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Abstract. The immersed boundary method (IBM) has attracted growing interest in the computational
fluid dynamics (CFD) research community due to its simplicity in dealing with moving boundaries in
fluid-structure interaction (FSI) systems. We present a study on streamline penetration, velocity error
and consequences of a FSI solver based on an iterative feedback IBM. In the FSI, the fluid flows are
solved by the lattice Boltzmann method; the solid structure deformation is solved by the finite difference
method, and an iterative feedback IBM is used to realize the interaction between fluid and structure.
The iteration can improve the no-slip and no-penetration boundary conditions at the fluid-solid interface.
Four benchmark cases are simulated to study the reduced velocity error and its consequences: a uniform
flow over a flapping foil, flow-induced vibration of a flexible plate attached behind a stationary cylinder
in a channel, flow through a two-dimensional asymmetric stenosis and a one-sided collapsible channel.
Results show that the iterative IBM can suppress the boundary-slip error and spurious flow penetration on
the solid wall. While the iterative IBM does not have significant effect on the force production and struc-
ture deformation for external flows, it significantly improves the prediction of the force distribution and
structure deformation for internal flows. The increased computational cost incurred by the iteration can
be largely reduced by increasing the feedback coefficient. This study will provide a better understanding
of the feedback IBM and a better option for the CFD community.

1 INTRODUCTION

The immersed boundary method (IBM) has attracted growing interest in the computational fluid dy-
namics (CFD) research community due to its simplicity in dealing with fluid-structure interaction (FSI)
systems involving complex geometries and large deformations [1]. To improve the computational effi-
ciency, the IBM was combined with the lattice Boltzmann method (LBM) by Feng and Michaelides [2]
to simulate fluid–particles interactions. The immersed boundary-lattice Boltzmann method (IB-LBM)
has since been implemented in many applications, including blood flow [3, 4, 5, 6], flapping wings [7]
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and fish swimming [8].
Although the feedback IBM (including the direct-forcing version) has the advantage of simplicity, its

accuracy and streamline penetration have been widely discussed [9, 10, 11]. However, the consequences
of the boundary velocity error and the spurious flow penetration have not been discussed, especially for
internal flows. In this study, we test the iterative effects of the IBM on streamlines and force distributions
for external and internal flows.

2 NUMERICAL METHODS

In this study, the D2Q9 lattice Boltzmann method (LBM) with the multi-relaxation-time (MRT) model
is adopted for the fluid dynamics. For FSI cases (e.g. flow-induced vibration of a flexible plate attached
behind a stationary cylinder in a channel and a one-sided collapsible channel), the nonlinear dynamics of
the structure is treated as a Bernoulli-Euler beam and solved by the finite difference method (FDM). The
two-way fluid-structure interaction is implemented by the iterative feedback IBM. The details of these
methods can be found in our previous publications [4, 12].

3 RESULTS

3.1 A uniform flow over a flapping foil

Here the simulation of a two-dimensional (2-D) NACA0012 foil in a uniform flow is conducted to test
the iterative effect of the IB-LBM solver. The foil is pivoted at a point located on the chord line at 0.5c
from the leading edge, where c is the chord length. The pitching and heaving motions of the foil are
described as

θ(t) = θ0 cos(2π f t), (1)

h(t) = h0 cos(2π f t +φ), (2)

where θ0 = 10◦ is the pitching amplitude, h is the vertical displacement, h0 = 0.5c is the heaving ampli-
tude, and φ = 90◦ is the phase angle between the two motions. The non-dimensional flapping frequency
f c/U0 = 0.5. The Reynolds number Re = U0c/ν = 1000, where U0 is the free-stream velocity. The
computational domain is 40c×30c with the minimum grid size of 0.00625c. The non-dimensional drag
CD and lift CL coefficients are defined to describe the aerodynamic forces on the foil,

CD =
FD

0.5ρU2
0 c

, CL =
FL

0.5ρU2
0 c

, (3)

where FD and FL are the drag and lift forces, respectively. Figure 1 shows the time histories of the drag
CD and lift CL coefficients, which agree well with the computational result of Johnson & Tezduyar [13].
For the drag and lift coefficient computed by present three iteration strategies, the difference is negligibly
small, indicating that iterations do not significantly improve the prediction of the force coefficients.

3.2 Flexible beam behind a stationary cylinder in a channel

Here, a moving boundary case, the FSI of a flexible plate behind a stationary cylinder in a channel, is
considered. Figure 2 shows the schematic diagram of the geometry and the boundary conditions of this
case. This case has been used as a benchmark validation for FSI solvers involving large-displacement.
As shown in figure 2, a fixed circular rigid body is submerged in an incompressible fluid. A flexible
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Figure 1: Comparison of drag and lift coefficients time histories for a NACA0012 flapping foil at Re = 1000.

Figure 2: Schematic diagram of flow-induced vibration of a flexible beam behind a stationary cylinder.

thin beam is attached downstream to the cylinder. The cylinder has a diameter of D and is centred at
the origin. The beam has thickness h and length L = 3.5D. A parabolic velocity profile with averaged
velocity U0 and a constant pressure P0 are imposed at the inlet. No-slip walls are enforced at the top and
bottom sides of the computational domain. The normal and shear stress are set to zero at the outlet. The
computational domain is a rectangular box (x ∈ [−2D,9D] and y ∈ [−2.05D,2.05D]), and the grid size
for the fluid and the beam is 0.01D and 0.005D, respectively. The non-dimensional parameters for this
case are

Re =
ρU0L

µ
, M =

ρs

ρL
, Kb =

EI
ρU2

0 L3 , Ks =
Eh

ρU2
0 L

, (4)

where ρs is the linear density of the beam, M is the structure-to-fluid mass ratio, and Kb and Ks are
the bending stiffness and stretching stiffness of the beam, respectively. E is Young’s modulus, and
I = h3/12 is the moment of inertia of the beam cross-section. Here Re = 100,M = 2.0, and Kb = 1.111.
A large stretching stiffness Ks = 500 is chosen to achieve a nearly inextensible beam. Table 1 shows
the comparison of the mean drag coefficient CD,m = FD,m /(0.5ρU2

0 D) (FD,m is the mean drag of the
cylinder-beam system), Strouhal number defined as St = f D/U0 ( f is the oscillation frequency), and
vertical oscillation amplitude of the trailing end. Overall, the present results show reasonable agreement
with Tian et al. [14]. The Strouhal number St, which characterizes the flapping shedding frequency,
is 0.186 in the present simulation with 1 iteration, while that computed by Tian et al. [14] is 0.19 (a
difference of about 2.1%). In present simulation with 5 iterations, St = 0.181 (a difference with Tian et
al. [14] of 4.7%), suggesting iterations do not improve the prediction of the flapping frequency of the
beam. Figure 3 displays pressure contours of the dynamic behaviour of the beam taken at four different
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Table 1: Comparison of the mean drag CD,m, Strouhal number St, and vertical oscillation amplitude Am of the
beam.

Sources CD,m St Am

Tian et al. [14] 4.11 0.19 0.78
Present 1 iteration 3.70 0.186 0.87
Present 5 iterations 3.67 0.181 0.90

(a) t/T = 71.25 (b) t/T = 72.5

(c) t/T = 73.75 (d) t/T = 75.5

Figure 3: Pressure contours for flexible plate behind a stationary cylinder in a channel at different time instants.
The pressure here is a relative pressure to the inlet pressure P0 and is non-dimensionalized by ρU2

0 .

instants (t/T = 71.25; 72.5; 73.5; 75.5) within an oscillation cycle. These results are in qualitative
agreement with previous studies.

3.3 Fluid flow through a 2-D asymmetric stenosis

The iteration effects of the IBM are tested here for fluid flow through an asymmetric stenosis with a
diameter restriction of 50% at the constriction. A cosine function dependent on the axial coordinate x is
used to describe the upper stenosed channel wall,

y(x) = D
[

1−a0(1+ cos(
2π(x− x0)

L
))

]
, (5)

where D is the diameter of the non-stenosed channel, a0 = 0.25 for the 50% diameter reduction, x0 = 6
is the x coordinate of the center of the stenosis (x0 −L/2 ≤ x ≤ x0 +L/2), and L = 2D is the length of
the stenosis. The length and width of the whole computational domain are 16D and 1.2D, respectively.
A steady Poiseuille flow with an averaged velocity U0 is imposed at the upstream inlet, and a constant
pressure pd is specified at the downstream outlet. The grid size for the fluid and the channel wall is
dx= 0.01D and ds= 0.005D, respectively. The fluid flow through a 2-D asymmetric stenosis at Re= 200
is simulated and is validated against the commercial software ANSYS Fluent.

Figure 4 shows the simulated pressure, streamwise velocity and vorticity contours at tU0/D = 100 (the
flow reaches a steady state) for 1 iteration and 5 iterations, respectively. As shown in the pressure con-
tours, a low-pressure area is observed at the posterior part of the stenosis. Compared with the pressure
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(a) one iteration; (b) five iterations.

Figure 4: Pressure, streamwise velocity, and vorticity contours of a 2-D asymmetric stenosis at tU0/D = 100 for
1 iteration and 5 iterations, respectively. The velocity is non-dimensionalized by inlet averaged velocity U0. The
pressure here is relative pressure to the outlet pressure pd and is non-dimensionalized by ρU2
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(d) WSS along lower channel wall.

Figure 5: Pressure and wall shear stress (WSS) along the upper and lower channel walls at tU0/D = 100. The
pressure here is relative pressure to the outlet pressure pd . The pressure and WSS are non-dimensionalized by
ρU2

0 .

contours for 1 iteration, a much higher pressure region is observed in the upstream channel of the stenosis
for 5 iterations. The velocity contours show that a stable jet flow is formed downstream of the stenosis.
The jet flow is stronger for the 5 iterations. The streamlines penetrate through the upper and lower chan-
nel walls in the velocity contours for 1 iteration, but not for 5 iterations. These observations demonstrate
that the iterative IBM can suppress the spurious flow penetration and improve the no-penetration bound-
ary conditions at the walls. The vorticity contours show that there is no vortex shedding downstream of
the stenosis. The vortices are stretched further downstream of the stenosis for the five iterations.
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Figure 6: Schematic diagram of one-sided collapsible channel flow. All other boundaries: all other computational
boundaries except for the inlet and outlet.

The pressure and wall shear stress (WSS) on the arterial wall are of great interest to the medical
community as they play an essential role in the genesis and progression of cardiovascular diseases [15].
Therefore, the distributions of pressure and WSS along the upper and lower channel walls are shown
in figure 5. The pressure and WSS are linearly interpolated based on the corresponding values at 2.5
and 5.0 grid points inward of the channel walls [3, 4]. Results of one iteration largely under-predict the
pressure and WSS because the no-slip and no-penetration boundary conditions at the channel walls are
not exactly satisfied. This issue can be well addressed by 5 iterations of the IBM, which allows for local
flow reconstruction in the vicinity of the channel walls [4] and the results agree very well with those
of ANSYS. Thus, the iteration improves the enforcement of the no-slip and no-penetration boundary
conditions on the channel walls.

3.4 One-sided collapsible channel flow

Here, the iteration effects of the IBM are examined for an internal flow with a moving and deformable
boundary by considering a 2-D incompressible flow in a one-sided collapsible channel. As shown in
figure 6, a part of the channel wall is replaced by an elastic beam. The elastic beam has length L and
is subjected to an external pressure pe. The rigid channel has a width of D. A steady Poiseuille flow
with averaged velocity U0 is imposed at the upstream inlet, and a constant pressure pd is specified at the
downstream outlet. The averaged flow velocity at the inlet U0, channel height D, and fluid density ρ are
used to non-dimensionalize this system, giving five non-dimensional parameters: the Reynolds number,
the structure-to-fluid mass ratio, the stretching stiffness, the bending stiffness and the external pressure,
which are respectively given by

Re =
U0D

ν
,M =

ρs

ρD
,Ks =

Eh
ρU2

0 D
,Kb =

EI
ρU2

0 D3 ,Pe =
pe − pd

ρU2
0

. (6)

Here Re = 250, M = 1.0, Ks = 56.88 and Pe = 1.95 are used. A no-slip boundary condition is applied
along the channel wall, including the elastic segment. Clamped conditions are used at the two ends of the
elastic wall. The remaining parameters are Lu = 5D, Ld = 30D, L = 5D, and Kb/Ks = (h2/12D2)≈ 10−5

for a wall thickness h of 1% of the channel height. The nonlinear dynamics of the collapsible channel
wall is treated as a Bernoulli-Euler beam with zero initial tension and solved by the finite difference
method. The grid size for the fluid and the channel walls is 0.01D and 0.005D, respectively. More
computational details can be found in our previous work [3, 4]. Here the iteration effects of the IBM
are examined by considering four cases: 1 iteration, 3 iterations, 5 iterations and dynamic iterations.
For the dynamic iterations, the iteration is terminated when the maximum velocity error at the immersed
boundary is less than a pre-set criterion (i.e. max(Uerror(s, t))≤ 5×10−3) [4],

Uerror(s, t) =

√
(UUUm

ib(s, t)−UUU(s, t))2

U0
. (7)
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Figure 7: (a) comparison of wall shapes from present IB-LBM with the ALE (arbitrary Lagrangian Eulerian) of
Luo et al. [16]; (b) the time history of the y-coordinate for the mid-point (x = 2.5 initially) on the upper elastic
wall for different iteration strategies: 1 iteration, 3 iterations, 5 iterations and dynamic iterations. T = D/U0 is the
reference time.

Table 2: Averaged-flux error over the monitored locations.

Sources Averaged-flux error
1 iteration 39.06%
3 iterations 11.52%
5 iterations 3.68%
Dynamic 1.33%

Figure 7(a) shows the comparison of wall shapes from present simulations with the ALE of Luo et al.
[16]. The simulation with dynamic iterations predicts the most accurate wall shape while the 1 iteration
predicts the worst. Figure 7(b) shows the time history of the y-coordinate of the mid-point of the upper
elastic wall for different iterations. It shows that the time histories of the y-coordinate are quite different
not only in the final value but also in the oscillation trajectory. For the dynamic iterations, the oscillations
are evident during the transition state (0 ≤ t/T ≤ 50) while the oscillation amplitude is gradually damped
out as time increases.

In order to examine the boundary velocity slip error, the velocity error along the elastic wall, as shown
in figure 8, is calculated at t/T = 10, t/T = 20, t/T = 40, and t/T = 80, respectively. It shows that the
maximum velocity error is on the collapsible part of the wall (x/D ≈ 1.4) at all four instants. Serious
boundary velocity slip error is on the channel wall from the inlet to the end of the elastic wall, and this
error can be significantly (more than an order of magnitude) reduced by five iterations. For the dynamic
iterations, the overall velocity error is the smallest among all the four iteration strategies.

The effects of the inlet velocity is tested by varying U0 = 0.1, 0.05, and 0.025. Figure 9(a) shows
that the wall shape is approaching the correct value of Luo et al. [16] as the decrease of U0. This is
because the velocity error decreases as the decrease of the inlet velocity (i.e., reference velocity U0).
Flow flux distributions at different monitored locations along the channel are traced and shown in figure
9(b). The averaged-flux error over the monitored locations are shown in table 2. For 1 iteration, there is
a sharp decrease of flux from x/D =−5 to x/D = 5, suggesting there is a significant flow penetration in
this channel section. While the flux reduction is slow after x/D = 5. The flux reduction is significantly
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Figure 8: Velocity error Uerror distributions on the upper channel wall (only for −5 ≤ x/D ≤ 10) at four different
instants: t/T = 10, t/T = 20, t/T = 40, and t/T = 80 as indicated by dash lines in figure 7(b). The collapsible
segment of the upper channel wall is highlighted by a grey shaded area.
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Figure 9: (a) wall shapes for 1 iteration under different inlet velocities U0; (b) Flow flux distributions at monitored
cross sections along the channel at t/T = 100. All fluxes are normalized by the flux at the inlet (x/D =−5) of the
channel. The monitored locations are x/D =−5, −2, 0, 5, 10, 15, 20, 25, 30, 35.

improved from 1 iteration to 3 iterations with the averaged-flux error decrease from 39.06% to 11.52%.
The averaged-flux error is further improved within 5% (i.e., 3.68%) after 5 iterations.

Figure 10 shows the time history of the iteration number m for the dynamic iterations. For the feedback
coefficient β = 2m/s (the unit of the feedback coefficient can be found in the dimensional analysis in
Appendix A), the iteration number fluctuates during the transition stage 0 ≤ t/T ≤ 40 and is constant
after t/T = 42. The average iteration number is 6.17, causing an increase in the computational cost. In
order to decrease the computational cost, a correction of the feedback coefficient β = 5.2m/s is derived
(the derivation can be found in Appendix B). Here the correction coefficient is determined by the 4-point
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Figure 10: Time history of the iteration number m of the dynamic iterations. The iteration number decreases when
the corrected feedback coefficient β = 5.2m/s used.

discrete delta function and the method of how the velocity is updated. For β = 5.2m/s, the iteration
number is 2 everywhere except at t/T ≈ 4 when it is 20. The jump of the iteration number at t/T ≈ 4
is due to the elastic wall undergoing a sharp collapse, as shown in figure 7(b). The averaged iteration
number decreases from 6.17 to 2.05.

4 CONCLUSIONS

The performance of three implementations of the feedback IBM has been studied. The streamline pen-
etration, velocity error on the immersed boundary and consequences in the force production and structure
deformation are discussed by simulating external (a uniform flow over a flapping foil, flow-induced vi-
bration of a flexible beam attached behind a cylinder) and internal flows (flow through a 2-D asymmetric
stenosis and collapsible channel). Results show that the widely reported streamline penetration can be
significantly reduced by the iterative IBM. The boundary velocity error does significantly affect the force
production and structure deformation for external flows. However, for internal flows such as the stenosis
and the collapsible channel flows, reducing the velocity error by using the iterative IBM substantially
improves the prediction of the force distribution and structure deformation. Moreover, the value of the
feedback coefficients could be smaller for the iterative IBM, which is very attractive for improving nu-
merical stability for low structure-to-fluid mass ratio cases but at the expense of more iterations.
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A APPENDIX: DIMENSIONAL ANALYSIS

Three basic dimensions: density ρ, time T and length L are chosen here. We denote the dimension
of a variable q by [q]. For example, the dimension of the velocity [UUU ] = LT−1. Consider Newton’s
second law, generically stated as [ f orce] = [mass]× [acceleration]. The dimension of the [ f orce] can be
expressed based on the three basic dimensions,

[ f orce] = N ≡ [mass]× [acceleration] = ρL3 ×LT−2 = ρL4T−2. (8)
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Then, the dimension of the force is [ f orce] = ρL4T−2. For 3-D scenarios, the unit of the Lagrangian
force density FFF ib is N/m2. Then, the dimension of the Lagrangian force density is

[FFF ib] = N/m2 = ρL4T−2/L2 = ρL2T−2. (9)

In the immersed boundary method, FFF ib = βρ∆UUU , this gives

[FFF ib] = [βρ∆UUU ] = [β]ρLT−1. (10)

Then, the dimension of the feedback coefficient [β] = LT−1 = m/s. For 2-D scenarios, the unit of the
Lagrangian force density FFF ib is N/m. The unit of the mass [M] = ρL2. Substitute these two units into the
above equations, one can get the same dimension of the feedback coefficient β.

B APPENDIX: DERIVATION OF THE FEEDBACK COEFFICIENT

For simplicity, only the 2-D case is presented; the extension to 3-D is straightforward.

FFF ib(s, t) = βρ(xxx, t)(UUU(s, t)−UUU ib(s, t)) = βρ∆UUU , (11)

where ∆UUU =UUU −UUU ib. Then, the body force density fff (xxx, t) can be rewritten as

fff (xxx, t) =
∫

FFF ib(s, t)δ(xxx−XXX(s, t))ds ≈ ∑βρ∆UUUδ(xxx−XXX)ds, (12)

where ds is the discrete arc length of the immersed boundary.

UUU ib =
∫

uuuδ(xxx−XXX)dxxx ≈ ∑uuuδ(xxx−XXX)∆Vx, (13)

where ∆Vx = ∆x∆y is the local lattice volume. Then ∆UUU can be rewritten as

∆UUU =UUU −∑uuuδ(xxx−XXX)∆Vx. (14)

Then, the Lagrangian surface force density FFF ib(s, t) can be approximated as

FFF ib ≈ βρ
[
UUU −∑uuuδ(xxx−XXX)∆Vx

]
. (15)

After performing the IBM, the fluid velocity near to the immersed boundary is updated by

uuu = uuu+
fff ∆t
2ρ

. (16)

If the no-slip and no-penetration boundary conditions are exactly satisfied at the solid boundary, then

0 = ∆UUU =UUU −∑(uuu+
fff ∆t
2ρ

)δ(xxx−XXX)∆Vx. (17)

From equation 14, one can get
UUU = ∆UUU +∑uuuδ(xxx−XXX)∆Vx. (18)

10
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Substituting equation 18 into equation 17, this gives

0 = ∆UUU +∑uuuδ(xxx−XXX)∆Vx −∑(uuu+
fff ∆t
2ρ

)δ(xxx−XXX)∆Vx

= ∆UUU +∑uuuδ(xxx−XXX)∆Vx −∑uuuδ(xxx−XXX)∆Vx −∑
fff ∆t
2ρ

δ(xxx−XXX)∆Vx

= ∆UUU −∑
fff ∆t
2ρ

δ(xxx−XXX)∆Vx.

(19)

Substituting equation 12 into equation 19, this gives

0 = ∆UUU −∑
fff ∆t
2ρ

δ(xxx−XXX)∆Vx

= ∆UUU −∆UUU
βds∆t∆Vx

2 ∑
[
∑δ(xxx−XXX)

]
δ(xxx−XXX)

= ∆UUU
{

1− βds∆t∆Vx

2 ∑
[
∑δ(xxx−XXX)

]
δ(xxx−XXX)

}
.

(20)

Then, this gives

β =
2

ds∆t∆Vx ∑ [∑δ(xxx−XXX)]δ(xxx−XXX)
. (21)

The 4-point discrete delta function δ(xxx−XXX) is approximated by the Dirac delta function,

δ(xxx−XXX) =
1

∆x∆y
φ(

x−X
∆x

)φ(
y−Y

∆y
). (22)

Then, the feedback coefficient β can be approximated by

β =
2∆x∆y∆x∆y

ds∆t∆x∆y∑

[
∑φ( x−X

∆x )φ( y−Y
∆y )

]
φ( x−X

∆x )φ( y−Y
∆y )

=
2∆x∆y

ds∆t ∑

[
∑φ( x−X

∆x )φ( y−Y
∆y )

]
φ( x−X

∆x )φ( y−Y
∆y )

.

(23)

If the solid grid spacing ds = 0.5∆x, this gives,

β =
4∆y

∆t ∑

[
∑φ( x−X

∆x )φ( y−Y
∆y )

]
φ( x−X

∆x )φ( y−Y
∆y )

= β
∗ ∆y

∆t
≈ 5.2,

(24)

where β∗ = 4/(∑
[
∑φ( x−X

∆x )φ( y−Y
∆y )

]
φ( x−X

∆x )φ( y−Y
∆y )) is a non-dimensional value. The dimension of

∆x/∆t is [∆x/∆t] = m/s, which again confirms the dimension of the feedback coefficient [β] = m/s.
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