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Abstract: This works presents a driver assistance system for energy-efficient automated longitudinal
control (ALC) of a battery electric vehicle (BEV). The ALC calculates a temporal velocity trajectory
from map data. The trajectory is represented by a cubic B-spline function and results from
an optimization problem with respect to travel time, driving comfort and energy consumption.
For the energetic optimization we propose an adaptive model of the required electrical traction
power. The simple power train of a BEV allows the formulation of constraints as soft constraints.
This leads to an unconstrained optimization problem that can be solved with iterative filter-based
data approximation algorithms. The result is a direct trajectory optimization method of which the
effort grows linearly with the trajectory length, as opposed to exponentially as with most other direct
methods. We evaluate ALC in real test drives with a BEV. We also investigate the energy-saving
potential in driving simulations with ALC compared to manual longitudinal control (MLC). On the
chosen reference route the ALC saves up to 3.4% energy compared to MLC at same average velocity,
and achieves a 2.6% higher average velocity than MLC at the same energy consumption.

Keywords: automated longitudinal control; battery electric vehicle; trajectory optimization;
B-spline approximation

1. Introduction

1.1. Driver Assistance Systems for Automated Longitudinal Control

Current major automotive trends are automated driving, electric power train, shared mobility
services, and connected mobility [1]. Driver assistance systems are important intermediate steps of
automated driving. The continuously increasing degree of automation provided by them leads the
way to autonomous vehicles ([2], p. 89).

We can distinguish three classes of driver assistance systems regarding the vehicle guidance:
First, informing and warning systems like traffic sign recognition. These only influence the vehicle via
the driver. Second, continuously automated functions, that are activated by the driver intentionally
and influence the vehicle directly. These are usually comfort functions like cruise control (CC). Third,
intervening emergency functions like automatic emergency braking. These act in critical situations,
over short time periods and are not deliberately activated by the driver ([2], pp. 36–40).

This work deals with continuously automated functions for longitudinal control. Such functions
can contribute to increasing safety and comfort as well as to reducing energy consumption to different
extents. Adaptive cruise control (ACC) is an enhanced CC that adapts the vehicle velocity to a
preceding vehicle, which is detected by a radar sensor ([2], p. 1095). Studies report that drivers
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with activated ACC experience less mental stress and the number of forward collisions decreases by
35% ([2], p. 1140). With map data, ACC-like systems for automated longitudinal control (ALC) can
determine an appropriate course of velocity, also refered to as velocity trajectory, for the upcoming
road section such that the vehicle automatically slows down if a curve is ahead. In combination with
power train models, such systems can guide the vehicle more energy-efficiently than a human driver.
For example, the system described in [3,4] achieves, on average, a 10% lower energy consumption
compared with a human driver at the same average velocity.

The degrees of freedom of the power train in a conventional vehicle include motor torque, clutch
state and selected gear. In addition to that, a hybrid power train can transfer power between the
combustion engine, electric motor and wheels in several ways. Due to the various degrees of freedom
in the power train and the related constraints, the majority of such driver assistance systems determine
the velocity trajectory by solving a multiobjective nonlinear high dimensional optimization problem
with respect to goals like travel time, comfort, safety and energy consumption [5].

The three common approaches to trajectory optimization are dynamic programming (DP), direct
methods (DM) and indirect methods (IM) ([6], pp. 5–8,27–37). DP is an optimization method that finds
a global optimum. With DP, the complexity increases linearly with the length of the planned trajectory
but exponentially with the problem dimensionality. ALC systems based on DP include the system
in [3,4] for a vehicle with an internal combustion engine, the extension for a hybrid electric vehicle
(HEV) in [7], and the system for a plug-in HEV in [8].

A comparison between an ALC based on DP with a spatially defined problem and an ALC
based on model predictive control (MPC) with a temporally defined problem regarding the energy
consumption of a battery electric vehicle (BEV) and the computation time is conducted in [9].
In simulations the vehicle requires 1.14% and 1.27% less energy with MPC ALC than with a
proportional-integral-derivative controller that represents human driving behavior.

MPC is a representative of DM. With DM, the trajectory is defined by a function, of which the
parameters are the optimization variables. DM find local optima, they have a polynomial increase
of computational effort with the dimensionality, and their computational effort usually increases
exponentially with the trajectory length. Further MPC-based ALC systems are proposed in [10] for
HEVs and for BEVs in [11].

The ALC for fuel cell HEVs of [12] uses Pontryagin’s minimum principle, which belongs to IM.
The effort of the locally optimal IM grows polynomially with the dimensionality and the trajectory length.

Apart from the aforementioned approaches, which can be seen as model-based methods, there are
rule-based methods like the system proposed for an HEV in [13] and learning-based methods.
For example, the behavior learning system reported in [14] uses a reinforcement learning technique to
capture and replicate the difficult to model behavior of humans during longitudinal control and how
they adapt their control to different driving situations. A driving style recognition algorithm based on
unsupervised learning and its use within a codesign optimization for a BEV ALC is described in [15].

For a comprehensive review of motion planning techniques including the lateral dimension we
refer to [16].

1.2. Research Gap

Most systems for energy-efficient ALC described in literature were developed for conventional
vehicles or HEVs, which are vehicles with rather complicated power train structures. As a result,
these systems usually solve high-dimensional optimization problems that involve models of several
power train components, nonlinearities and constraints. In order to perform the required computations
on an electronic control unit (ECU) with limited computational power in real-time, the trajectory
optimization problem often needs to be simplified and discretized coarsely.

In contrast to conventional and hybrid vehicles, the power train of most BEVs has only a constant
gear ratio and no clutch. The simple power train structure allows for less computational effort during
trajectory optimization. However, the ALCs that have been proposed for BEVs are mostly based on
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MPC and therefore the optimization is restricted to short time horizons because of the exponential
increase of computational effort.

An exception is the ALC for BEVs proposed in [17,18] that defines the trajectory as a cubic
polynomial, of which the coefficients are determined by a linear Kalman filter. The iterative filter-based
trajectory optimization approach results in a direct method with only a linear increase of complexity
with the trajectory length. However, in practice this method is also restricted to short trajectories
because the few degrees of freedom of the cubic polynomial do not allow representation of a farsighted
trajectory that includes several acceleration and deceleration phases. In particular, the effectivenes
of energy consumption optimization benefits greatly from a larger optimization horizon. The energy
consumption is also not considered in [17,18].

The lack of systems for ALC of BEVs that take advantage of the simpler power train by using
algorithms with low computational effort for planning long trajectories and that additionally consider
the energy consumption in the optimization problem poses a research gap.

1.3. Contribution

In [19] we presented a method denoted recursive B-spline approximation (RBA) that iteratively
adapts the coefficients of a B-spline function such that the function approximates data in the
weighted least squares (WLS) sense. In [5] we proposed an analogous algorithm called nonlinear
recursive B-spline approximation (NRBA) for nonlinear weighted least squares (NWLS) approximation
problems. In both publications, we investigated the algorithms in numerical experiments and
provided an implementation in MATLAB. Furthermore, we applied NRBA to unconstrained nonlinear
multiobjective trajectory optimization and demonstrated that NRBA can serve as an iterative local
direct optimization method for B-spline trajectories. With NRBA, the computational effort only grows
linearly with the time horizon instead of exponentially.

This publication describes a system for energy-efficient ALC of BEVs that is tested in simulation
as well as in real test drives and aims to contribute to closing the identified research gap. The ALC
computes a velocity trajectory with respect to time using map data and includes RBA and NRBA for
trajectory optimization. The trajectory can be optimized with respect to travel time, driving comfort
and energy consumption. We also propose an adaptive model that captures the characteristics of the
BEV power train in an aggregated form and is used for determining energy-efficient trajectories.

The trajectory optimization method falls into the category of direct methods(DM) but its effort
increases only in a linear fashion with the trajectory length. This substantial saving is achieved
by taking advantage of the comparatively simple BEV power train and by defining constraints
from vehicle dynamics or the environment as soft constraints. This allows the formulation of the
trajectory optimization problem as an approximation problem and allows the application of the
iterative filter-based algorithms, RBA and NRBA. These features in combination with the use of a
B-spline function enable planning long, farsighted trajectories. An implementation of the method is
again provided in MATLAB.

On a chosen reference route, the BEV has a lower energy consumption with the proposed ALC
than with manual longitudinal control (MLC) at the same average velocity.

1.4. Outline

The remainder of this article is structured as follows: In Section 2, we describe the BEV with
which we tested the ALC, influence factors on the energy consumption of a BEV, and the approach
for optimizing the energy consumption. Section 3 describes the architecture of the proposed ALC
and its individual modules. In Section 4, we report on test drives, as well as acceptance test results,
and investigate the energy-saving potential of the ALC on a reference route. We summarize and draw
our conclusions in Section 5.
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2. Energy Consumption of Battery Electric Research Vehicles

2.1. Research Vehicle

The research vehicle is an all-wheel-driven battery electric convertible based on the Porsche
Boxster type 981, which was developed during the research project e-generation. The vehicle has one
electric motor per axle, a constant gear ratio and no clutch [20–22].

2.2. Driving Resistances

This section states the main forces acting on a vehicle during its operation. The climbing force
Fcl with

Fcl = mvhcl · g · sin(α) (1)

results from the gravitational force mvhcl · g, where mvhcl is the vehicle mass, g is the gravitational
constant, and α is the road slope angle. α is measured between the road surface and the plane that is
perpendicular to the direction of gravitational force. The rolling resistance Froll with

Froll = fr ·mvhcl · g · cos(α) (2)

results from damping forces of the deformed tire rubber. fr is the rolling resistance coefficient ([23],
pp. 50–53). Without environmental wind, the air resistance Fair is given by

Fair =
ρ

2
· cw · A · v2

vhcl. (3)

ρ is the air density, cw is the aerodynamic drag coefficient that describes the shape of the vehicle,
A denotes the effective vehicle cross-sectional area, and vvhcl denotes the vehicle velocity ([24],
pp. 212–214). The inertial force Finert with

Finert = mvhcl · v̇vhcl,x (4)

occurs during vehicle longitudinal acceleration v̇vhcl,x. Equation (4) neglects the equivalent inertial
mass of rotating power train components ([25], pp. 16,17). The sum of these driving resistances equals
the traction force Ftrac between the tires and road surface:

Ftrac = Fcl + Froll + Fair + Finert. (5)

The corresponding mechanical traction power Ptrac,mech provided by the power train ([23],
pp. 50–53) reads

Ptrac,mech = Ftrac · vvhcl. (6)

2.3. Power Train

The power train of a BEV converts electrical traction power Ptrac,elec from the high voltage (HV)
battery into mechanical traction power Ptrac,mech for vehicle propulsion. For recuperative braking,
the power conversion is reversed. Losses from mechanical power train components include friction
losses in the gearbox, which increase with rotation speed and transmitted torque, whereas the internal
ohmic resistance contributes to the losses from the electrical power train components ([26], pp. 9–19).
We denote the power loss between the HV battery and wheels with PLoss:

PLoss = Ptrac,elec − Ptrac,mech. (7)
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2.4. Energy Consumption and Optimization Approach

The HV battery energy EBatt required for a route, is determined by integrating the HV battery
power PBatt over time t, whereby tTrip denotes the trip time:

EBatt =
∫ tTrip

t=0
PBatt(t)dt. (8)

This work focuses on optimization of the energy consumption for vehicle propulsion and assumes
that PBatt = Ptrac,elec. The power required for auxiliaries, such as heating of the passenger cabin, and
HV battery, as well as the air conditioning compressor can contribute a significant amount to the total
energy consumption for a trip [27], but this is not considered as it varies strongly with environmental
conditions and personal comfort requirements.

Figure 1 depicts PLoss with respect to Ptrac,elec. The data points result from computing driving
resistances and power train quantities, with a detailed power train model for various combinations of
vvhcl and v̇vhcl,x with α = 0. Arrows indicate the effects of increasing vvhcl and v̇vhcl,x. PLoss increases
progressively with increasing absolute value of Ptrac,elec, and therefore the efficiency Ptrac,mech/Ptrac,elec
of the power conversion decreases.

Figure 1. Power loss between HV battery and wheels PLoss versus electrical traction power Ptrac,elec for
various combinations of vehicle velocity vvhcl and vehicle longitudinal acceleration v̇vhcl,x.

In the ALC we use Ptrac,elec as a measure for PLoss, create a mathematical model of Ptrac,elec and
penalize the absolute value of Ptrac,elec during trajectory optimization, to such an extent that the ALC
avoids inefficient power peaks with a negligible effect on the trip time.

The reason for using Ptrac,elec as a criterion is that Ptrac,elec can be determined during vehicle
operation from sensor measurements, which does not apply to Ftrac and Ptrac,mech. The criterion must
be measurable in order to be able to use a model that adapts its parameters during vehicle operation.
This adaption is neccessary for an accurate model because the vehicle parameters mvhcl, fr and ρ

2 · cw · A
can change and Ptrac,elec also depends on these parameters.

Even without explicit consideration of the power demand of auxiliaries in the ALC,
the penalization of Ptrac,elec is beneficial for efficiency because any additional consumption of auxiliaries
further increases PLoss.

3. Automated Longitudinal Control System

3.1. System Architecture

Figure 2 depicts the system architecture of the ALC that computes the desired motor torque
depending on vehicle data, map data and the chosen driving mode. The ALC consists of the route
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data module, parameter adaption module, trajectory module and controller module. The following
sections describe each module in detail.

Figure 2. System architecture of the automated longitudinal control.

The ALC is integrated into a MATLAB-Simulink framework that runs on the rapid prototyping
ECU ETAS ES910. The framework performs the correct communication via the controller area network
(CAN) bus and abstracts CAN messages to signals with physical units. Additionally, the framework
includes a plausibilisation and safety limitation of the motor torque demand of the ALC in order to
enable both a safe vehicle operation and dynamic development of the ALC.

3.2. Parameter Adaption Module

The parameter adaption module updates two adaptive vehicle models every 50 ms using vehicle
data from the CAN bus. For a given driving situation, the adaptive traction force model (ATFM)
computes the required traction force Ftrac, and the adaptive electrical power model (AEPM) computes
the required electrical traction power Ptrac,elec.

Both quantities depend on the driving resistances that are also affected by the vehicle parameters
mvhcl, fr and ρ

2 · cw · A. These parameters are not exactly known during vehicle operation because they
change with the number of passengers, amount of luggage, tire temperature and state of the convertible
top. Therefore we develop adaptive models that estimate these parameters either explicitely or in
aggregated form.

In order to be able to adapt a model, its inputs and outputs must be quantities that can be
derived from signals on the CAN bus. For an update of the ATFM we use the vehicle velocity
vvhcl, the longitudinal specific acceleration ax, the front axle motor torque TEM,FA and the rear axle
motor torque TEM,RA. An update of the AEPM requires vvhcl, ax and the voltages and currents of the
electric motors.

vvhcl is computed from wheel speed sensor measurements and ax is measured by the acceleration
sensor. Due to its measurement principle, the sensor value is influenced by both inertial and gravitional
force. Therefore ax roughly equals

ax = v̇vhcl,x + g · sin(α). (9)

TEM,FA and TEM,RA are not measured but are computed by the motor ECU using measured motor
voltages and currents in combination with look-up tables.

Before CAN signals are used for updating the models, we remove signal noise using the
polynomial Kalman smoother of [28]. In two situations the models are not adapted: First, during a
vehicle standstill because the missing excitation in the data can cause the models to diverge. Second,
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if CAN signals indicate that there is significant hydraulic brake pressure. This is because the models
only consider braking via recuperation and are not valid while hydraulic brakes activated. The models
do not take into account the hydraulic brakes as we need knowledge about the friction coefficient
between brake disc and brake pad in order to calculate the hydraulic brake torque from brake
pressure. This friction coefficient, however, is not constant and therefore has to be estimated as
well [29]. Therefore, we only update the models without presence of the additional uncertainty of the
friction coefficient.

Outputs of the parameter adaption module are updated parameters of ATFM and AEPM.
Section 3.3 describes the ATFM and Section 3.4 the AEPM.

A comprehensive review of vehicle energy consumption models including a classification and an
analysis of influence factors on the energy consumption is given in [30]. Based on the criteria in [30],
the ATFM is a gray-box model and the AEPM a vehicle-based black-box consumption model.

3.3. Adaptive Traction Force Model

The ATFM answers the question of how much traction force is needed for a given combination of
vvhcl and ax. The ATFM is used by a pilot control in the controller module of the ALC. The ATFM is
based on a simplification of (5). For small slope angles cos(α) ≈ 1 applies, hence we can approximate
the rolling resistance by the rolling resistance contant F0. Furthermore, the inertial force and climbing
force can be merged using (9). The traction force Ftrac can be computed as

Ftrac = TEM,FA ·
iG

rdyn,FA
+ TEM,RA ·

iG
rdyn,RA

, (10)

which neglects friction in the power train. rdyn,FA is the dynamic front axle tire radius, rdyn,RA the
dynamic rear axle tire radius and iG the gear ratio. With these adaptions, (5) in matrix form reads

FATFM =
(

1, ax, v2
vhcl

)
︸ ︷︷ ︸

=:CVhcl

·
(

F0, mvhcl,
ρ

2
· cw · A

)>
︸ ︷︷ ︸

=:xVhcl

, (11)

whereby > denotes the transpose operation, CVhcl is the vehicle motion vector and xVhcl the vehicle
parameter vector. xVhcl needs to be estimated such that the estimation minimizes the residual between
Ftrac in (10) and the model output FATFM in (11).

For estimating xVhcl, we apply the Stenlund–Gustafsson M-Kalman filter described in [31]. This is
a Kalman filter that includes a regularization from Stenlund and Gustafsson [32]. In order to avoid
divergence of the estimation, this regularization method keeps the estimated xVhcl constant in phases
of low excitation, e.g., while vvhcl is roughly constant.

3.4. Adaptive Electrical Power Model

The AEPM answers the question of how much electrical traction power Ptrac,elec is required for
a specific combination of vvhcl and ax. The ALC uses the AEPM for trajectory optimization in the
trajectory module.

Ptrac,elec is determined from measured voltages and currents at the electric motors that are available
on the CAN bus. Apart from power train losses, Ptrac,elec equals Ptrac,mech, which can be computed as
the product of Ftrac and vvhcl (c.f. (6),(7)). According to Section 3.3 we can model Ftrac as a function of
vvhcl and ax. Therefore the AEPM also has the inputs vvhcl and ax:

PAEPM = AEPM(vvhcl, ax). (12)

The model output PAEPM includes aggregated power train losses that vary with respect to vvhcl
or ax.
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A substantial fraction of Ptrac,mech is needed to overcome the inertial force mvhcl · v̇vhcl,x.
The corresponding power mvhcl · v̇vhcl,x · vvhcl includes an unseparable product of v̇vhcl,x and vvhcl.
For negligible road slope angle, vvhcl and v̇vhcl,x coincide with the model inputs vvhcl and ax because
of (9). Therefore the linear model structure used in Section 3.3 for the ATFM is not suitable for
the AEPM.

Kernel methods apply a nonlinear transformation on the provided data in order to transform it
into a high-dimensional feature space, in which the tranformed data is linearly separable. With most
kernel-based methods the required memory increases with the number of processed data points.
The AEPM is based on the Fixed-Budget Kernel Recursive Least-Squares (FBKRLS) algorithm [33,34].
FBKRLS keeps the required memory constant which enables online applications. As a result, the AEPM
can learn a nonlinear mapping iteratively and track changes of vehicle parameters or power train
properties over time.

In the AEPM, FBKRLS positions kernels in the (vvhcl, ax) plane and computes a coefficient for
each kernel. The model output PAEPM for a specific (vvhcl, ax) combination is the weighted sum of all
kernels for this combination.

The trajectory optimization algorithm NRBA queries (vvhcl, ax) combinations and takes decisions
based on PAEPM. The output of the standard FBKRLS is zero for areas, in which no data points have
occured yet. This property is undesired for trajectory optimization because it encourages NRBA to
favor high velocities or accelerations that are beyond the capabilities of the vehicle. We train the AEPM
with normalized and shifted data. With normalization of model inputs and outputs we achieve better
aproximation quality. By shifting the desired output values we get large model outputs for (vvhcl, ax)

combinations that exceed the vehicles capabilities.
Figure 3 depicts the denormalized and backshifted model output PAEPM as a function of ax for

various vehicle velocities. The shift produces a large crater which causes high power outputs of the
AEPM for unreachable (vvhcl, ax) combinations and hence NRBA avoids trajectories that lead to such
combinations. For medium negative ax, the electrical traction power is negative, which indicates that
power is recuperated into the HV battery.

Figure 3. Electrical traction power PAEPM according to the adaptive electrical power model (AEPM)
depending on longitudinal specific acceleration ax for various vehicle velocities vvhcl. The gray shaded
area is the operating area of the ALC, max Ptrac,elec the maximum traction power and min Ptrac,elec the
maximum recuperation power.

3.5. Route Data Module

The input to the route data module is map data is provided by the navigation system via the
CAN bus. The map data consists of six vectors that contain the values and corresponding positions of
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legal speed limits, road curvature and road slope for the road section ahead of the vehicle. Similar to a
run-length encoding, the vectors contain only information for positions at which the corresponding
quantity changes significantly. The route data module is executed every 500 ms and convertes the map
data to a meter-discrete representation for up to 3 km ahead of the vehicle position The route data
module returns three vectors that describe the courses of legal speed limit, road curvature and road
slope. Furthermore, it provides information on whether the route data changed strongly compared to
the previous call, e.g., because the driver took a different route at a junction than expected.

3.6. Trajectory Module

Inputs to the trajectory module are map data from the route data module, parameters of the
AEPM provided by the parameter adaption module, vehicle data and the selected driving mode.

In Section 3.6.1 we state how we create an upper speed limit for the route ahead from map data
followed by a definition of the velocity trajectory in Section 3.6.2. In driving mode “Normal” and
driving mode “Sport” trajectory optimization, without consideration of electrical traction power,
is performed as we describe in Section 3.6.3. In contrast, in driving mode “Range” we optimize
the trajectory with additional respect to the electrical traction power as stated in Section 3.6.4.
The enforcement of trajectory constraints is described in Section 3.6.5.

The trajectory module is called every 500 ms and then either continues planning the current
trajectory or starts planning a new velocity trajectory. Continuing planning the current trajectory
means that the module only performs additional iterations of the optimization algorithm using the
same upper speed limit as before until it reaches the end of the upper speed limit or an iteration
limit. In contrast, planning a new trajectory requires computation of a new upper speed limit first.
Planning of a new trajectory occurs after a certain driven distance or time limit is exceeded, if the
route data has changed strongly or if the vehicle velocity deviates strongly from the planned velocity.
Outputs of the trajectory module are parameters of the velocity trajectory.

3.6.1. Generation of Upper Speed Limit

We compute an upper speed limit for each meter of the road section ahead of the vehicle from
map data. The upper speed limit takes into account limitations of driving dynamics as well as safety
and comfort requirements and serves as input data for the trajectory optimization.

The course of the legal speed limit forms the basis of the upper speed limit. On highway sections
without a legal speed limit, we set the upper speed limit to a value that depends only on the selected
driving mode and increases from mode “Range” via mode “Normal” to mode “Sport”. Thereby the
vehicle velocity can vary between rather unhurried and rather fast on such sections. The upper speed
limit is corrected down only if needed because of curves, crests, or comfort requirements.

Driving with vehicle velocity vvhcl on a road with curvature c causes a lateral acceleration ay with
ay = v2

vhcl · c. A characteristic curve that describes a comfortable lateral acceleration as a function of
vehicle velocity is stated in [35]. According to this characteristic curve, the lateral acceleration tolerated
by a normal driver reaches its maximum of about 4 m/s2 at around 55 km/h. We define three lateral
acceleration look-up tables based on this characteristic curve, one for each driving mode. These are
then used to limit the velocity in curves.

With road slope data we compute how far ahead we can see the road according to geometrical
considerations and lower the maximum velocity if necessary to ensure that with maximum possible
deceleration the vehicle can always come to a standstill within half of the visible road section ahead.
In the last step we limit the variation of the course of velocity according to the desired positive and
negative longitudinal acceleration. Hereby, the selected driving mode determines which longitudinal
acceleration look-up table is used. The result is a set of P data points that describes the meter-discrete
upper speed limit:

(sp, vLim,Map,
.
v,p), sp = p− 1, p = 1, 2, . . . , P (13)
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where s denotes the position measured from the vehicle position in driving direction and vLim,Map,v̇
denotes the speed limit from map data with desired acceleration. The dashed line displayed in the
upper diagram of Figure 4 is an example of such an upper speed limit.

Figure 4. Influence of temporal safety margin to upper speed limit ∆tLim,TJY on speed limit for trajectory
optimization vLim,TJY and trajectory velocity vTJY. Only a subset of vLim,TJY is shown. Upper diagram:
The speed limit from map data with desired acceleration vLim,Map,v̇ is identical for both trajectories.
Lower diagram: vLim,Map,v̇ differs with the trajectories.

3.6.2. Representation of Velocity Trajectory

We represent the trajectory velocity vTJY using a B-spline function vTJY(t) with respect to time t.
The knot vector κ and function degree d define the number J of the basis functions b as well as their
shape. Together with coefficient vector x with

x =
(
x1, . . . , xj, . . . , xJ

)> (14)

the B-spline function is fully defined. Its value is given by the sum of basis functions, each of which is
weighted with its corresponding coefficient x:

vTJY(t) =
J

∑
j=1

bj(κ, d, t) · xj. (15)

We use a cubic B-spline function, hence degree d = 3. It is twice continously differentiable which
means that the trajectory acceleration aTJY and the trajectory jerk jTJY are continuous. These quantities
are the first and second derivative of vTJY. In our application, κ has K equidistant and strictly
monotonously increasing knots κ:

κ = (κ1, κ2, . . . , κK) = (−∆tκ · d, ∆tκ · (d + 1), . . . , ∆tκ · d + K− 1) . (16)

The parameter ∆tκ denotes the constant temporal distance of neighboring knots. Due to the choice
of κ, the trajectory can be evaluated for t ≥ 0. For mathematical details concerning this function type
and relevant formulas we refer to [5,19].
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3.6.3. Trajectory Optimization

For adaption of vTJY(t) to the upper speed limit, we solve the approximation problem

x̂ = arg min
x

P

∑
p=1

(
R−1

v ·
[
vLim,TJY

(
sTJY(tp)

)
− vTJY(tp)

]2
+R−1

a · aTJY(tp)
2 + R−1

j · jTJY(tp)
2
)

, (17)

whereby t is discretized using the constant temporal distance of neighboring data points ∆tIt:

tp = (p− 1) · ∆tIt, p = 1, . . . , P. (18)

The optimization problem includes a change of representation space from position to time in
the first summand. The trajectory position sTJY is measured from t = 0, hence sTJY(t = 0) = 0,
and calculated as stated in [36]. By penalizing deviations of aTJY and jTJY from zero, we stabilize
the vTJY(t) trajectory and avoid uncomfortable driving that can be caused by acceleration peaks and
velocity oscillations.

Each of these optimization goals has a corresponding weight. R−1
v denotes the weight of velocity

error square, R−1
a denotes the weight of acceleration error square, and R−1

j denotes the weight of jerk

error square. R−1
v can be interpreted as a weight for low travel time whereas both R−1

a and R−1
j refer

to driving comfort.
The goal of RBA and NRBA is to approximate data points [5,19]. However, the data points in (13)

also present a constraint to vTJY. We take into account the constraint character by using in (17) the
data set

(sp, vLim,TJY,ρ), sp = p− 1, p = 1, 2, . . . , P. (19)

The speed limit for trajectory optimization vLim,TJY is derived from (13) and the minimum of
vLim,Map,v̇ within a spatial distance around sTJY:

vLim,TJY = min
(
vLim,Map,v̇[pmin], . . . , vLim,Map,v̇[pmax]

)
pmin = round (sTJY − vTJY · ∆tLim,TJY + 1)

pmax = round (sTJY + vTJY · ∆tLim,TJY + 1) .

(20)

This distance depends on vTJY and the temporal safety margin to upper speed limit ∆tLim,TJY,
which is a tuning parameter. In each iteration p of RBA or NRBA, we determine sTJY for the current
time tp by temporal integration of vTJY with its currently estimated coefficient vector x in order to
calculate vLim,TJY for (17) with (20).

In (17) the coefficient vector x is nonlinearly linked to the error (vLim,TJY (sTJY)− vTJY) by (19).
This makes (17) a NWLS problem that we can solve with NRBA. With the described iterative
approach, however, we approximate the NWLS problem (17) by a WLS problem such that RBA
suffices. The advantage of RBA is that its computational effort is lower than that of NRBA. In a
different context, [37,38] approximated a nonlinear problem by a quadratic problem in order to be able
to apply a quadratic programming method instead of a sequential quadratic programming method
like the Levenberg-Marquardt (LM) algorithm. .

Figure 4 shows trajectory optimization examples using RBA. The MATLAB source code is provided
in [39]. The upper diagram depicts the velocity v versus the position s measured from the vehicle in
driving direction. The v− s diagram allows the comparison of different trajectories depicted by solid
lines against the same upper speed limit vLim,Map,v̇ depicted by a dashed line. In contrast, in the lower
v− t diagram we need to show the spatially defined upper speed limit for each trajectory separately.

The red trajectory results from ∆tLim,TJY = 1 s, ∆tκ = 1 s, ∆tIt = 0.1 s and I = 1. The parameter I
denotes the number of intervals of the B-spline function that are optimized simultaneously. RBA and
NRBA can adapt I + d neighboring coefficients in a single iteration [5,19].
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The blue trajectory differs only in that ∆tLim,TJY = 4 s. Dots indicate the vLim,TJY values that occur
during the iterations of RBA. Only every tenth vLim,TJY point is shown.

The weighting combination reads R−1
v = 1

5 , R−1
a = 1

10 , R−1
j = 1 and will also be used in the

remainder of this work. This combination was determined from trajectory optimization experiments.
In data approximation experiments for RBA and NRBA performed in [5,19], the equivalent to R−1

a is
ten and two times, respectively, larger and the equivalent to R−1

j is 1000 and 200 times, respectively,
larger. This is because in these experiments the goal is to smooth jumps of an amplitude of ten in
the data set. However, the velocity range of an upper speed limit is often much larger and unless
R−1

a and R−1
j are strongly reduced, the trajectories do not follow the course of the upper speed limit.

Furthermore, R−1
v is five times smaller than in the data approximation experiments to assign a higher

relative weighting to R−1
a and R−1

j , which are relevant for driving comfort.
In the v− s diagram the vLim,TJY data points are less close at high velocities (e.g., for s ≤ 200 m)

than at low velocities (e.g., at s = 600 m). Furthermore, ∆tLim,TJY causes that at high velocities the
spatial distance between the courses of vLim,TJY and vLim,Map,v̇ is larger. Provided that ∆tIt is sufficiently
small and that ∆tLim,TJY is sufficiently large, there are enough data points to ensure that the resulting
trajectory does not exceed vLim,Map,v̇ noticeably at local minima, e.g., at s = 400 m and s = 600 m.

Increasing ∆tLim,TJY reduces short-lasting velocity peaks. For example, at s = 500 m vLim,Map,v̇
has a local maximum that vLim,TJY with ∆tLim,TJY = 4 s cannot reflect. For ∆tLim,TJY = 1 s, vLim,TJY has
a local maximum as well but the corresponding trajectory does not closely follow vLim,TJY. However,
proximity to vLim,TJY not the primary goal because the course of vLim,TJY is not jerk-free and must be
smoothed by the trajectory. The extent to which the trajectory can follow vLim,TJY is determined by the
weighting factors R−1

v , R−1
a , R−1

j and the temporal distance of neighboring knots ∆tκ .

3.6.4. Trajectory Optimization with Consideration of Electrical Traction Power

For consideration of the required electrical power we augment (17) with the summand R−1
P ·

(PAEPM)2, which penalizes absolute values of PAEPM. R−1
P denotes the weight of the power error square:

x̂ = arg min
x

P

∑
p=1

(
R−1

v ·
[
vLim,TJY

(
sTJY(tp)

)
− vTJY(tp)

]2
+R−1

a · aTJY(tp)
2 + R−1

j · jTJY(tp)
2 + R−1

P · PAEPM(tp)
2
)

.

(21)

The model output PAEPM is given by

PAEPM(t) = AEPM(vTJY, ax). (22)

The longitudinal specific acceleration ax can be computed as

ax = aTJY + g · sin(α(sTJY)) (23)

and the road slope angle α can be derived from map data. As PAEPM correlates with the product of
vTJY and its derivative aTJY, an approximation of this fourth optimization goal such that RBA can be
applied is not promising for useful results. Therefore, we use NRBA, which includes a marginalized
particle filter (MPF) [5].

Braking for an upcoming curve usually requires negative PAEPM for recuperation. Strong
penalization of P2

AEPM can prevent braking for upcoming curves. In order to enable sufficient
braking power, the computation of the error e = (vLim,TJY (sTJY)− vTJY) within the MPF is designed
asymetrically. If e ≤ 0, we replace vLim,TJY with vLim,TJY = Rv>vLim · e + vTJY. Hence, e is multiplied
with Rv>vLim = 2 if vTJY > vLim,TJY. In the case of e > 0 the original error e is multiplied with
Rv<vLim = 1, which is the error weighting for vTJY < vLim,TJY. The reworked measurement reads
vLim,TJY = Rv<vLim · e + vTJY. In either case the resulting error square is then weighted with R−1

v in
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the MPF. In (17) the asymmetrical weighting of e is omitted because it has very limited influence.
The reason is that there is no incentive to exceed vLim,Map,v̇ because of the missing optimization goal
regarding PAEPM.

Figure 5 depicts various quantities for trajectories determined by NRBA with R−1
P = 10−2,

R−1
P = 10−3 and R−1

P = 10−4 versus the position. The MATLAB source code is provided in [39] as
well. For comparison, we also show a trajectory determined with the LM algorithm for R−1

P = 10−4.
The remaining parameters are ∆tκ = 2 s, ∆tIt = 0.25 s, ∆tLim,TJY = 1 s and I = 1. In the depicted
situation we can compare the energy consumptions that result from following each of the trajectories
because at s = 0 m and also at s = 2690 m the kinetic and potential energy of a vehicle does not differ
with the trajectory that it tracks.

Figure 5. Velocity v, electrical traction power PAEPM according to adaptive electrical power
model (AEPM), road slope α, energy loss between HV battery and wheels ELoss and HV battery
energy EBatt for trajectories determined by nonlinear recursive B-spline approximation (NRBA) and
Levenberg-Marquardt (LM) algorithm that differ in the weight of power error square R−1

P .

For R−1
P = 10−4, the NRBA and LM trajectories are similar and follow vLim,Map,v̇ closely. With LM,

the energy loss between HV battery and wheels ELoss equals 77 Wh and the required HV battery
energy EBatt equals 721 Wh. ELoss and EBatt result from a detailed power train model. For R−1

P = 10−4,
NRBA achieves ELoss = 75 Wh and EBatt = 714 Wh. When R−1

P is increased, peaks in the electrical
traction power Ptrac,elec are reduced which translates to lower ELoss and EBatt. R−1

P = 10−3 leads to
ELoss = 71 Wh and EBatt = 703 Wh. For R−1

P = 10−2 ELoss = 65 Wh and EBatt = 684 Wh result.
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Regarding the driving style we notice that for higher R−1
P , the trajectories exhibit lower

accelerations, stay more below vLim,Map,v̇, avoid short-lasting velocity peaks and react more to the road
slope, which affects Ptrac,elec. For example, consider the red trajectory for R−1

P = 10−2. Below 600 m,
this trajectory strongly deviates from the upper speed limit because of the high slope. When the sign
of the slope changes to negative at around 600 m, the red trajectory reduces this deviation to a large
extent in a second and stronger acceleration phase. We also see that the red trajectory reflects the local
maxima of the road slope at 1100 m and 1450 m.

Furthermore, a comparison of the trajectories indicates that the deviation from the upper speed
limit is larger at a positive slope, e.g., between 800 m and 1400 m, than at a negative slope, e.g., between
1600 m and 2200 m.

3.6.5. Consideration of Additional Trajectory Constraints

The parameter projection method of [40] allows modification of the trajectory coefficients such
that the trajectory fulfills certain constraints at certain points. We use this method to enforce that
vTJY and aTJY of the new trajectory equal vvhcl and v̇vhcl,x, respectively, in two cases: First, if no valid
previous trajectory is available, e.g., because map data was temporarily not available, and second, if
vvhcl deviates more than a threshold from vTJY, e.g., because the vehicle is at standstill. In all other cases
we project vTJY(t1), aTJY(t1) and jTJY(t1) (t1 = 0) of the new trajectory onto vTJY, aTJY and jTJY of the
previous trajectory at its last evaluation point t∗ in order to achieve a twice continuously differentiable
connection between both trajectories.

The parameter projection method changes only the parameter values that influence the trajectory
function at t1. If the trajectory is projected onto a vehicle at standstill and ∆tκ is small, the trajectory
will demand a very abrupt acceleration towards the upper speed limit. We get a comfortable velocity
transition by choosing R−1

a initially high and reducing it linearly to its usual value during the
first iterations.

The intelligent driver model (IDM) described in [41] provides an ACC functionality by calculating
a target vehicle acceleration depending on the velocites of the own vehicle and vehicle ahead as well as
the distance between them. With this target vehicle acceleration we can further modify vLim,TJY of (20)
during the iterative solution of (17) such that the chosen time gap to the vehicle ahead is maintained.

3.7. Controller Module

Inputs to the controller module are the knot vector and estimated coefficient vector from the
trajectory module as well as the estimated vehicle parameter vector from the parameter adaption
module. Every 20 ms the controller modules computes vTJY and aTJY for the current point in time
measured since beginning of last trajectory planning and translates these quantities into a motor torque
demand Tdes.

Figure 6 depicts the controller module architecture and the control loop. vTJY, aTJY and the road
slope angle α are inputs to a pilot control and a model predictive control (MPC). The pilot control
contains the ATFM and computes an open-loop torque demand Tdes,PC with

Tdes,PC =
FATFM

iG
·

rdyn,FA + rdyn,RA

2
(24)

that causes the vehicle to roughly track vTJY and aTJY. iG is the gear ratio, rdyn,FA the dynamic front
axle tire radius and rdyn,RA the dynamic rear axle tire radius. The traction force FATFM is determined
by the ATFM according to (11), whereby we compute the vehicle motion vector CVhcl with

CVhcl := (1, ax, v2
TJY) (25)

and determine ax according to (23).
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Due to imperfect map data, sensor data and ATFM, vvhcl deviates from vTJY and v̇vhcl,x from
aTJY. The MPC computes a closed-loop torque demand Tdes,MPC in order to minimize these deviations.
In contrast to a proportional-integral-derivative (PID) controller, MPC can also take into account future
set points which enables an anticipating look-ahead control. In our application, MPC consideres vTJY

and aTJY for the current time step and nine future time steps.
The torque demand of the controller module Tdes is the sum of Tdes,PC and Tdes,MPC and reaches

the motor ECU via the CAN bus. The motor ECU distributes the torque demand among front motor
and rear motor and controls these actuators accordingly. The control loop is closed through the vehicle.

Figure 6. Architecture of controller module and control loop. The trajectory velocity vTJY and trajectory
acceleration aTJY are derived from the trajectory function. The pilot control based on the adaptive
traction force model (ATFM) generates an open-loop motor torque demand Tdes,PC using vTJY, aTJY and
the road slope angle α. The model predictive control (MPC) computes a closed-loop torque demand
Tdes,MPC in order to minimize the remaining deviation of vehicle velocity vvhcl and vehicle longitudinal
acceleration v̇vhcl,x from the desired values.

4. Testing and Evaluation of the Automated Longitudinal Control

Section 4.1 details the reference route that we use for calibration and testing of the ALC in real test
drives reported in Section 4.2, as well as for simulative investigations of the energy-saving potential of
the ALC compared to drives with MLC described in Section 4.3.

4.1. Reference Route

The reference route is a roughly 23 km long round course on public roads through and around
the village Weissach in Southwestern Germany, hence denoted Weissach round (WR). It comprises
sections within villages as well as country roads. The legal speed limit varies between 30 km/h and
100 km/h and the road slope ranges from −10% to 10%. The WR is depicted in ([3], p. 96).

4.2. Test Drives and Acceptance Test

We conducted real test drives on the WR itself as well as on a highway and at roundabouts nearby.
During these test drives we calibrated various ALC parameters in order to determine that the realized
driving style fits the vehicle characteristics and the selected driving mode.

For the adaption of the lateral acceleration tables, we identified road sections with significant
curvature in different velocity ranges. These were mainly roundabouts that can be passed at roughly
20 km/h, a roundabout with larger diameter than can be passed at about 50 km/h and winding
country roads with suitable velocities between 30 km/h and 100 km/h. We drove each road section
several times in repetition. In between, we evaluated whether the subjective impression fits the selected
driving mode and adapted the position of the (v,ay) supporting points of the corresponding lateral
acceleration table if neccessary.

For the longitudinal acceleration tables the approach was analogous. In addition to how the
vehicle approaches and leaves roundabouts and sections with high curvature, sections of interest were
transitions between the inside and outside of built-up areas as well as changes of the legal speed limit
on the highway.
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Concerning the weighting factors of the trajectory optimization and the MPC the goal was that no
jerks are felt. For the MPC we especially considered hilly road sections and parameterized the MPC in
such a way that while driving downhill with constant velocity, no uncomfortable alternation between
propulsion and braking occurs.

In a final acceptance test about ten employees of the project partner who work in automotive
research and development tested the ALC on self-chosen routes. The overall positive comments
mentioned in particular, its comfortable and smooth driving style.

4.3. Energy-Saving Potential of Automated Longitudinal Control and Effects of Parameters

In simulations we investigate the energy-saving potential using the ALC with different parameter
settings compared to drives with manual longitudinal control (MLC) on the WR.

The varied parameters are the temporal distance of neighboring knots ∆tκ , the temporal safety
margin to upper speed limit ∆tLim,TJY and the weight of power error square R−1

P . Simulations of
the ALC are conducted for all possible parameter combinations that result from ∆tκ = {1.5 s, 3 s},
∆tLim,TJY = {1 s, 2 s} and R−1

P = { 1
10000 , 1

5000 , 1
1000 , 1

500 , 1
100 , 1

50}. The number of spline intervals I is set
to one.

After each simulation, we convert the required trip time tTrip for completing the WR into the
average velocity by dividing tTrip by the length of the WR and scale the energy consumption to the
energy consumption per 100 km. This allows us to summarize each simulation result by a single data
point in Figure 7.

Figure 7. Energy consumption versus average velocity on the reference route Weissach round with
automated longitudinal control (ALC) under different parameter settings in comparison to adapted
and resimulated real drives with manual longitudinal control (MLC).

Furthermore, we add a recorded real test drive on the WR with MLC to the comparison as a
reference for the ALC results. In order to create multiple drives with MLC that differ in the average
velocity, we multiply the recorded course of velocity with factors of about one. For a fair comparison
between MLC and ALC, the course of velocity with MLC has to be adopted for the following reasons:

First, during the real test drive the driver had to stop the vehicle at junctions, react to other traffic
participants and once during a short period the driver was restricted in the choice of vehicle velocity
because of a preceding vehicle. Coming to a standstill and driving off again increases both the energy
consumption and the required trip time. In order to not disadvantage MLC drives in the comparison,
we adapt the recorded velocity with MLC to a typical ALC behavior in the mentioned situations.

Second, in curves the drives with MLC reach lateral acceleration absolute values larger than the
maximum absolute value of lateral acceleration ay,max allowed for the ALC. Increasing ay,max leads to
higher average velocity and less energy consumption. In order to compare ALC and MLC drives under
the same conditions, we enforce the upper speed limit vLim,Map,v̇ as an upper limit on the velocities of
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MLC drives. After these adaptions, we determine the energy consumption of drives with MLC using
resimulation with a detailed vehicle model.

Figure 7 depicts the resulting data points for MLC and their quadratic approximation in black
and by a solid line. This line serves as a benchmark for the ALC. The ALC data points should be below
this line, meaning that the ALC achieves the same average velocity with less energy consumption or a
higher average velocity for the same energy consumption.

Approximation lines for ALC data points indicate that average velocity and energy consumption
increase when we reduce ∆tκ from 3 s to 1.5 s.

Lowering ∆tLim,TJY increases the trajectory velocity at local minima of vLim,Map,v̇. However,
for ∆tLim,TJY = 1 s and ∆tκ = 3 s we did not yet observe that the trajectories exceed vLim,Map,v̇
noticeably. See, for example, in Figure 5 the course of the trajectories that result for the same ∆tLim,TJY.

Furthermore, the approximation line for ∆tLim,TJY = 2 s and ∆tκ = 1.5 s comprises a larger range
of average velocities and energy consumptions than the corresponding approximations for ∆tκ = 3 s.
The reason is that trajectories with larger ∆tκ cannot follow the upper speed limit as closely because of
the fewer degrees of freedom per time interval. Therefore the vehicle is generally slower and omits
inefficient velocity peaks more frequently. As a result, there is less potential for an effect from varying
weight R−1

P .
With the parameter combination ∆tLim,TJY = 1 s, ∆tκ = 1.5 s and R−1

P = 1
1000 , the ALC achieves

the largest energy savings with respect to MLC. At the same average velocity of 59.0 km/h, the ALC
requires 3.4% less energy than the MLC and with the same energy of 16.9 kWh/100 km the ALC
achieves a 2.6% higher average velocity. Increasing R−1

P from 1
1000 to 1

50 reduces the energy consumption
by 2.9% while the average velocity decreases by 3.1%.

For conventional vehicles the approach of [3,4] yields a reduction in energy consumption of
10% compared to MLC at the same average velocity. HEVs are investigated in [7]. A reduction of
energy consumption by 11% only with optimization of energy management but without ALC is stated.
For combined ALC and energy management optimization an 18 % reduction of energy consumption
at the same average velocity is reported and an increase of average velocity by 21% for the same
energy consumption.

In comparison, the savings achieved by the ALC in this work are much lower. However, they seem
realistic because the power train of a BEV is more efficient in general and posseses less degrees of
freedom for optimization. Furthermore, vehicles with conventional and hybrid power trains more
frequently need to apply hydraulic brakes for deceleration. As hydraulic brakes dissipate kinetic
energy, different driving styles are clearly reflected by the resulting energy consumption. In contrast,
the hydraulic brakes of the research vehicle rarely need to be used because of the high recuperation
capability of the vehicle. Therefore the effect of the driving style on the energy consumption is lower.

5. Conclusions

This publication presented a driver assistance system for energy-efficient automated longitudinal
control (ALC) of a battery electric vehicle (BEV) and its evaluation in simulations and real test drives.
The ALC for BEVs of the preceding research project [17,18] defines a spatial velocity trajectory using
a cubic polynomial whereas the ALC proposed in this work uses a temporal trajectory defined by a
B-spline function that allows for an arbitrary amount of degrees of freedom. Therefore the presented
ALC enables planning of very long trajectories that define a much more dynamic vehicle behavior,
especially at low velocities. Furthermore, the ALC of this work considers the required electrical traction
power explicitly, and allows optimization of the trajectory, not only with respect to travel time and
driving comfort, but also with respect to energy consumption.

The proposed ALC includes a novel trajectory optimization approach that falls into the category
of direct methods (DM). In contrast to most other DM, of which the effort grows exponentially, its effort
grows only linearly. We achieve this substantial saving by taking advantage of the simple BEV power
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train that allows to formulate constraints as soft constraints. The resulting unconstrained optimization
problem can be solved using iterative filter-based data approximation algorithms.

Sometimes DM are also combined with dynamic programming for trajectory optimization because
of their complementary properties ([2], p. 1430). In such cases the proposed optimization approach
can also be applied to vehicles other than BEV and provide benefits concerning computational effort.

The energy-saving potential of the ALC for a BEV was investigated in simulations. On a chosen
reference route, the BEV needs up to 3.4% less energy with ALC than with manual longitudinal
control at the same average velocity and achieves a 2.6% higher average velocity at the same energy
consumption. The proposed ALC can be used on its own or in combination with other driver assistance
systems such as an automated lateral control and thereby contribute to automated driving of BEVs.

Author Contributions: Conceptualization, J.J. and F.B.; methodology, J.J. and F.B.; software, J.J.; investigation, J.J.;
writing–original draft preparation, J.J., F.B.; writing–review and editing, M.F., F.G.; supervision, F.G. and M.F.;
project administration, F.G.; funding acquisition, M.F.

Funding: This research was funded by the German Federal Ministry of Education and Research under
grant number 16EMO0071. We acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute
of Technology.

Acknowledgments: We would like to thank the Porsche AG, who was among the research project partners, for
the provision of vehicle data and support in conducting test drives. Furthermore, we appreciate the valuable
comments and suggestions of the anonymous reviewers for improvement of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dia, H.; Javanshour, F. Autonomous Shared Mobility-On-Demand: Melbourne Pilot Simulation Study.
Transp. Res. Procedia 2017, 22, 285–296, doi:10.1016/j.trpro.2017.03.035. [CrossRef]

2. Winner, H.; Hakuli, S.; Lotz, F.; Singer, C. Handbook of Driver Assistance Systems-Basic Information, Components
and Systems for Active Safety and Comfort; Springer: Cham, Switzerland, 2016, doi:10.1007/978-3-319-12352-3.

3. Radke, T. Energieoptimale Längsführung von Kraftfahrzeugen durch Einsatz vorausschauender Fahrstrategien.
Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2013, doi:10.5445/KSP/1000035819.
[CrossRef]

4. Markschläger, P.; Wahl, H.G.; Weberbauer, F.; Lederer, M. Assistenzsystem für mehr Kraftstoffeffizienz.
In Vernetztes Automobil: Sicherheit–Car-IT–Konzepte; Springer Fachmedien Wiesbaden: Wiesbaden, Germany,
2014; pp. 146–153, doi:10.1007/978-3-658-04019-2_21.

5. Jauch, J.; Bleimund, F.; Frey, M.; Gauterin, F. An Iterative Method Based on the Marginalized Particle
Filter for Nonlinear B-Spline Data Approximation and Trajectory Optimization. Mathematics 2019, 7, 355,
doi:10.3390/math7040355. [CrossRef]

6. Passenberg, B. Theory and Algorithms for Indirect Methods in Optimal Control of Hybrid Systems.
Ph.D. Thesis, Technische Universität München, München, Germany, 2012.

7. Wahl, H.G. Optimale Regelung eines prädiktiven Energiemanagements von Hybridfahrzeugen. Ph.D. Thesis,
Karlsruhe Institute of Technology, Karlsruhe, Germany, 2015,doi:10.5445/KSP/1000048347. [CrossRef]

8. Zhang, S.; Xiong, R. Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern
recognition and dynamic programming. Appl. Energy 2015, 155, 68–78, doi:10.1016/j.apenergy.2015.06.003.
[CrossRef]

9. Wu, D.; Li, Y.; Du, C.; Ding, H.; Li, Y.; Yang, X.; Lu, X. Fast velocity trajectory planning and control algorithm
of intelligent 4WD electric vehicle for energy saving using time-based MPC. IET Intell. Transp. Syst. 2019,
13, 153–159, doi:10.1049/iet-its.2018.5103. [CrossRef]

10. Van Keulen, T.; Naus, G.; de Jager, B.; van de Molengraft, R.; Steinbuch, M.; Aneke, E. Predictive Cruise
Control in Hybrid Electric Vehicles. World Electr. Veh. J. 2009, 3, 494–504, doi:10.3390/wevj3030494.
[CrossRef]

11. Zhang, S.; Luo, Y.; Li, K.; Li, V. Real-Time Energy-Efficient Control for Fully Electric Vehicles Based on an Explicit
Model Predictive Control Method. IEEE Trans. Veh. Technol. 2018, 67, 4693–4701, doi:10.1109/TVT.2018.2806400.
[CrossRef]

https://doi.org/10.1016/j.trpro.2017.03.035
http://dx.doi.org/10.1016/j.trpro.2017.03.035
https://doi.org/10.1007/978-3-319-12352-3
https://doi.org/10.5445/KSP/1000035819
http://dx.doi.org/10.5445/KSP/1000035819
https://doi.org/10.1007/978-3-658-04019-2_21
https://doi.org/10.3390/math7040355
http://dx.doi.org/10.3390/math7040355
https://doi.org/10.5445/KSP/1000048347
http://dx.doi.org/10.5445/KSP/1000048347
https://doi.org/10.1016/j.apenergy.2015.06.003
http://dx.doi.org/10.1016/j.apenergy.2015.06.003
https://doi.org/10.1049/iet-its.2018.5103
http://dx.doi.org/10.1049/iet-its.2018.5103
https://doi.org/10.3390/wevj3030494
http://dx.doi.org/10.3390/wevj3030494
https://doi.org/10.1109/TVT.2018.2806400
http://dx.doi.org/10.1109/TVT.2018.2806400


World Electric Vehicle Journal 2019, 10, 52 19 of 20

12. Han, J.; Kum, D.; Park, Y. Sensitivity analysis for assessing robustness of position-based predictive
energy management strategy for fuel cell hybrid electric vehicle. World Electr. Veh. J. 2015, 7, 330–341,
doi:10.3390/wevj7020330. [CrossRef]

13. Kim, B.; Kim, Y.g.; Kim, T.; Park, Y.i.; Cha, S.W. HEV Cruise Control Strategy on GPS (Navigation)
Information. World Electr. Veh. J. 2009, 3, 589–596, doi:10.3390/wevj3030589. [CrossRef]

14. Lu, C.; Gong, J.; Lv, C.; Chen, X.; Cao, D.; Chen, Y. A Personalized Behavior Learning System for Human-Like
Longitudinal Speed Control of Autonomous Vehicles. Sensors 2019, 19, 3672, doi:10.3390/s19173672.
[CrossRef]

15. Lv, C.; Hu, X.; Sangiovanni-Vincentelli, A.; Li, Y.; Martinez, C.M.; Cao, D. Driving-Style-Based Codesign
Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach. IEEE Trans. Ind. Electr.
2019, 66, 2965–2975, doi:10.1109/TIE.2018.2850031. [CrossRef]

16. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated
Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145. doi:10.1109/TITS.2015.2498841. [CrossRef]

17. Bleimund, F.; Dörr, D.; Fath, B.; Frey, M. Verbundprojekt “Schlüsseltechnologien für die nächste Generation
der Elektrofahrzeuge (e-generation)": Teilvorhaben KIT: "Assistenzsysteme für effizienten Energieeinsatz bei
Elektrofahrzeugen”: Schlussbericht: Laufzeit des Vorhabens: 01.02.2012–31.12.2014; Technical Report; Karlsruher
Institut für Technologie, Institut für Fahrzeugsystemtechnik, Lehrstuhl für Fahrzeugtechnik: Karlsruhe,
Germany, 2015. doi:10.2314/GBV:86364080X. [CrossRef]

18. Bleimund, F.; Rhode, S. Method, Computer Program Product, Device, and Vehicle for Calculating an
Actuation Variable for the Operation of a Vehicle. German Patent EP2886409 (A1), 2015.

19. Jauch, J.; Bleimund, F.; Rhode, S.; Gauterin, F. Recursive B-spline approximation using the Kalman filter.
Eng. Sci. Technol. Int. J. 2017, 20, 28–34, doi:10.1016/j.jestch.2016.09.015. [CrossRef]

20. Bargende, M.; Reuss, H.; Wiedemann, J. In Proceedings of the 14 Internationales Stuttgarter Symposium:
Automobil- und Motorentechnik; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; pp. 19–29.

21. Bender, S.; Chodura, H.; Groß, M.; Kühn, T.; Watteroth, V. e-generation—Ein Forschungsprojekt mit positiver
Bilanz. Porsche Eng. Magazin 2015, 2, pp. 22–27. Accessed 04/28/2018, 18:24.

22. Zimmer, M. Durchgängiger Simulationsprozess zur Effizienzsteigerung und Reifegraderhöhung von Konzeptbewertungen
in der Frühen Phase der Produktentstehung; Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart,
Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015; pp. 115–130.

23. Braess, H.; Seiffert, U. Vieweg Handbuch Kraftfahrzeugtechnik; ATZ/MTZ-Fachbuch, Springer Fachmedien
Wiesbaden: Wiesbaden, Germany, 2013.

24. Schramm, D.; Hiller, M.; Bardini, R. Vehicle Dynamics—Modeling and Simulation; Springer: Berlin/Heidelberg,
Germany, 2018, doi:10.1007/978-3-662-54483-9.

25. Guzzella, L.; Sciarretta, A. Vehicle Propulsion Systems: Introduction to Modeling and Optimization, 3rd ed.;
Springer: Berlin, Germany, 2013.

26. Vaillant, M. Design Space Exploration zur multikriteriellen Optimierung elektrischer Sportwagenantriebsstränge.
Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2016,doi:10.5445/KSP/1000050618.
[CrossRef]

27. Qi, Z. Advances on air conditioning and heat pump system in electric vehicles—A review. Renew. Sustain.
Energy Rev. 2014, 38, 754–764. doi:10.1016/j.rser.2014.07.038. [CrossRef]

28. Rhode, S.; Bleimund, F.; Gauterin, F. Recursive Generalized Total Least Squares with Noise Covariance
Estimation. IFAC Proc. Volumes 2014, 47, 4637–4643, doi:10.3182/20140824-6-ZA-1003.01568. [CrossRef]

29. Ricciardi, V.; Acosta, M.; Augsburg, K.; Kanarachos, S.; Ivanov, V. Robust Brake Linings Friction Coefficient
Estimation For Enhancement of EHB Control. In Proceedings of the 2017 XXVI International Conference
on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia and Herzegovina,
26–28 October 2017; pp. 1–7, doi:10.1109/ICAT.2017.8171600. [CrossRef]

30. Zhou, M.; Jin, H.; Wang, W. A review of vehicle fuel consumption models to evaluate eco-driving and
eco-routing. Transp. Res. Part D 2016, 49, 203–218. [CrossRef]

31. Rhode, S.; Hong, S.; Hedrick, J.K.; Gauterin, F. Vehicle tractive force prediction with robust and windup-stable
Kalman filters. Control Eng. Pract. 2016, 46, 37–50. [CrossRef]

32. Stenlund, B.; Gustafsson, F. Avoiding windup in recursive parameter estimation. Prepr. Reglermöte
2002, 148–153. Available online: http://users.isy.liu.se/en/rt/fredrik/reports/02reglermoteakf.pdf
(accessed on 10 July 2018).

https://doi.org/10.3390/wevj7020330
http://dx.doi.org/10.3390/wevj7020330
https://doi.org/10.3390/wevj3030589
http://dx.doi.org/10.3390/wevj3030589
https://doi.org/10.3390/s19173672
http://dx.doi.org/10.3390/s19173672
https://doi.org/10.1109/TIE.2018.2850031
http://dx.doi.org/10.1109/TIE.2018.2850031
https://doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.2314/GBV:86364080X
http://dx.doi.org/10.2314/GBV:86364080X
https://doi.org/10.1016/j.jestch.2016.09.015
http://dx.doi.org/10.1016/j.jestch.2016.09.015
https://doi.org/10.1007/978-3-662-54483-9
https://doi.org/10.5445/KSP/1000050618
http://dx.doi.org/10.5445/KSP/1000050618
https://doi.org/10.1016/j.rser.2014.07.038
http://dx.doi.org/10.1016/j.rser.2014.07.038
https://doi.org/10.3182/20140824-6-ZA-1003.01568
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01568
https://doi.org/10.1109/ICAT.2017.8171600
http://dx.doi.org/10.1109/ICAT.2017.8171600
http://dx.doi.org/10.1016/j.trd.2016.09.008
http://dx.doi.org/10.1016/j.conengprac.2015.10.002
http://users.isy.liu.se/en/rt/fredrik/reports/02reglermoteakf.pdf


World Electric Vehicle Journal 2019, 10, 52 20 of 20

33. Van Vaerenbergh, S.; Santamaria, I.; Liu, W.; Principe, J.C. Fixed-Budget Kernel Recursive Least-Squares.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
2010), Dallas, TX, USA, 15–19 March 2010.

34. Van Vaerenbergh, S.; Santamaría, I. A Comparative Study of Kernel Adaptive Filtering Algorithms.
In Proceedings of the 2013 IEEE Digital Signal Processing (DSP) Workshop and IEEE Signal Processing
Education (SPE), Napa, CA, USA, 11–14 August 2013, doi:10.1109/DSP-SPE.2013.6642587. [CrossRef]

35. Schimmelpfennig, K.-H.; Hebing, N. Geschwindigkeiten bei kreisförmiger Kurvenfahrt/Stabilitäts- und
Sicherheitsgrenze. Der Verkehrsunfall 1982, 20, 97–99.

36. Sherar, P.A. Variational Based Analysis and Modelling Using B-splines. Ph.D. Thesis, Cranfield University,
Cranfield, UK, 2003.

37. Carvalho, A.; Gao, Y.; Gray, A.; Tseng, E.; Borrelli, F. Predictive control of an autonomous ground vehicle
using an iterative linearization approach. In Proceedings of the IEEE Conference on Intelligent Transportation
Systems, ITSC, Hague, The Netherlands, 6–9 October 2013; pp. 2335–2340.

38. Falcone, P.; Tufo, M.; Borrelli, F.; Asgari, J.; Tseng, H.E. A linear time varying model predictive control
approach to the integrated vehicle dynamics control problem in autonomous systems. In Proceedings of
the 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007;
pp. 2980–2985. doi:10.1109/CDC.2007.4434137. [CrossRef]

39. Jauch, J. ALC Matlab Files. 2019. Available online: http://github.com/JensJauch/ALC/releases (accessed
on 14 July 2019), doi:10.5281/zenodo.3334806.

40. Simon, D. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. Control Theory
Appl. IET 2010, 4, 1303–1318, doi:10.1049/iet-cta.2009.0032. [CrossRef]

41. Treiber, M.; Hennecke, A.; Helbing, D. Congested traffic states in empirical observations and microscopic
simulations. Phys. Rev. E 2000, 62, 1805–1824, doi:10.1103/PhysRevE.62.1805. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/DSP-SPE.2013.6642587
http://dx.doi.org/10.1109/DSP-SPE.2013.6642587
https://doi.org/10.1109/CDC.2007.4434137
http://dx.doi.org/10.1109/CDC.2007.4434137
http://github.com/JensJauch/ALC/releases
https://doi.org/10.5281/zenodo.3334806
https://doi.org/10.1049/iet-cta.2009.0032
http://dx.doi.org/10.1049/iet-cta.2009.0032
https://doi.org/10.1103/PhysRevE.62.1805
http://dx.doi.org/10.1103/PhysRevE.62.1805
http://www.ncbi.nlm.nih.gov/pubmed/11088643
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Driver Assistance Systems for Automated Longitudinal Control
	Research Gap
	Contribution
	Outline

	Energy Consumption of Battery Electric Research Vehicles
	Research Vehicle
	Driving Resistances
	Power Train
	Energy Consumption and Optimization Approach

	Automated Longitudinal Control System
	System Architecture
	Parameter Adaption Module
	Adaptive Traction Force Model
	Adaptive Electrical Power Model
	Route Data Module
	Trajectory Module
	Generation of Upper Speed Limit
	Representation of Velocity Trajectory
	Trajectory Optimization
	Trajectory Optimization with Consideration of Electrical Traction Power
	Consideration of Additional Trajectory Constraints

	Controller Module

	Testing and Evaluation of the Automated Longitudinal Control
	Reference Route
	Test Drives and Acceptance Test
	Energy-Saving Potential of Automated Longitudinal Control and Effects of Parameters

	Conclusions
	References

