdtica, interactiva y flexible, necesitando inicamente que el operador defina las
relaciones de adyacencia entre los distintos locales que integran la planta, asi como sus
caracteristicas geométricas limites.

DESCRIPCION DE LOS ALGORITMOS DESARROLLADOS

Condiciones iniciales

Las condiciones iniciales del problema adimensional las forman el conjunto de
espacios o locales que se van a ordenar, asi como todas las relaciones de adyacencia y
orientacién que se establezcan entre ellos. Estos primeros datos se estructuran como
un grafo abstracto, simple y no dirigido G: los locales son sus vértices y las relaciones
—de adyacencia u orientacién— entre ellos sus aristas; comunmente se le denomina
“grafo de adyacencia”

Dicho grafo abstracto queda definido mediante el conjunto de aristas que enlazan
cada par de vértices del mismo: en el conjunto —o lista— ADY(v) figurardn todos
aquellos vértices w adyacentes al v mediante la arista (v, w).

Los cuatro primeros vértices representardn a las orientaciones Norte, Oeste, Sur
y Este, siempre en este orden; serdn, por consiguiente, los vértices exteriores del
mencionado grafo.

Dado que el procedimiento que se presenta contempla la adicion de nuevas
relaciones de adyacencia a lo largo del proceso, resulta conveniente introducir
como datos iniciales aquellas relaciones que se consideran mds importantes, para
posteriormente, y a la vista de sucesivos trazados planos, afiadir aquellas otras que
completen la serie de requisitos impuestos a la organizacién en planta —resultado final
del proceso de generacién.

Conectividad

La técnica de representacién de una distribucién espacial en planta mediante el
dual del grafo de adyacencia exige que éste sea biconezo y planar.

El algoritmo elaborado para el andlisis de la conectividad —asi como el desarrollado
para el estudio de la biconectividad, en la siguiente etapa— est4 basado en los trabajos
realizados por Hopcroft y Tarjan® en este sentido. Dichos autores utilizan una potente
técnica de exploracién de grafos denominada depth first search (D.F.S.)

Esta técnica transforma el grafo original en otro grafo denominado drbol palmem
de estructura més sencilla y ordenada que la del primitivo; de esta forma, se facilita su
manipulacién en posteriores operaciones.

Una vez finalizado el proceso, se informa sobre el estado de conectividad del grafo
y se describen las componentes conexas —caso de que existan— para que el operador
las conecte entre si mediante la introduccién de las aristas oportunas. En esta etapa,
por consiguiente, se puede producir la primera adicién de nuevos requisitos por parte
del operador, requisitos que tendrdn por objetivo relacionar las componentes conexas
para que ésta sea unica. A
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La técnica D.F.S. seguida para la exploracién de todos los vértices se ilustra en el
ejemplo de la Figura 1.

Como puede apreciarse en la figura, este tipo de examen impone una direccién a
cada arista atravesada y una nueva numeracién (NUM(v)) de los vértices segiin se
alcanzan. De igual forma, particiona el conjunto de aristas en dos clases: las ramas
que unen vértices en orden ascendente —segin la nueva numeracién — y nos definen
un 4&rbol T de Gy, y las frondas que unen vértices en orden descendente. A este tipo
de &rbol con ramas y frondas, se le denomina drbol palmera.

1 7
AY(D=(2,7,8,)  ADY(7)=(6,1,10}
ADY(2)=11,10,3} ADY(B)={9,1)
2 6 ADYi3)={4,2] ~ ADY(91={10,8)
ADII=(1,2,3,5,)  ADY(10)=12,6,7,11,9)
ADY(5)=(4,6} ADY(11)={12,10}
ADY(6)=(10,7,12,57  ADY(12)=(6,4, 113
3 5
4
7
6
10
2
41
5
3
7
2
1
Figura 1.
Biconectividad

El algoritmo elaborado para verificar 1a planaridad de un grafo— que se describe en
la siguiente etapa— sdlo se puede aplicar sobre grafos biconezos. Asi pues, se necesita
asegurar la bionectividad del grafo de adyacencia antes de comprobar su planaridad.
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El andlisis de la biconectividad se realiza durante la misma D.F.S. descrita en la
etapa anterior, e igualmente se basa en el algoritmo propuesto por Hopcroft y Tarjan®.
Por lo tanto, al término de la ID.F.S. obtendremos todos los posibles vértices que
articulan componentes biconexas (Figura 2).

VAT

Figura 2.

Del mismo modo que en el apartado anterior, el programa informard del estado de
biconectividad del grafo, describiendo las componentes biconexas, para que el operador
las conecte entre si mediante la introduccion de las aristas oportunas.

Al término de estas dos etapas , el grafo inicial G; ha pasado a ser un grafo G,
dirigido, remunerado segin NU M (v) y unas nuevas listas de adyacencia para cada uno
de ellos: si en la lista ADY (v) de G; figuraban todos los vértices que eran adyacentes
al v, en la nueva lista ADY (v) de 3 solamente figurardn aquellos vértices w tales que:
vV -> w 0 v --> w

Primera comprobacién de planaridad

Como cuestién previa al procedimiento general propuesto para verificar la
planaridad del grafo G, realizaremos una sencilla comprobacién mediante la aplicacién
de la férmula de Euler: para que un grafo sea planar, es condicién necesaria que cumpla
la siguiente expresién:

|Al <3.[V] -6

Asl pues, el nimero de relaciones impuestas — -aristas en el grafo— se encuentra
limitado superiormente a la cantidad que figura en la relacion de euler.

Una vez superado el test previo de planaridad, podemos ya aplicar el algoritmo
desarrollado para el estudio de la planaridad. Dicho algoritmo estd basado en los
trabajos realizados por Ilopcroft y Tarjan®. Es del tipo constructivo, es decir, lo que se
Intenta conseguir es una representacién planar del grafo mediante la adicién consecutiva
y ordenada de partes del mismo.

El procedimiento general de comprobacién de planaridad de un grafo biconexo (G7)
en sintesis, incluye las siguientes operaciones:
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Obtencién de una rute R :v - - > v en el drbol palmera que comience y termine
en el mismo vértice, a la que llamaremos circuito original,

Este circuito original estard formado por una ruta sobre el a4rbol T extendido sobre
G2 (R:v-> w)mds una fronda que lo cierra (w - - > v).

Eliminacién de las aristas de este circuito. tras dicha eliminacién el grafo quedard
escindido en varios segmentos. Cada segmento escindido constard, o bien de una
sola fronda, o de un subdrbol y todas las frondas que salen de él y conducen a
vértices del circuito.

Repeticién de las dos operaciones anteriores a) y b) con todos y cada uno de los
segmentos generados: en cada segmento escindido se obtiene un circuito original,
y la supresion de sus aristas produce, a su vez, nuevos segmentos escindidos.

Esta operacién de tipo recursivo finalizaria cuando todos los segmentos escindidos
sean unica y exclusivamente del tipo frondas.

Ubicacion en el plano de todos y cada uno de los segmentos en el mismo orden con
el que han sido generados.

Por el teorema de la Curva de Jorddn, un segmento puede ser representado en
en el plano bien por el exterior, o por el interior de su circuito original, sin que
se produzcan cruces de aristas. La ubicacién en el plano de un segmento por el
interior (exterior) puede provocar el cambio al exterior (interior) de otros segmentos
ya situados, y este cambio, a su vez, puede ser la causa de nuevos giros de otros

-segmentos del exterior al interior, o viceversa.

El grafo serd planar si se pueden compatibilizar todos estos cambios mencionados

en la dltima operacién para que, en su representacién plana, no se produzcan cruces
de aristas. En caso contrario se tratarfa de un grafo no planar. El procedimiento se
ilustra en la Figura 3a y 3b. ’

,____.t-_-__-

Figura 3a.

Todo este proceso descrito se realiza utilizando el algoritmo una sola vez, mediante
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£

£.0.6. (.0G+ S C0.6+S1+C0.52
2 i \
(.0.G+S1e COS2 C0G+S140.052+Sk (0.G+S1+C.0.52 ¢Sk +S5
J §
C.0.G.+51+52 (.0.G+S1+52+53=G G
Figura 3b.
la aplicacién de una nueva D.F.S. que: genera todas las rutas disjuntas R :u - -> v

(que no contienen aristas en comin) del grafo Gz, y las sitia en el plano conforme se
van obteniendo.

Al término de esta etapa, comienza a configurarse ya un grafo con unas
caracteristicas mas concretas que el inicial. Conocemos ya los suficientes datos como
para poderlo representar geométricamente en el plano.

Tendremos, por tanto, un grafo G3 que serd: dirigido, ordenado, y sobre todo,
planar. Conocemos, ademds, donde se han de ubicar todas sus aristas para que, en una
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representacién plana del mismo, no se produzca ningun cruce entre ellas.

Formacién de las caras

En esta seccién exponemos un procedimiento original que obtiene el conjunto de
caras del grafo planar G3, entiéndase por cara de un grafo planar la regién del plano
limitada por las aristas de un ciclo, tal que dos puntos arbitrarios de la citada regién
pueden unirse por un trayecto continuo que no atraviese ni aristas ni vértices.

Este conjunto de caras se genera a partir de los resultados obtenidos en la anterior
etapa que estudia la planaridad. En ella, quedan definidas las posiciones que han de
ocupar todas las frondas para que el grafo pueda representarse en el plano sin que sus
aristas se corten.

Hay que hacer notar, que el conjunto de caras de un grafo planar no tiene porqué
ser Unico, como puede apreciarse en la Figura 4.

Figura 4.

El conjunto de caras de un grafo planar, en el que se ha definido la cara ezterior,
serd tdnico si cumple con una de las dos condiciones siguientes:

a) El grafo es triconezo. (Whitney 1933)
b) Sies biconezo y todo par de vértices de corte [a,b] se encuentra en uno de de los
casos siguientes:

1-  Son vértices de la cara exterior y definen exactamente dos componentes. El
conjunto de caras seria tnico, pues el giro de cualquiera de las componentes
alrededor del par de corte serfa imposible, ya que nos llevaria a la pérdida de
la cara exterior (Figura 5).

2— Son vértices de la cara exterior y definen exactamente tres componentes, una

de las cuales consiste en una rute simple (de extremos a y b) no contenida en
la cara exterior.
También serfa Unico el conjunto de caras, puesto que la componente ruta simple
es imposible situarla en la cara exterior, ya que implica la pérdida de vértices de
dicha cara que consideramos fija. Paralas otras dos componentes nos remitimos
al caso bl (Figura 5)
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3- Uno de los vértices (o ambos) no pertenece a la cara exterior y definen
unicamente dos componentes, una de las cuales consiste en una ruta simple
de extremos a y b.
La componente ruta stimple no puede ubicarse en otra cara sin que se produzcan
cruces de aristas, ya que implicarfa la existencia de mas de dos componentes
para dicho par.

A4
Caso bi: [A,B]
[AgB,d
Caso b2: [A,,B,]
8 Caso b3: [A3,831
4
Figura 5.

No obstante, si el grafo Gz no posee un tdnico conjunto de caras, por no cumplir con
las condiciones anteriormente expresadas, el algoritmo generard uno de los conjuntos
posibles.

El procedimiento propuesto para la formacidén de caras consiste, en esencia, en
‘recorrer todas las aristas del grafo G3 segin un orden determinado, de forma que se
vayan generando ciclos que sean siempre caras del grafo.

Para ello, supongamos que ante un trazado plano (sin cruce de aristas) del grafo
G3, deseamos “recorrer” todas las caras de dicho grafo. El procedimiento seria muy
simple en sintesis: escoger siempre la arista siguiente —segun un sentido prefijado, el
antihorario por ejemplo— a la arista por la que hemos alcanzado un vértice v. De esta
forma, los ciclos que se generan son siempre caras, de acuerdo con la definicién que
hemos dado de éstas (Figura 6).

Por lo tanto, el procedimiento debe realizar dos operaciones: una ordenacién de las
adyacencias de cada vértice v — aristas que inciden sobre v — en el sentido prefijado,
y una exploracién de estas nuevas listas de adyacencias para generar el conjunto de
caras.

Describamos a continuacién cada una de estas operaciones:
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SENTIDO

Figura 6.

1. Ordenacién de las adyacencias

En esta etapa se elabora un nuevo conjunto de listas de adyacencia AY D—-ORD(v)
a partir del conjunto de listas ADY (v) que definen el grafo Gj.

Si la lista ADY (v) contenia sélo aquellos vértices w adyacentes al v tales que
v->w o v--> w en ADY — ORD(v) figurardn todos los vértices que son
adyacentes al v, y ademds, ordenados segin el sentido antes mencionado (antihorario)
alrededor del vértice v.

Para ello, exploramos el grafo G3 en el mismo orden gue lo hicimos en el estudio
de la planaridad, es decir, realizamos una D.F.S. de forma que se generen de nuevo y
en el mismo orden, todas y cada una de las frondas. Durante esta D.F.S. se forman las
nuevas listas ADY — ORD(v) del siguiente modo:

- Silaarista atravesada es del tipo rama v - > w: se afiade alalista ADY —ORD(v)
como vértice activo superior y v se afiade a ADY — ORD(w) como vértice activo
inferior.

~ Si la arista atravesada es del tipo fronda v - - > w : se introduce a la izquierda
o derecha del vértice activo superior de ADY — ORD(v) y v se introduce a la
izquierda o derecha del vértice activo inferior de ADY — ORD(w). La adicién a
izquierda o derecha depende de la posicién asignada a dicha fronda en el estudio
de la planaridad.

Al término de esta operacion el grafo Gz habrd pasado a ser un nuevo grafo Gy
no dirigido, pues en las listas de adyacencia ADY — ORD(v) que lo definen, aparecen
de nuevo todos los vértices que son adyacentes al v, y ademds, todas estas listas se
encuentran ordenadas segin el sentido antes mencionado.
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2. Generacién de las caras

Mediante una nueva exploracién sobre el grafo G4 estructurado en el paso anterior,
obtendremos el conjunto de todas las caras. El orden y regla de bisqueda serd como
sigue: ‘

a) Eleccién de un vértice arbitrario ug que sea extremo de aristas no exploradas (uo, u).
Esta arista seria la primera arista de la cara c;.

b) Supongamos que hemos recorrido una arista (u,v) de la cara c;, la siguiente arista
de dicha cara seria entonces la (v,w), siendo w el vértice que sigue al » por la
derecha en la lista ordenada de adyacencia del v: ‘

ADY — ORD(»)={...,u,w,...}

¢) Dado que cada arista pertenece a dos caras, serd recorrida solo dos veces y en
sentidos opuestos. Para evitar que una arista se recorra mas de dos veces, o en un
sentido no apropiado, se irdn marcando sucesivamente las aristas exploradas y el
sentido de recorrido.

d) Repetimos los pasos b y ¢ hasta que se alcance el vértice up donde comenzé la
generacién de la cara ¢;. En ese momento se habrd completado dicha cara.

e) Una vez completada la cara ¢;, comenzamos una nueva cara por cualquier arista
no explorada desde dicho vértice ug. Cuando desde el vértice 1y no queden mds
aristas sin explorar, se habrdn completado todas las caras a las que pertenece el
vértice ug, entonces comenzariamos de nuevo por el paso a para elegir un nuevo
vértice ug que contenga aristas sin explorar.

El proceso finaliza cuando todas las aristas han sido exploradas en los dos sentidos:
obtendriamos las 2 + [A] — |V| caras segin la férmula de Euler.

Fl procedimiento propuesto para la generacién de las caras se ilustra en la Figura
7.

Hay que hacer notar —como se observa en la figura— que el sentido de las caras
obtenidas {excepto la exterior) es el contrario al considerado en la ordenacién de las
adyacencias.

El grafo G4, no dirigido y con las listas de adyacencias ordenadas, no ha sufrido
alteracién alguna en este segundo paso. Asi pues, esa serd su estructura al finalizar
esta etapa.

Estudio de las componentes escindidas

Una vez generado un conjunto de caras en la etapa anterior, y antes de introducir
nuevos requisitos de adyacencia u orientacién, comprobaremos si el grafo G4 contiene
alguna componente cuyo giro alrededor de un par de vértices alterase el conjunto de
caras obtenido anteriormente, es decir, lo que comprobamos en definitiva es si el grafo
G4 cumple con los requisitos sefialados anteriormente en 1 para que el conjunto de caras
fuese Unico.

Antes ‘de pasar a describir el algoritmo original propuesto para obtener cada
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ADY{1)=(2) ADY-0RDI112(2,12,5)
AYI2)=13) ADY-ORD(2)=(8,3, 1)
ADY{3)=(4,11) ADY-ORD{3)=(10,4,5,11,2)
ADY(41=(5,6} ADY-ORD(4)=(6,9,5,3}
ADY{51=(1,3) ADY-ORDIS)=(1,3,4}
ADY(6)=(7,10} ADY-ORD16}=(10,7,4)
ADYI71=(8,9) ADY-ORD(7)=(8,9,6
ADY(81=(2) ADY-0RD(8)=(2,7)
ADY(9)=04) ADY-0RD(9)=(4,7)
ADYL10)=(3) ADY-ORD{101=(3,6)
ADYI111=(12) ADY-0RD{11)=(12,3)
ADYU12)={1) ADY-ORD12)=(1,11}

CARAI1)={1,2,8,7,9,4,5)
CARAL2)=(1,12,11,3,2)
CARA{3)=(1,5,3,11,12)
CARA4)=(2,3,10,6,7, 8}
CARA{S)=(3,5,4}

1

CARA(6)={3, 4,6, 10) 3
CARA(71=(4,9,7,6)
2
1

Figura 7.

una de estas componentes, conviene expresar algunos conceptos que utilizaremos
posteriormente en dicha descripcidn:

-~ Dos caras C}, C; son adyacentes si poseen en comin al menos dos vértices enlazados
mediante una arista.

— Si dos caras no adyacentes C, C; poseen méas de un vértice en comun, éstos —
agrupados de dos en dos— serdn vértices de corte, y ambas caras formaran lo que
denominaremos par de caras separador PC; = [Cy,,Cy] (Figura 8A)

— Si dos caras adyacentes poseen en comiun vértices no consecutivos, de igual forma,
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Figura 8

formardn un par separador PC; (Figura 8B).

-~ Si en el grafo dual de G4 eliminamos los vértices correspondientes al par de caras
separador PC; y las aristas que inciden sobre ellos, dicho grafo contendrd el vértice
que representa a la cara exterior del grafo G4. El conjunto de las restantes lo
denominaremos componente escindida CM; por el par de caras separador PCj
(Figura 9).

Figura 9

Una vez expresados estos conceptos, podemos pasar a describir el algoritmo-original
propuesto para la obtencién del conjunto de componentes escindidas y de los pares de
corte alrededor de los cuales pueden girar dichas componentes. Dicho algoritmo realiza
las operaciones siguientes:

a) Comparacién de pares de caras. Mediante la comparacién de todos los pares de
caras del grafo G4 obtenemos:
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a.l) Vértices comunes de cada par comparado.

a.2) Listas de caras adyacentes: si dos caras C, C; son adyacentes se introducirdn
en las listas ADY — C(C) y ADY — C(Cj) respectivamente.
Estas listas, precisamente, serdn las que definirdn al final de todo este proceso
al grafo dual D4 del grafo de adyacencia Gjy.

a.3) Conjunto de los pares de caras separadores: si este conjunto fuese el vacio, seria
unico el conjunto de caras del grafo G4 —tendria una dnica representacién en
el plano —y pasariamos a la siguiente etapa: introduccién de nuevos requisitos.

Obtencién de los vértices pares de corte. Esta operacidn sélo se realizard si el
conjunto de pares de caras separadores no fuese el vacio, como se ha indicado
anteriormente.

Por cada par de caras separador PC; = [Ck,Ci], se calcula el conjunto de
componentes conexas escindidas C'M; del grafo dual Dy, mediante la eliminacién
de sus vértices correspondientes a las caras C; y C) vy, las aristas que incidan sobre
ellos, siendo:

CM; ={CMn,CM;,...} conjunto de componentes escindidas.
CM;; ={Cy,Cpt1,..-} componente escindida i, j.

Si designamos por {v;} el conjunto de vértices comunes del par de caras separador
PC; = [Cy,C1], vy {wi;} el conjunto de vértices de la componente escindida CM;;
por dicho par de caras separador, el par de vértices de corte PV;; correspondiente

a la componente C'M;; es aquel que:

PVij = [u,v] = {vi} N {wi;}

Estos pares de corte PV;; constituyen los vértices alrededor de los cuales puede
girar la componente escindida CM;;. Para ilustrar esta operacién, los pares de
corte del ejemplo de la Figura 9 serfan:

{vi} ={N,S,8,6,7,10}, {wi1} = {3,4,5,6}
{0} N {wyy} = {3,6} luego:
PViy = [3,6]
{wis} = {7,8,9,10),  {wm}n{wss} ={7,10} luego:

PV = [7,10]
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De esta forma, al término del algoritmo descrito, tendremos una informacién
completa sobre la estructura del grafo G4 ~y de su dual D4~ que nos permitird, en etapas
posteriores, obtener todas las representaciones planas posibles del grafo de adyacencia
G4y su dual Dy, ademds de permitirnos el poder afiadir nuevos requisitos de adyacencia
u orientacién sin alterar la planaridad del grafo de adyacencia.

En esta etapa el grafo G4 no sufre en su estructura cambio alguno.

Obtencién del pseudo-dual

Con el fin de facilitar la introduccién de nuevas relaciones de adyacencia u
orientacién entre los espacios componentes del problema, representaremos graficamente
un esquema de distribucién en planta que responda a las adyacencias introducidas hasta
el momento.

No obstante, para que dicha representacién pueda efectuarse mediante el trazado
del grafo dual, se requiere que el grafo de adyacencia sea un grafo triangulado, si todos
los locales han de ser rectangulares.

Por consiguiente, utilizaremos la técnica de representacién del pseudo-dual —
Baybars y Eastman®— mientras que el grafo G4 no cumpla con la citada condicién
de ser triangular.

El procedimiento para obtener dicho pseudo-dual comprende las siguientes
operaciones:

1-  Introduccién de un vértice ficticio en cada cara del grafo G4 cuya valencia sea
distinta de tres, excepto en la cara exterior (Figura 10).

Figura 10

9.~ Adicidn de aristas ficticias enlazando cada vértice ficticio en el interior de una cara
con todos y cada uno de sus vértices (Figura 10).
Después de esta operacién se obtendré un grafo GFy ficticio con todas sus caras de
valencia tres (tridngulos), excepto la cara exterior que continuard teniendo valencia
cuatro.
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3-  Obtencién del dual de GFy. Serd el grafo resultante PD4 de considerar un vértice
por cada una de las caras de GFy, y una arista por cada dos vértices que representen
a dos caras de GFy que sean adyacentes. En la Figura 11 se ilustra la obtencién
del dual del grafo GFy de la Figura 10.

—~———

b3
e R e
N

— Ny R
m

Figura 11

Este grafo PDy es el pseudo-dual de G4, y por tanto, un grafo simple cuyas aristas
representan las particiones o tabiques que separan los distintos espacios entre si o con
el exterior, y sus vértices los puntos de encuentro entre dichas particiones; serd pues,
una representacién de un esquema de distribucién en planta.

No obstante, para la representacién grafica de P Dy, suprimiremos el vértice que
representa a la cara exterior de GFy y todas las aristas que incidan sobre el mismo.

De esta forma, a la vista del trazado de un esquema de planta, podremos
introducir con mds precisién las condiciones de adyacencia que deseemos, incluso
decidir transformar uno o mas locales ficticios en reales, consiguiéndose, en este 1ltimo
supuesto, que las condiciones del contorno del esquema de planta sea totalmente
irregular, como se puede apreciar en el ejemplo de la Figura 11.

Introduccién de nuevos requisitos

La extraccién del pseudo-dual PDy4 y su trazado en el plano, asi como la obtencién
del conjunto de componentes escindidas y de los pares de corte alrededor de los cuales
pueden girar dichas componentes, facilitardn la introduccién de nuevas relaciones
de adyacencia u orientacién —nuevas aristas—, restringiendo, pues, el nimero de
soluciones finales en el problema de generacién de organizaciones espaciales en planta.

La adiciéon de aristas, sin embargo, no ha de realizarse aleatoriamente, sino
de acuerdo a un cierto método —propuesto por nosotros originalmente— que,
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fundamentalmente, pretende asegurar la no alteracién de la planaridad del grafo de
adyacencia con la introduccidén de nuevos requisitos.

Sea pues (u,v) la nueva arista que deseamos introducir. La primera operacién

a realizar es la de buscar en todas las caras la pareja de vértices u y v, pudiéndose
representar entonces.los tres siguientes casos:

1)

3)

Si existe una cara C; que contiene al par de vértices u y v, podemos asegurar que
el grafo resultante es planar y la cara C; se escindird en dos por la nueva arista
(u,v), aumentando en una unidad el nimero total de caras y aristas del grafo Gs.
Por el contrario, si los vértices extremos de la arista (u,v) no pertenecen a una
misma cara C; del grafo G4 y es tnico el conjunto de caras de dicho grafo —por
cumplir las condiciones sefialadas en 1—, podemos afirmar que la introduccién de
dicha arista (u,v) en el grafo de adyacencia hard que este no sea planar.

El caso de andlisis més complejo, y al que vamos a dedicar una especial atencidn, se
presentard cuando los dos vértices extremos —u y v— de la arista no pertenezcan
a una misma cara del grafo G4, pero, por no ser unico el conjunto de caras de
dicho grafo, puede darse la posibilidad de que los vértices sefialados aparezcan en
una misma cara, mediante el giro de alguna componente escindida CM;; alrededor
de su par de corte PV;;. Si esto es factible, el grafo de adyacencia resultante serd
planar.

Cada uno de los tres casos mencionados quedan ilustrados en la Figura 12.

N

N-6 no planar
1-2 planar
5-4 planar

e ANA

S
Figura 12

El problema que se plantea en este Gltimo caso se reduce, pues, a comprobar si

dos vértices cualesquiera que se quieren unir pueden aparecer en una misma cara del
grafo, mediante los giros de determinadas componentes. El algoritmo propuesto para
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verificar este hecho pretende, en primer lugar, calcular el conjunto de vértices eztras
que pueden aparecer en cada cara, y determinar cudles son los giros de las componentes
que hay que realizar para que eso ocurra.

El algoritmo lo podemos describir detalladamente mediante los tres pasos
siguientes:

1. Formacidn de listas de inclusién de componentes

Consideremos las componentes escindidas:

CM; ={Co,Cot1,-..}  CM;={Cp,Cpy1,...}

Diremos que CAM; incluye a C'M; si cualquier cara de CBM; pertenece a C'M;.
Esta relacién de inclusién define sobre el conjunto de componentes escindidas un drbol
dirigido, cuyo origen serd un vértice que representa al grafo G4, puesto que dicho
grafo incluye a todas las componentes escindidas. Este arbol dirigido queda expresado
mediante un conjunto de listas de inclusién: en la lista INCLU(1) figurardn todas las
componentes escindidas que incluye la CM;.

En la figura 13 se ilustra con un ejemplo cudl seria la estructura de los conjuntos
que hemos definido hasta el momento.

2. Exploracién del arbol de inclusién

Una vez formado el drbol que manifiesta las relaciones de inclusién entre
componentes escindidas, podemos obtener ya los conjuntos de vértices extras que
pueden aparecer en cada una de las caras del grafo Gy4; esta operacién se realizard
nmediante los giros virtuales de las componentes alcanzadas en una exploracién del
arbol —con una D.F.S.— partiendo de su origen.

Definamos, pues, las operaciones necesarias para poder efectuar el giro de una
componente escindida.

Sean:

PC; = [Ck,Cl) un par de caras de separacién.

CM; ={CMy,CM;,...} el conjunto de componentes escindidas
por el par PC;.

CM;; ={Co,Co41,...} componente escindida j perteneciente
al conjunto CM;. |

PV;; = [a,b] el par de vértices de corte ‘
de la componente CM;;.

Co = {vi,Vit1,...} una cara de la componente C'M;;.

El giro de la componente C'M;; alrededor de su par de corte PV;;, implica un 1
intercambio de vértices entre las caras del par de separacién PC; —entre las caras Oy
y Ci—, de forma que:

—~ La cara C transmite los vértices comprendidos entre el par de corte (a,b) hacia la
cara C; entre los vértices (0,4) v,
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cne=(cn0 } PCI=[1,61 PCZ=[2,6]
8} ={1,§,3,4,5,6,7,8,9,m} o, :{“X } [ Mo, I
El grafo cospleto wenos la cara extrior. cn“=<2,§,4,5.7,s,9,m CH21=(3,3,5,7,8,9}
PC3=[!,21 PC,=12,5) PCe=[3,5]
8= (N, } of,=(CH, .3 CHe={lN: 3

3 ) 1
CHal-(lgi CH“-(S,i) Clm-M?

El conjunto de caras y los vértices extras que pueden aparecer en cada una de ellas, mds los giros
necesarios para que esto oturra soni

Ci1=01,2,5,4,5,4,0 VE(1)=(7,8,14,15,6,11,13,9,10,12,3) V{1, 71={1) §¥12,101=(4)
£121=16,11,13,4,3,2,1) VE{21=(7,8,14,15,9,10,12,5} §¥11,83=t1) §V12,12=(5,43
C131=(6,9,12,13,11) VE{3)={10) BVIL, 1)=(1) BV12,51=(3)
C14)=19,10,13,12) VE(4)=() §UL1,15)=(1) 6V13,10)=(5)

£15)=07,8,14,13,10,5,6}
C16)=14,15,14,8,7,1,N,E,5)

Ci7)=01,7,6)
£18)=413, 14,15}
Ci9)=(4,13,15)
£1101=(2,3,4,5)
CLI=IN,U,S,E)

VEIS)={1,12)
VEL61=(2,5,6,11,13,9,10,12,3)
VE(7)=0)

YE(8I=()

VEI9I=03

VE{10)=0)

VELI1=0

Figura 13

BViL, 61202, 1)
Ui, 1022, 1)
§ViL, 131202, 1)
§¥11,91=04,2,1)
§Vi1,100=04,2,1
6V11,121=(5,4,2,1)
B¥11,3)=(3)
§Vi2,71={2)
6V12,8)=(2)
§VI2, 14)=(2}
§V12,15)=(2}
BV(2,9)=44)

BV{5, 113=14}
BVi5,121={5}
BV 16, 20=(1)
BYis, =1}
BY16,41=(2

BV is, 111=(2)
§V16,131=12)
§916,91=04,2)
6V16,10)=(4,2)
BV16,12)=(5,4,2)
BV1(8,3)=(3,13

— La cara C; transmite vértices hacia la Cj del mismo modo.

Asi pues, las caras:
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Cr =4 ,8,0;,0i11,...,0n,b,...}

Cr=4{..,b,v;,041,- .-, Vn,8,...}

después del giro pasarian a ser:

Cr=A{...,a,v,...,0j41,9;,b,...}

Cr=A{...,b,0n,...,0it1,%,Q,...}

Ademads cambiarian de sentido todas las caras de las componentes que incluya la
Cl\{{i]‘.

La operacién de giro de una componente escindida alrededor de su par de corte se
ilustra en la Figura 14.

S

Si giramos la componente (M, alrededor de su par de vértires (1,4), habrd un intercasbio de vériices entre
las caras 2 y 6 y cambiardn de sentido las caras 3,4,5,7,8,9.

Ci21={2,1,6,11,13,4,3} después del giro se convierte en -) £12)=(2,1,7,8,14,45,4,3}
C161=15,4,15,14,8,7, 1,4} * ' C181={5,4,13,11,6,1,N}
C{3)={11,4,%,12,13} * €{31=(13,12,9,6,11}
C(4)={9,10,13,12} ' Ci4)=(12,13,10,9}
Ci31={7,8,14,13,10,9,6} ' £15)=16,9,10,13,14,8,7}
£i71={1,7,4} * Ci71=t6,7,13
C181={13,14,15} * C(81={15,14,13)
C19)=(4,13,15} : £19)={15,13,4}

“- " e om e .

Figura 14
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Si hemos calificado como virtuales estos giros de componentes es porque, en
realidad, no se llegan a efectuar; sdlo sirven para determinar los vértices que pueden
aparecer en una cara del grafo G4 (conjunto de vértices extras en esa cara) y los giros
necesarios para que esto ocurra.

Una vez que la cara C; ha transmitido virtualmente los vértices oportunos hacia
la C;, habria que buscar hacia atrds en el drbol para comprobar si existe alguna
componente C'M;; cuyo par de separacién PCj; contiene a la cara (j, en cuyo caso
la cara C; transmitirfa vértices hacia la otra cara del par PC;; encontrado y asi
sucesivamente.

Al término de este paso quedan definidos los siguientes conjuntos:

VE, = {vi,v41,...} conjunto de vértices extras que
pueden aparecer en la cara Cp.
GV =44, k,.. .} conjunto de giros necesarios de

componentes para que el vértice
¢ aparezca en la cara Cp.

3. Busqueda del par de vértices a unir

Si el nuevo requisito que se desea introducir supone enlazar mediante una arista
los vértices u y v —vértices que no aparecian en una misma cara del grafo G4—-, habrd
que buscar, en primer lugar, todas aquellas caras ), que cumplan con las siguientes
condiciones:

we{C, UVE,} ¥y ve{Cp U VE,}

De todas las caras C, que las verifiquen, si existe una tal que: la pareja u,v no
esté contenida en ninguna componente CM;; cuyo par separador PC; contenga a la
cara C,, entonces es posible la unién de dichos vértices mediante los giros contenidos
en GVp;. En caso contrario, la unién de u y v mediante una nueva arista se declararia
no planar.

4. Giro de las componentes

En este paso se realizan los giros efectivos necesarios GVy; para que los vértices
u y v aparezcan en la cara Cp. El procedimiento de giro de componentes ha sido
descrito anteriormente con los giros virtuales, y solo se diferencia de aquellos, en que
aqui quedan modificadas las caras por las transmisiones efectivas de vértices entre ellas,
y por los cambios de sentido de las caras que pertenecen a una componente girada.

Asf pues, una vez comprobada la planaridad del grafo de adyacencia ante la nueva
relacién introducida, se presenta geométricamente su dual —o el pseudo-dual en caso de
no estar triangulado el grafo de adyacencia—. De esta forma el disefiador posee siempre
informacién grafica de la distribucién en planta que cumple con todos los requisitos que
ha introducido hasta el momento.
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CONCLUSIONES

Con este trabajo se aporta un método completo y coherente de generaciéon mediante
ordenador de distribuciones de edificios en planta, del cual podriamos destacar —
ademds de los algoritmos originales sobre manipulacién de grafos— los siguientes
puntos:

1)  Casi desde el comienzo del proceso —cuando el grafo de adyacencia que estructura
la naturaleza del problema sea biconexo y planar— el método que ser propone
es capaz de obtener y representar graficamente una distribucién en planta que
satisfaga todos los requisitos introducidos por el operador hasta ese momento. De
esta forma, se facilita al operador la introduccién de nuevos requisitos.

2) Esas distribuciones en planta generadas automaéticamente pueden tener un contorno
irregular y espacios vacios interiores; esto puede sugerir nuevas formas de plantas
al disefiador distintas a la rectangular.

Con todo esto, creemos aportar un nuevo método de generacién y optimizacién de
distribuciones en planta de edificios, apoyado sobre una base de nuevas formulaciones
tedricas, a partir de las cuales, pueden desarrollarse futuras investigaciones en el campo
del disefio arquitecténico asistido por ordenador, que hagan de éste una poderosa
herramienta de disefio al servicio del arquitecto.

EJEMPLO

Consideremos que deseamos disefiar la planta de una vivienda unifamiliar aislada
con el siguiente programa: '

— Vestibulo = Dormitorio 1 — Cocina
— Distribuidor — Dormitorio 2 — Lavadero
— Aseo — Dormitorio 3 — Garage
— Baiflo — Comedor — Estar

Con una superficie y dimensiones minimas de:
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Local Long.min. Sup. min.
Planta total 6.00 —
Vestibulo 1.50 —
Distribuidor 1.00 —
Aseo 1.40 —
Batio 1.70 —_
Dormitorio 1 3.00 12.00
Dormitorio 2 3.00 12.00
Dormitorio 3 3.00 —
Comedor 3.00 —
Cocina 2.50 10.00
Lavadero 2.00 —
Garage 2.50 15.00
Estar 3.00 18.00

Numeramos las estancias a partir del cinco —pues del uno al cuatro quedan
reservados a las orientaciones basicas—-

1. Norte 5. Vestibulo 9. Dormitorio 1 13. Cocina
2. Qeste 6. Distribuidor 10. Dormitorio 2 14. Lavadero
3. Sur 7. Aseo 11. Dormitorio 3 15. Garage
4. Este 8. Bafio 12. Comedor 16. Estar

Una vez numeradas las estancias introducimos las relaciones de adyacencia
siguientes:

Locales adyacentes

5-6 5-13 7-8 9-10 11-6 12-16
o7 7-6 7-9 10-11 6-12 16-1
11-16

A continuacién solicitamos que nos informe del estado del grafo de adyacencia
introducido hasta el momento, y se obtiene el siguiente resultado:

Grafo NO CONEXO.
Vértices de la componente conexa 1:
1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 16.

Vértices de la componente conexa 2:
14.

Vértices de la componente conexa 3:
15.
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La componente conexa 1 no es BICONEXA.

Vértice de articulacién en “1” que articula las componentes:
2,3,4 con 5,6,7,8,09,10,11, 12, 13, 16.

Vértice de articulacién en “16” que articula las componentes:
1,2,3,4 con 5,6,7,8,9,10,11, 12, 13.

Vértice de articulacién en “5” que articula las componentes:
1,2,3,4,6,7,8,9,10,11, 12,16 con 13.

Asi pues, introducimos a continuacién las siguientes relaciones de adyacencia:
13-12  13-15 154 14-3 10-2 2-9 13-14.

Solicitamos de nuevo informacién sobre el estado del grafo de adyacencia
introducido hasta el momento y obtenemos el resultado de que es PLANAR. Por
consiguiente, se pasa automadticamente a representar el esquema adimensional de
distribucién en planta que figura en la pdagina siguiente. Sobre este esquema
adimensional se irdn introduciendo todos los requisitos adicionales que se deseen, y se
irdn representando sucesivos esquemas adimensionales de distribuciones que satisfacen
los requisitos introducidos (Figuras 1-9).

En este paso decidimos no introducir mds requisitos de adyacencia, y deseamos
convertir el esquema representado en el definitivo, es decir, los espacios “ficticios” vacios
que se han generado automdticamente pasan a ser “reales”.

A continuacién se representa un esquema adimensional de distribucién en planta,
en la que quedan sefialadas aquellas particiones que poseen una orientacién fija (Figura
10).

En este caso podemos, ademads, fijar la orientacién de tantas particiones como se
desee. En el ejemplo concreto que se trata, fijamos las siguientes orientaciones:

Particién entre Orientacién
locales
6-13 Horizontal
6-12 Vertical
6-11 Horizontal
6-10 Vertical
6-9 Horizontal
13-12 Horizontal
12-15 Vertical
10-11 Vertical

Se finaliza el ejemplo con la generacién de tedos los esquemas adimensionales
que satisfacen los requisitos impuestos, y sus correspondientes esquemas optimizados
dimensionalmente. La funcién objetivo elegida en este ejemplo ha sido:

min. : Z,xi + Z Y;

i=1i,n i=1,n
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Introducir nueva ariste (<@ salir. =8 real->pseudor: -8 - 3
Introducir nueva arista (<8 salir. =0 recl->pseudor: 2 - 6
Introducir nuewa oristo (<8 salir, =B real-Ypseudo): -18 - &
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Introducir nueva orista (@ salir,

16 1416
3
: A 2
9
13
8 15
14
Introducir nueva arista (<@ salir. =@ real-)pseudo): -8 - 3
Introducir nueva arista (€@ salir, =@ real->pseudod: 9 = §
Introducir nueva arista (<8 salir, =8 real-)pseudod: -18 - 6
Introducir nueva arista (¢@ salir, =8 real<)pseudo): -8 - 6
1% 11 16
12
6
3
’ 5 13 15
g :
14
Introducir nueva arista (<@ salir, =@ real-dpseudol: 9 - 6
Introducir nueva arista (<@ salir, 3@ real-)pseudo): ~18 - 6
Introdicir nueva arista (<@ salir, =0 real-)pseude): -8 - 6
Introducir nuewa arista (@ salir, =@ real->pseudods =6 = 13
18 i1 16
12
3
q 7 5 13 s
8
14
Introducir nuevo arista (<@ salir. =@ real->pseudo); -18 - 6
© Introducir nueva orista (<@ salir, =8 real->pseudo): =8 - §
Introducir nueva arista (@ salir, =@ reol-)pseudo)t -6 - 13
=@ real-dpseudo): -9 - 3
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introducir nueva oristo (@ salir, =@ real->pseudad: -8 - 6
Introducir nuevo arista (@ salir. =@ real-Ypseudo: ~6 - 13
Introducir nueva arista (<0 satir, =@ real->pseudo): -9 - 3
Introducir nueva arista (@ salir. =@ real-)>pseudo): -15 - 14
! 1 16
12
6
\3 15
3 5
? 14
8
Introducir nueva arista (<8 salir. =@ real->pseude): -6 - 13
Introducir nueva arista ((@ solir. =8 resl->pseudo): -9 - 3
Introducir nueva aristo (<@ salir; =8 real->pseydo): =15 - 14
Introducir nueva arista (<@ salir, =B real-dpseudo): -15 ~ 12
B
18 1] 16
6
12
7 5
9
13
8
S
14
Introducir nuevo arista (@ salir. =B reat->pseudo): -9 - 3
Introducir nuevo arista (@ salir. =B real-)pseudo): -15 - 14
Introducir nueva arista (<@ salir, =8 real->pseudo) : =15 - 12
Introducir nueva arista (@ salir., =@ real-)pseudod: -1S5 - 3
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