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Abstract. Modal filtration is a prominent tool in mechanical systems research. However, the 

application of modal filtration requires a prior calculation of the modal model consisting of a set of 

natural frequencies, modal damping coefficients, and mode shapes. Such a procedure can be costly and 

difficult to perform in practice. 

In this work, an alternative approach is presented: modal filtration can be performed with perfect 

accuracy without knowledge of the modal model of the structure, provided only that natural frequencies 

and frequency response functions for all the sensors are known. In our approach, we take the frequency 

spectrum of the object in question and optimize from scratch spatial filters built with the same goal in 

mind as in standard modal filtration. An evolutionary algorithm is used to this end. Such a choice is 

dictated by the necessity to maintain the reliability of optimization in the presence of local minima. The 

fitness of individuals is assessed using a quality metric that weighs output frequencies according to their 

distance to the filtered natural frequency. The solution is presented using simulated data and enables 

filtration quality comparable with standard modal filtration based on a pre-calculated modal model. 
 

 

1 INTRODUCTION 

 

Modal filtering is a type of spatial filtration that, using a modal model, allows the removal of 

components related to natural vibration modes other than the one to which the filter is set from 

the vibration response of the object [1]. The original purpose of this tool was modal control [2], 

but over the years, other applications have been developed and implemented. Here you can 

mention: 

- comparison of modal models, and, more precisely, the mode shapes obtained by numerical 

simulation and experimental research [3], 

- identification of forces exciting objects [4], 

- damage detection and localization [5]–[9], 

In each of the above-mentioned applications, the method's effectiveness is influenced by the 

achieved filtration quality. This is important in modal control, where imperfect filter operation 

may lead to the spill-over phenomenon, i.e. the escape of the control signal energy to higher 
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modes, which may further result in loss of stability [10]. The problem arises when the controlled 

object begins to change parameters during operation. The causes may be, for example, material 

degradation or changes in external conditions. To avoid deterioration of modal filtration due to 

these changes, an adaptive modal filter was developed [11], which adjusts the coefficients to 

ensure the best performance throughout the operation time. 

Perfect filtration quality is also required in the damage detection method proposed by 

Deraemaeker and Preumont [7], which was later extended to include the possibility of localizing 

damage [9]. In both cases, the idea behind the method is that the quality of modal filtration 

deteriorates as a result of structural changes occurring in the object. This deterioration should 

be identified by the formation of peaks in the modal filter responses at the filtered natural 

frequencies. Therefore, if the filtration quality is not ideal at the beginning for an undamaged 

object, false alarms may be generated. Therefore, it is essential that the filtration quality is as 

good as possible. 

To improve the quality of filtration, a number of methods for synthesizing modal filter 

parameters have been developed. The first historical formulation of a modal filter [2] used a 

system model with a continuous distribution of parameters: 

 

 
𝐿𝑢(𝑥, 𝑡) + 𝑀(𝑥)

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑓(𝑥, 𝑡) (1) 

 

where: x – given point of area D , 

  L – linear, Hermitian ( self-adjoint ) differential operator, 

  u(x, t) – displacement of point x, 

  M(x) – mass distribution function, 

  f( x,t ) – load distribution function. 

 

Knowing displacement u(x,t) of every point x of area D, one can define modal filter with the 

following equation: 

 

 
𝜂𝑟(𝑡) = ∫ 𝑀(𝑥)𝜙𝑟(𝑥)𝑢(𝑥, 𝑡)𝑑𝐷

𝐷

 (2) 

 

Since eigenfunctions  r are orthogonal, the contribution of other modes in vibration signals 

recorded by sensors is removed from the modal coordinate r . 

The continuous modal filter has a basic drawback: it operates on continuous functions of 

the displacement distribution (velocities or accelerations) of the research object. Such a 

distribution is not available through measurement, so to solve this practical problem, 

measurements taken at a finite number of points located on the object were interpolated. 

However, the accuracy of this approach depends on the type of interpolation function and the 

number of analysed measurement points. In order to achieve satisfactory accuracy, it is 

necessary to use expensive multi-channel systems. Therefore, in the late 1980s, a discrete modal 

filter was developed [1], which could be easily implemented on the basis of measurement data 

taken at a limited number of measurement points. For this case, the synthesis of filter parameters 

is as described below. 
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The synthesis of r-th modal filter begins with the definition of one degree of freedom 

transfer function Hpp(): 

 

 
𝐻𝑝𝑝(𝜔) =

1𝑗

𝑗𝜔 − 𝜆𝑟
+

1𝑗∗

𝑗𝜔 − 𝜆𝑟
∗ (3) 

 

where:  r - r - th pole of the system, 

 * - complex conjugate number. 

 

Next, to the calculation of reciprocal modal vectors matrix (coefficients of filter modal) p the 

following formula is applied: 

 

 [Ψ𝑝] = [𝐻𝑘𝑁]+ ∙ [𝐻𝑝𝑝] (4) 

 

where: + - pseudo-inverse of the matrix 

 HkN () - matrix transfer functions of the object.  

r-th reciprocal modal vector r , is orthogonal to all modal vectors except r-th, to which the 

filter is set. Thanks to this, the system's response is transformed from coordinates related to the 

object's geometry to a modal coordinate  r . 

 

 
η𝑟(𝜔) = {𝜓𝑟}

𝑇 ∙ {𝑦(𝜔)} = (
{𝜙𝑟}

𝑇

𝑗𝜔 − 𝜆𝑟
+ {𝜓𝑟}

𝑇{𝜙𝑟
∗}

{𝜙𝑟
∗}𝑇

𝑗𝜔 − 𝜆𝑟
∗) ∙ {𝑓(𝜔)}  (5) 

 

where:  r – r-th modal vector  

 y() – object responses vector. 

 

Another procedure can be used to determine reciprocal modal vectors for experimental data 

from objects with small nonlinearities [7]. It uses the same data as the method shown above, 

i.e. the transfer functios matrix HkN (), and the set of r system's poles (giving information about 

the natural frequencies r  and the modal damping coefficients r ). In the first step, the 

theoretical transfer function at the output of the modal filter is determined: 

 

 
𝐺𝑟𝑡(𝜔) =

2𝜉𝑟𝜔𝑟
2

𝜔𝑟
2 − 𝜔2 − 2𝑗𝜉𝑟𝜔𝑟𝜔

 (6) 

 

Next one can calculate reciprocal modal vectors solving the equation: 

 

 [𝐻𝑘𝑁]{𝜓𝑟} = 𝐺𝑟𝑡(𝜔) (7) 

 

There is also a method for determining the parameters of a spatial filter based on operating 

deflection shapes instead of mode shapes [12]. In order to improve the quality of filtration, 

methods are also used to optimize the arrangement of sensors measuring response [13] or the 

already mentioned adaptation of the filter to changes in object parameters. However, each of 
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the methods shown for experimental data does not provide perfect filtration and there is room 

for improvement of the obtained results. Therefore, in this work it was decided to use 

optimization techniques based on artificial intelligence to obtain a spatial filter with the best 

possible filtration quality. What is more, the proposed approach does not require a prior modal 

analysis: the objective function measuring the quality of filtration is enough to built an 

operational modal filter equivalent to the one obtained through traditional means and then 

further improvement to allow for an optimal filtration. 

 

The rest of this paper is as follows: Chapter 2 introduces natural optimization algorithm based 

on a 1+1 optimization scheme, Chapter 3 describes simulation-based experiments that show the 

concept in-action, finally, Chapter 4 concludes and summarizes the paper. 

2 NATURAL OPTIMIZATION APPROACH TO MODAL FILTERING 

From a computational perspective, the objective of modal analysis and modal filter calculation 

is to determine a set of vectors that meet a specific requirement: Each vector, when employed 

to filter the recorded structural response, should isolate a single frequency component 

corresponding to a chosen natural frequency of the object. Traditionally, these filters are 

computed through analytical methods based on modal analysis. However, it's possible to obtain 

or optimize these filters using natural optimization techniques, with the aim of maximizing the 

response at a specific natural frequency while damping all other frequencies. 

The optimization process begins by obtaining the frequency response for the object in question. 

Subsequently, an initial starting point for the optimization is generated. This starting point can 

be chosen randomly or based on a precomputed modal filter. The optimization process then 

employs a 1+1 evolutionary scheme [14], which gradually refines the filter. 

The fundamental principle behind the 1+1 optimization scheme is to perform a systematic yet 

partially randomized search within the parameter space. Successive candidate solutions for the 

minimum are generated in the vicinity of the best result found so far. The rate of improvement 

is controlled by a variable denoted as "R," which determines the size of the search 

neighborhood. Larger values of R facilitate rapid improvement at the outset of the optimization, 

while smaller values allow for more meticulous exploration of the minimum. As the algorithm 

progresses, R is reduced if the results become stagnant, thus ensuring a balance between 

exploring different options and exploiting the best solutions. Figure 1 illustrates a flowchart of 

the algorithm. 

The motivation behind adopting this straightforward 1+1 search approach is rooted in the 

finding that, in preliminary testing, all the local minima of the problem were situated at depths 

comparable to the global minimum. Therefore, there was no necessity to employ a full-fledged 

genetic algorithm, making the 1+1 search method a suitable choice. 
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Figure 1: A flowchart of the optimization routine for calculation and improvement of the modal filter for a given 

natural frequency. 

3 EXPERIMENTAL EVALUATION 

4.1 Model design 

To demonstrate the method's functionality in a simulated setting, we have developed a 

5-degree-of-freedom model. This model, depicted in Figure 2, comprises five masses 

interconnected in a series-parallel configuration. The values for damping, stiffness, and mass 

coefficients are calculated from the state matrices provided below: 

 

𝑀 =  

[
 
 
 
 
5 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 1.5]

 
 
 
 

      𝐾 =  

[
 
 
 
 
105 −15 −20 0 0
−15 15 0 0 0
−20 0 49 −12 −17
0 0 −12 12 0
0 0 −17 0 17 ]

 
 
 
 

∗ 103  𝐶 =   

[
 
 
 
 
35 −5 −5 0 0
−5 5 0 0 0
−5 0 15 −5 −5
0 0 −5 5 0
0 0 −5 0 5 ]
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Figure 2: A scheme of the model used in simulation. 

4.2 Quality function 

 

The quality function is established with the premise that each modal filter is centered around a 

specific predefined frequency, through which the vibration signal should be allowed to pass. 

The equation that defines the mask function is given by equation (1): 
 

𝑀(𝑓) =
𝜏

|𝑓 − 𝑓𝑛| + 𝜏
 

     (1) 

Here, f represents the frequency under consideration, fn is the selected natural frequency to 

which the filter is tuned, and τ is a coefficient that governs how abruptly the mask attenuates 

undesired frequencies. In this study, τ is set to 0.4. Figure 3 illustrates the shape of the mask for 

frequency filtration, calculated for the 4th natural frequency. 

The quality metric that the algorithm aims to minimize is defined as follows (2): 

𝑄 =  𝑄0 + 𝑤𝑏 ∙ ∑(1 − 𝑀) ∙ 𝑆 − ∑𝑀 ∙ 𝑆 

  (2) 

Here: 

• S represents the normalized frequency response. 

• M stands for the mask. 

• wb is a weight that determines the relative importance of minimizing frequencies across 

a broad spectrum. In simpler terms, this parameter controls whether the optimization 

algorithm places more emphasis on reducing unwanted frequencies or preserving 

frequencies centered around the target frequency. 

• Q0 serves as a quality-of-life constant, useful for displaying all the convergence curves 

in a one logarithmic-scale plot and is predetermined for each frequency under 

consideration. It does not influence the actual computation. 
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Figure 3: Mask shape for frequency filtration. 

4.3 Optimization results 

 

Figure 4 displays the convergence curves for the algorithm employed to optimize modal filters. 

It's important to note that the level of convergence is influenced by the constant Q0 integrated 

into the quality function. As a result, the relative levels in these curves should not be compared 

with one another. What is meaningful to compare, however, is the convergence rate. Filter 

optimization for some natural frequencies proves to be more straightforward than for others. 

Nevertheless, in all cases, the optimized filters, initiated from random vectors without relying 

on modal analysis, outperform analytically derived filters. 

 
Figure 4: Convergence curves for optimization of filters for five natural modes of vibration. Level of filtration 

quality provided by analytically computed modal filters is provided in dotted lines. 
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a) Mode 1                                                              b) Mode 2 

 
c) Mode 3                                                           d) Mode 4 
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Figure 5: Results of filtration for modal filters tuned to five modes of vibration. Blue arrows point to frequencies 

for which optimized filter enabled better filtration 
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Figure 5 presents filtration results in the frequency domain. It compares a response filtered 

using a modal filter tuned through a modal analysis-based process (in black) and our modal-

analysis-free method (in red). While the results in the broad frequency spectrum are similar, the 

optimized filters result in lower response values for natural frequencies to which the respective 

filters are not tuned. This indicates an overall superior filtration quality. 

A direct comparison between the calculated and optimized filters is not possible due to their 

differing lengths. However, after normalization based on the vectors' norms, the discrepancies 

between the optimized and reference vectors (as shown in Table 1) are minimal. This 

demonstrates that not only does the solution yield superior results compared to the analytical 

approach, but it also identifies and optimizes the same set of modal filters. 

Table 1: Residua between normalized results of optimization and normalized reference vectors 

Mode 1 2 3 4 5 

Residuum 

𝑟1 =

[
 
 
 
 

0.0007
−0.0004
0.0001
0.0033

−0.0028]
 
 
 
 

 𝑟2 =

[
 
 
 
 

0.0054
−0.0060
0.0040
0.0118

−0.0004]
 
 
 
 

 𝑟3 =

[
 
 
 
 
0.0043
0.0019
0.0002
0.0003
0.0003]

 
 
 
 

 𝑟4 =

[
 
 
 
 

0.0096
0.0008

−0.0081
0.0010
0.0063 ]

 
 
 
 

 𝑟5 =

[
 
 
 
 
−0.0002
0.0004
0.0000

−0.0002
0.0015 ]

 
 
 
 

 

      

5 SUMMARY AND CONCLUSIONS 

In this study, a method for optimizing modal filters was explored in a simulated environment 

using a 5-degree-of-freedom model. The model incorporated five masses connected in a series-

parallel arrangement. The research primarily focused on the 1+1 optimization scheme that 

forms the basis of filter optimization: the filters are iteratively optimized starting from a random 

solution and ending in a fine-tuned filters that surpass results obtained through modal analysis 

consistently for all five natural frequencies under evaluation.  

In conclusion, this study introduced a novel approach for optimizing modal filters without 

relying on modal analysis. The results highlighted the method's ability to outperform 

analytically derived filters, particularly in reducing responses at undesired frequencies. These 

findings suggest the potential for broader application in vibration control and mechanical 

systems research, especially in detection of structural damages. 
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