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Abstract A set of equilibrium equations is derived for the
stress-controlled shape change of cells due to the remodel-
ling and growth of their internal architecture. The approach
involves the decomposition of the deformation gradient into
an active and a passive component; the former is allowed to
include a growth process, while the latter is assumed to be
hyperelastic and mass-preserving. The two components are
coupled with a control function that provides the required
feedback mechanism. The balance equations for general
continua are derived and, using a variational approach, we
deduce the equilibrium equations and study the effects of the
control function on these equations. The results are applied to
a truss system whose function is to simulate the cytoskeletal
network constituted by myosin microfilaments and micro-
tubules, which are found experimentally to control shape
change in cells. Special attention is paid to the conditions
that a thermodynamically consistent formulation should sat-
isfy. The model is used to simulate the multicellular shape
changes observed during ventral furrow invagination of the
Drosophila melanogaster embryo. The results confirm that
ventral furrow invagination can be achieved through stress
control alone, without the need for other regulatory or sig-
nalling mechanisms. The model also reveals that the yolk
plays a distinct role in the process, which is different to its
role during invagination with externally imposed strains. In
stress control, the incompressibility constraint of the yolk
leads, via feedback, to the generation of a pressure in the
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ventral zone of the epithelium that eventually eases its rise
and internalisation.

Keywords Morphogenesis · Trusses · Embryo ·
Development · Feedback

1 Introduction

In accordance with the common terminology employed in
biomechanics (Taber 1995), the changes in biomechanical
processes may be classified as growth (change of mass),
remodelling (change of density or other material proper-
ties such as fibre orientation) or morphogenesis (change of
shape). In this article, we apply these basic principles to
model the reorganisation process of the structural elements
in the cytoskeleton of epithelial cells during ventral furrow
invagination (first morphogenetic movement taking place in
the embryo development of Drosophila Melanogaster).

We first split the global deformation of a cell into an active
part that represents the mechanotransduction of the chemical
bonds in the cytoskeleton, induced by the gene expression,
and a passive part that corresponds to the assumed elastic
response. In the active component, we assume that the density
remains constant, although mass may be added or removed
from the system (growth); this process, when applied to a uni-
dimensional bar, physically corresponds to the elongation or
shortening of microtubules and microfilaments. Such local
length changes produce a passive reorientation of these ele-
ments (remodelling) and a subsequent global shape change
(morphogenesis) of the epithelial cells. Therefore, by mod-
elling a local growth process, we reproduce a remodelling
of the epithelial cells, and in turn global morphogenesis in
embryo development. It is not our aim to analyse the source
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of the cytoskeleton reorganisation, which is a wide debated
topic (see for instance Mizuno et al. 2007).

The constitutive law employed for the growth and remod-
elling processes has been formalised in different ways
depending on the physical phenomena being modelled
(Ambrosi and Guana 2007; Himpel et al. 2005; Kuhl and
Steinmann 2004; Lubarda and Hoger 2002; Lubarda 2004;
Rajagopal and Srinivasa 2004). In some of these approaches,
the evolution laws of the active deformation are derived
from the dependence of the internal energy on variables
involved in the elastic process, such as the second Piola–
Kirchhoff (Lubarda and Hoger 2002) or the Kirchhoff
stresses (Himpel et al. 2005). Other authors deduce a form
of the intermediate deformation by maximising the mechani-
cal dissipation (Rajagopal and Srinivasa 2004). Alternatively,
in Ambrosi and Guana (2007) and DiCarlo and Quiligotti
(2002), the growth rate is induced by accretive forces,
which equilibrate the externally supplied forces. In most
of these cases, though, the evolution laws of the active
component are such that the growth rate of the accretive
stresses tend to achieve a stable (homeostatic) value, at which
no further active deformation occurs. A similar idea can
be found in Rodriguez et al. (1994), or more recently in
Ramasubramanian and Taber (2008) and Taber (2008), based
on Beloussov’s hyper-restoration hypothesis (Beloussov
et al. 1994; Beloussov 1998). This hypothesis states that
whenever a local change in the elastic stresses is detected,
the tissue tends to deform in order to restore the initial stress
state, but as a rule overshooting it. This stress state may be
attained at a constant (Ramasubramanian and Taber 2008) or
a variable (Taber 2008) target stress.

In our case, the constitutive laws of the growth process
are a function of the elastic stresses, in a similar man-
ner to other models for blood vessels (Rodriguez et al.
1994; Humphrey 2001; Taber 1998), or for morphogenesis
(Ambrosi and Guana 2007; Taber 2008). The former are
based on experimental results, where it is observed that
the tissues tend to a homeostatic state at which no further
growth/resorption occurs. We here assume that this situation
is reached when the stresses achieve a target stress, simi-
lar to Beloussov’s hyper-restoration hypotheses. The partic-
ular form of the stress-controlled law has been motivated in
our case by the stress profiles obtained in our earlier models
where the active kinematic response of the cells was imposed
externally (Muñoz et al. 2007; Conte et al. 2008).

On the other hand, the nonlinear elastic behaviour of adap-
tive isotropic chain networks have been studied in Boyce and
Arruda (2000), Miehe et al. (2004), and the modelling of ori-
ented chains, commonly found in biology, can be found in
Kuhl et al. (2005, 2006). In the latter references, the forces
produced by a network chain embedded in a cell arise due to
the particular form of the Helmholtz free energy associated
to the chain. In our case, we neglect any interaction between

the actin–myosin chains, other than their connectivity at the
chain ends. In addition, we assume that the active deforma-
tion preserves density but with a local mass increase due to
the insertion in the system of new actin material, which in
turn increases the elastic energy of the system.

Our model is formulated in the general context of con-
tinua, which, in order to apply the theory to modelling cyto-
skeletal filaments, is particularised and detailed for a truss
system. Similar truss representations have been originally
employed by Odell et al. (1981), which used a bistable
mechanism in order to trigger invagination. In our model,
the invagination is alternatively produced due to the specific
stress-dependent growth law.

We note that biological structures have been also explicitly
represented by resorting to tensegrity concepts, and although
this approach has been fruitful in the modelling of self-
equilibrated systems (Ingber 1997; Stamenović and Ingber
2009), its application to morphogenesis in conjunction with
growth is absent in the literature. Although our approach
shares some similarities with a tensegrity structure, we do
not consider pre-stress, and we do not assume any a priori
knowledge of the bars that will be in tension (cables) or in
compression (rods).

The paper is organised as follows. Section 2 intro-
duces some well-known facts about the kinematics and bal-
ance equations in continuum mechanics. This section also
describes the fundamental laws of thermodynamics in the
presence of active and passive (elastic) deformations. We
deduce, in a variational approach, the equilibrium equations
when the two components of the deformation are indepen-
dent or dependent. Section 3 uses the same steps to obtain the
equilibrium equations for a system of trusses. Section 4 com-
pares the current approach to the standard elastic equations
for a single active cell, and the truss theory is eventually
applied to model the multicellular phenomenon of ventral
furrow invagination of the Drosophila melanogaster embryo
for which the involvement of active shape changes is thought
to be pivotal. Section 5 comments on these results and
expands on the work with some final remarks.

2 Development of continuum theory

2.1 Kinematics

We analyse in this section the deformation of a body B with
reference configuration Ω0 ∈ R

3 and material coordinates
X0 into a deformed configuration Ωt ∈ R

3 where the mate-
rial points are located at x = χ(X0, t), with χ(X0, t) :
R

3 × R → R
3 the map of the whole motion. For clarity,

we remove the dependence on the time variable t and the
position X0, and simply denote by x the map χ . The notation
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employed here and throughout the article has been listed in
Table 1.

As it is customary in biomechanics since the seminal work
of Rodriguez et al. (1994), we use a multiplicative decompo-
sition of the deformation gradient F = ∂x

∂X0 into F = Fe Fa

(see Fig. 1). In the present case, the active deformation gradi-
ent Fa = ∂X

∂X0 is due to the growth process in the cell, which
in turn is due to the mechanotransduction of the genetically
regulated chemical reactions that take place in the cytoskel-
eton. On the other hand, the tensor Fe = ∂x

∂X represents
the passive elastic deformation due to the elastic response
of either the cytoskeleton and the cytoplasm. The intermedi-
ate configuration Ω is the one obtained after removing the
elastic deformation from Ωt , which may give rise to mate-
rial incompatibilities (tears and overlappings, see Fig. 1).
Therefore, the two tensors Fa and Fe may be discontinu-
ous, while F is continuous. From the decomposition of the
deformation gradient, and setting J = det F, Ja = det Fa

and Je = det Fe, we have that J = Ja Je.
We denote by ρ0, ρ and ρt the densities in the ref-

erence, intermediate and deformed configurations, respec-
tively. Analogously, we denote by (dM0, dV0), (dM, dV)
and (dm, dv) the pairs of differentials of mass and volume
in the same configurations (see Fig. 1), which are related by
dM0 = ρ0dV0, dM = ρdV and dm = ρt dv.

2.2 Balance equations

2.2.1 Balance of mass

Throughout the paper, we use the following assumptions:

• The active deformations do not introduce any change
of density, (i.e. ρ = ρ0,∀t), although changes of mass
(growth) may occur when passing from configurationΩ0

to Ω , (i.e. ρ0dV0 �= ρdV in general).
• The elastic deformation may introduce density changes

when passing from the configurationΩ toΩt , (i.e.ρ �= ρt

in general), although this transformation preserves the
mass, (i.e. dM = dm,∀t).

These assumptions are motivated by the model of the
actin–myosin complex described in Sect. 3. We note that due
to the non-conservation of mass, we are dealing with an open
system as described in Kuhl and Steinmann (2003), but in our
case with a constant reference density ρ0. From the condi-
tions dM = dm and ρ = ρ0, and the relation dv = JedV, it
can be deduced that ρ0 = ρt Je, and therefore,

˙ρt Je = ρ̇0 = 0, (1)

where a superimposed dot denotes material time differenti-

ation, i.e. �̇ = �̇ = ∂
∂t |X0=cnst (�). After making use of (1)

Table 1 Nomenclature and list of symbols employed in the article

A0, a Reference and deformed cross-sections of the bar

b̄
0
, b̄ Body load per unit of reference and deformed

volume, respectively

C,C Control function for the scalar and tensorial cases

D Dissipated energy

E Total internal energy

Ei Triad vectors in the reference and intermediate

configurations

ei Triad vectors in the deformed configuration

F, Fa, Fe Total, active and elastic deformation gradients

G Variable defined in Eq. (50)

g, ḡ Internal and external contributions to bar residual

hext , hint External contribution (heating) and internal

contribution to entropy

I,I Second and fourth-order identity tensors

J, Ja, Je Determinant of F, Fa and Fe, respectively

K Total kinetic energy

k, K Bar material stiffness and stiffness matrix

L0, L , � Bar lengths at the reference, intermediate and

deformed configuration

La Active velocity gradient

N0, N, n External normals in the reference, intermediate

and deformed configuration

La Active velocity gradient

p Vector of linear momentum

P First Piola–Kirchhoff stress tensor

Q0, Q Thermal fluxes per unit of reference and deformed
area

q, q̄ Stress resultant and external load in bars

qT Target stress in the bar control function C

R Rotation matrix such that ei = REi

S, S̄ Entropy density, and additional entropy source (due

to new mass in the system)

t,�t Time variable, and time increment, �t = tn+1 − tn

t̄0
, t̄ Surface loads per unit of reference and deformed area

u, ua, ue Total, active and elastic displacement vectors

V 0, V, v Volume in the reference, intermediate and deformed

configuration

v Velocity vector, v = ẋ

w Test function in the weak form of the bar equil. eqn.

X0, X, x Position vector of the material points in the

reference, intermediate and deformed configuration

β Constant in bar control function C

δ(•) Variation operator, δ = d
dε

∣
∣
ε=0

Γ Mass production rate

γ, γa, γe Total, active and elastic scalar strain measures in bars

Π Total energy functional

ψ0 Helmholtz free energy function per unit of mass
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Table 1 continued

φ0, φt Internal energy per unit of mass in the reference and

deformed configuration, respectively

εi jk Permutation index

ε Vectorial strain measure for bar element

ρ0, ρ, ρt Densities in the reference, intermediate and deformed

configuration

Ω0,Ω,Ωt Domains of the body in the reference, intermediate

and deformed configuration

σ Cauchy stress tensor

τ Constant defined in Eq. (49)

θ Parameter in Crank–Nicholson time-integration

Θ Temperature

Fig. 1 Decomposition of the deformation gradient as F = Fa Fe. The
reference, intermediate and deformed configurations are indicated by
Ω0,Ω andΩt , respectively. Other variables associated to each config-
uration and map are indicated in the figure and described in the text

and the relation J̇a = Ja trLa , with La = Ḟa F−1
a the active

velocity gradient, we can express the total mass variation as,

˙dm = ˙ρt JdV0 = ρt J tr(La)dV0 = dm tr(La). (2)

In the sequel, the term trLa will be called the mass pro-
duction rate and will be denoted by Γ , i.e.

Γ = trLa . (3)

On the other hand, denoting by v = ẋ the velocity vec-
tor (i.e. the material derivative of the spatial locations) and
by ∇x ·, the divergence operator with respect to the coordi-
nates in the deformed configuration Ωt , we also have that
˙dm = (ρ̇t + ρt∇x · v)dm. By using this identity, the relation
(�̇) = ∂�

∂t + v · ∇(�), and Eq. (2), we deduce the following
equation of mass balance:

∂ρt

∂t
+ ∇x · (ρtv) = ρtΓ.

2.2.2 Balance of linear momentum

The total linear momentum p of the solid is defined as,

p =
∫

Ωt

ρtv dv =
∫

Ω0

ρ0 Jav dV0.

By assuming a field of external body loads per unit of
deformed volume b̄, the balance of linear momentum reads,

ṗ =
∫

Ωt

(

∇x · σ + b̄
)

dv,

where σ is the Cauchy stress tensor, and the operator ∇x · indi-
cates the divergence with respect to the spatial variables x.
After introducing the first Piola–Kirchhoff stress tensor P =
J F−1σ , performing the time-derivation of p and resorting
to the standard localisation argument (Gonzalez and Stuart
2008), the following balance of linear momentum may be
obtained:

Jaρ
0 (v̇ + vΓ ) = ∇0 · P + b̄

0
, (4)

where the operator ∇0· denotes the divergence with respect

to the reference coordinates X0 and b̄
0 = J b̄.

2.2.3 Energy balance

Let us define the total internal energy E and the total kinetic
energy K of a body as,

E :=
∫

Ωt

ρtφt dv =
∫

Ω0

ρ0φ0 dV0

K :=
∫

Ωt

1

2
ρtv · v dv =

∫

Ω0

1

2
ρ0 Jav · v dV0,

where φt and φ0 = φt Ja are the internal energy per unit
of mass in the current and reference configurations, respec-
tively. Variations of φ0 may be due to mechanical (active
or passive) or thermal effects. The balance of thermal and
mechanical energy demands that the time variations of K +E
are balanced by thermal fluxes and external loads. In the
absence of any external body heating, this becomes

Ė + K̇ =
∫

∂Ωt

( t̄ · v − Q · n) da +
∫

Ωt

b̄ · v dv,

=
∫

∂Ω0

( t̄0 · v − Q0 · N0) dA0 +
∫

Ω0

b̄
0 · v dV0, (5)

where t̄ and Q are the spatial representations of the exter-
nal surface loads and thermal fluxes, respectively, and t̄0 and
Q0 are their material counterparts. The vectors n and N0 are
the outward normals to the body’s boundary in the current
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and reference configurations. By using the divergence theo-
rem, the boundary condition P N0 = t̄0 and the localisation
argument, Eq. (5) may be expressed as,

Jaρ
0v ·

(

v̇ + 1

2
vΓ

)

+ ρ0φ̇0

= ∇0 · (PTv)− ∇0 · Q0 + b̄ · v. (6)

On the other hand, after pre-multiplying (4) by v and using
the relation ∇0 · (PTv) = v · (∇0 · P) + ∇0v : P together
with the definition Ḟ = ∇0v, we can derive the so-called
theorem of kinetic energy (Maugin and Berezovski 2008):

Jaρ
0v · v̇ + Jaρ

0v · vΓ + P : Ḟ = ∇0 · (PTv)+ b̄ · v,

which subtracted from (6), yields the First Law of Thermo-
dynamics (also called theorem of internal energy), which in
our case reads,

ρ0φ̇0 = 1

2
Jaρ

0v · vΓ + P : Ḟ − ∇0 · Q0. (7)

2.3 Thermodynamics

The motivation of this section is the construction of proper
constitutive laws for the elastic and active parts of the defor-
mation, which are thermodynamically consistent. We first
present some general well-known facts that we particularise
to our needs in the model.

2.3.1 Reduced dissipation inequality

The balance of entropy for the open system balances the
entropy density rate per unit of reference volume Ṡ, minus an
extra entropy source S̄ (which accounts for the contribution
of the mass transferred to the system, see for instance Kuhl
and Steinmann (2003), Himpel et al. (2005), with an external
contribution hext , plus a internal contribution hint ≥ 0, that
is,

Ṡ − S̄ = hext + hint .

From the non-negativity of hint and the expression of the

external contribution as hext = ∇0 · (− Q0

Θ
), with Θ > 0

the absolute temperature, the Second Law of thermodynam-
ics follows as (Gonzalez and Stuart 2008; Holzapfel 2000;
Maugin and Berezovski 2008),

Ṡ + ∇0 ·
(

Q0

Θ

)

− S̄ ≥ 0. (8)

Inserting Eq. (7) into (8) yields the following alternative
expression of the second law:

Θ Ṡ + Jaρ
0 1

2
v · vΓ + P : Ḟ − ρ0φ̇0

− Q0

Θ
· ∇0Θ −Θ S̄ ≥ 0. (9)

Relations (7) and (9) may be rewritten by using the Helm-
holtz free energy function per unit of mass ψ0, such that
ρ0ψ0(F,Θ) = ρ0φ0(F, S) − SΘ , which is the Legendre
transformation of φ0(F, S) with respect to S, with Θ =
∂ρ0ψ0(F,S)

∂S . In this way, we may write inequality (9) in the
following convenient form:

P : Ḟ + Jaρ
0 1

2
v · vΓ − ρ0ψ̇0

− Q0

Θ
· ∇0Θ − Θ̇S −Θ S̄ ≥ 0. (10)

Since no temperature variations have been reported in the
morphogenesis processes studied here, which occur at rel-
atively slow speed, we will neglect in the remainder of the
paper thermal and inertial effects, that is, we assume Θ ≈
constant, Q0 ≈ 0 and ρ0v ≈ 0, and therefore we will
use a quasi-static approximation of the process. With these
hypotheses, Eq. (10) turns into the so-called reduced dissi-
pation inequality,

D := P : Ḟ − ρ0ψ̇0 −Θ S̄ ≥ 0, (11)

where D is the dissipated energy. Equation (11) furnishes
the necessary conditions that any constitutive law relating all
admissible values of Ḟ and P should satisfy.

2.3.2 Introducing active deformations

In the subsequent derivations, we will assume that configu-
ration Ω0 is stress-free and that the free energy function per
unit of intermediate volume ψ = J−1

a ψ0 is a function of the
passive deformations gradient Fe. For completeness, we will
also assume that ψ depends as well on the active deforma-
tions Fa , i.e. ψ = ψ(Fa, Fe). The latter assumption gives
rise to an active stress tensor given by Sa = ∂ψ

∂Fa
, and there-

fore yields a configuration Ω that might not be stress-free.
Although the explicit form of ψ(Fa, Fe) is at this point

left undetermined, it is interesting, among the several possi-
ble choices, to split it in two terms, which additively superim-
pose to form ψ(Fa, Fe) = ψe(Fe)+ ψa(Fa). In this case,
ψe accounts for the elastic energy stored in the solid, whereas
ψa represents the energy stored in the chemical bonds of
the structural elements of the cell, and thus its variation is
associated to changes in Fa . Similar decompositions may be
found in Garikipati et al. (2006), where the active (remod-
elling) deformations are due to a particular dependence of
ψ on the fibre reorientation. A discussion on the interpre-
tation of the active deformations in the case of structural
elements of the cell is given in Sect. 3.

It is convenient to recast the reduced dissipation inequal-
ity in (11) by rewriting it as a function of the free energy per
unit of mass in the intermediate configuration ψ(Fa, Fe) =
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J−1
a ψ0(Fa, Fe) as follows:

P : Ḟ − ρ0(Jaψ)̇−Θ S̄ ≥ 0. (12)

By recalling that ρ = ρ0 = constant when passing from
Ω0 to Ω and by resorting to the relations J̇a = Ja F−T

a : Ḟa

and Ḟe = Ḟ F−1
a − Fe Ḟa F−1

a , it follows that (Jaψ)̇ in (12)
is given by:

(Jaψ)̇ = Ja
∂ψ

∂Fa
: Ḟa + Ja

∂ψ

∂Fe
: Ḟe + JaψF−T

a : Ḟa

= Ja

(

ψ I + ∂ψ

∂Fa
FT

a − FT
e
∂ψ

∂Fe

)

: La

+Ja
∂ψ

∂Fe
: Ḟ F−1

a . (13)

By inserting this relation into Eq. (12) and using the fact
that the inequality must be satisfied for all admissible defor-
mations Fa and F, it follows that the stress tensor P is given
by,

P = ρ0 Ja
∂ψ
∂Fe

F−T
a = Ja Pe F−T

a , (14)

where the stress Pe = ρ0 ∂ψ
∂Fe

is the push-forward of the first
Piola–Kirchhoff stress tensor P . From the identity (14) and
the expression in (13), the reduced dissipation inequality in
(12) furnishes the following relationship:

D = Ja FT
e Pe : La − Jaρ

0
(

ψ I + ∂ψ

∂Fa
FT

a

)

: La

−Θ S̄ ≥ 0. (15)

We note that the tensor FT
e Pe is referred to in the literature as

the Mandel stress tensor (Epstein and Maugin 2000; Himpel
et al. 2005; Holzapfel 2000; Steinmann 2002).

2.4 Equilibrium equations

Three approaches may be pursued when deriving the equi-
librium equations in the presence of active elongation: (i)
Noether’s theorem, (ii) the Virtual Power Principle (VPP),
or (iii) the minimisation of an energy functional (vari-
ational method). Methods (i) and (ii) are omitted here,
but the reader may find the necessary steps in Kienzler
and Herrmann (2000) and DiCarlo and Quiligotti (2002),
Ambrosi and Guana (2007)), respectively. Method (ii) is con-
venient when, due to the incompatibility of the intermediate
configuration Ω , the map X(X0, t) : Ω0 → Ω is not com-
patible, not even piecewise, and therefore ua = X − X0 and
ue = x− X are not defined. In this case, method (iii) may not
be applicable, and the tensor Fa and the deformation gradi-
ent F = ∂u

∂X0 are taken as the primary kinematic variables.
If we assume ua and ue are defined, method (iii) consists on
interpreting the tensors Fa and Fe as displacement gradi-
ents, respectively, given by Fa = ∂ua

∂X0 and Fe = ∂ue
∂X . In this

case, we can write the free energy function as ψ(ua, ue) and

find the equilibrium process as the minimisation of a func-
tional. The choice of method (iii) is motivated by the fact that
the subsequent equations are applied to unidimensional ele-
ments (bars) in Sect. 3, where it is reasonable to assume that
the displacement fields ua and ue exist, at least piecewise.

We neglect any body loads b̄ but consider an external force
t̄ on the boundary ∂Ωt . Using a free energy density function
per unit of intermediate mass ψ(ua, ue) and noting ρ = ρ0

inΩ , the spatial equilibrium equations are obtained by min-
imising the following energy functional with respect to the
active and elastic displacements ua and ue:

Π(ua, ue) =
∫

Ω

ρ0ψ(ua, ue) dV −
∫

∂Ωt

t̄ · u da, (16)

or equivalently, solving the following variational equation:

δΠ = d

dε
Π(ua + εδua, ue + εδue)

∣
∣
∣
ε=0

= 0. (17)

Note that the functional does not depend on the time deriv-
atives of ua or ue, and we are therefore neglecting any inertial
terms.

A general expression for δΠ may be obtained by resorting
to the minimisation of the total virtual work in a manner sim-
ilar to the time differentiation performed on ψ in Sect. 2.3.
By doing so, the following equation is obtained:

δΠ=
∫

Ω

ρ0
(
∂ψ

∂Fa
: δFa + ∂ψ

∂Fe
: δFe+ψF−T

a : δFa

)

dV

−
∫

∂Ωt

t̄ · δu da = 0, ∀δua, δue. (18)

In view of the following relations:

δ(Fe) = (δF)F−1
a − Fe(δFa)F−1

a ,

(δF)F−1
a = ∂δu

∂X0

∂X0

∂X
= ∂δu
∂X

,

(δFa)F−1
a = ∂δua

∂X0

∂X0

∂X
= ∂δua

∂X
,

the first integral in (18) can be rewritten in terms of the virtual
displacements δu and δua as,

δΠ =
∫

Ω

ρ0
(
∂ψ

∂Fa
FT

a − FT
e
∂ψ

∂Fe
+ ψ I

)

: ∂δua

∂X
dV

+
∫

Ω

∂ψ

∂Fe
: ∂δu
∂X

dV −
∫

∂Ωt

t̄ · δu da. (19)

With the aim of considering a coupling between the active
and passive deformations, we will next deduce from this
expression the equilibrium equations in the following three
situations:
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(a) Unconstrained deformation: The active and passive dis-
placements, ua and ua , are independent. In consequence,
the corresponding virtual displacements δua and δua are
also independent.

(b) Fixed deformed configuration: The passive and active
displacements are free to vary, but the final configura-
tion Ωt is fixed, i.e. δu = 0.

(c) Coupled deformation: A relation exists between the pas-
sive and active displacements, that is, we consider two
dependent fields of virtual displacements δua and δue.

2.4.1 Unconstrained deformation

From the arbitrariness of the virtual displacements δu and
δua in (19), we obtain, after integrating by parts and using
the definition Pe = ρ0 ∂ψ

∂Fe
, the following set of differential

equations:

∇X ·
(

ρ0 ∂ψ

∂Fa
FT

a − FT
e Pe + ρ0ψ I

)

= 0, ∀X ∈Ω (20a)

∇X · Pe = 0, ∀X ∈ Ω (20b)

ρ0
(
∂ψ

∂Fa
FT

a N + ψN
)

= FT
e Pe N, ∀X ∈ ∂Ω (20c)

Pe FT
en = Je t̄, ∀x ∈ ∂Ωt , (20d)

where in the last equation, we have used Nanson’s formula:
NdA = J−1

e FT
en da, with N and n the normal vectors in

the intermediate and deformed configurations, respectively.
The operator ∇X · denotes the divergence with respect to the
coordinates in the intermediate configuration.

We remark that Eqs. (20b) and (20d) are the standard bal-
ance of linear momentum (in the material setting), whereas
(20a) and (20c) are the equilibrium equations due to config-
urational changes. The latter were originally introduced by
Eshelby 1951 and are coined in the literature as configura-
tional balance equations (Gurtin 2000) or balance of pseudo-
momentum (Maugin 1995). In our notation, Eq. (20a) must
be satisfied for all changes of the intermediate configura-
tion. Therefore, and in view of Eq. (19), whenΩ is fixed (i.e.
δua = 0), no such equations are obtained.

2.4.2 Fixed deformed configuration

We here derive the resulting equations for a body whose
whole deformation is fixed, i.e. δu = 0, but with variable
active and elastic displacements.

After using the condition δu = 0, the second row of
Eq. (19) vanishes, and therefore the expression of δΠ reads:

δΠ =
∫

Ω

ρ0
(
∂ψ

∂Fa
FT

a − FT
e
∂ψ

∂Fe
+ ψ I

)

: ∂δua

∂X
dV.

Resorting to the divergence theorem and recalling that
Pe = ρ0 ∂ψ

∂Fe
, the expression above yields the equilibrium

equations in (20a) and (20c). Therefore, as a result, it turns out
that the latter are the balance conditions that any motion must
satisfy when the deformed configuration is fully constrained
(δu = 0), but with a changing intermediate configuration,
or equivalently, with a change in the internal structure. It is
thus reasonable that the Eshelby tensor ψ I − FT

e
∂ψ
∂Fe

makes
it appearance in the equilibrium equations.

We note that the same result would be obtained if we
inserted into Eq. (18) the relation,

δFe = −FeδFa F−1
a = −Fe

∂δua

∂X
, (21)

which follows from the condition δF = 0.

2.4.3 Coupled deformation

Motivated by experimental observations, we here postulate
that the active displacements ua depend on the elastic dis-
placements ue via the corresponding deformation gradients,
Fa and Fe. We write this dependence by introducing a con-
trol function that relates the active and elastic deformations
as follows:

Ḟa = C(Fe). (22)

We henceforth remove for clarity the dependence of the
tensorial function C on Fe, and an explicit expression is given
for C in Sect. 3. This equation couples both components of
the decomposition of the deformation gradient, which has
the following two main implications:

1. The evolution law for Fa in (22) induces an expression
of the gradient of the active velocity La , which inserted
into condition (15), determines the amount of dissipated
energy D.

2. The spatial and material equilibrium equations are now
coupled due to the coupling introduced in (22) and yield
a single equilibrium equation. This dependence is treated
in a similar manner as the constraint δu = 0 introduced
in Sect. 2.4.

Regarding point 1 above, we note that due to Eq. (22), the
velocity gradient is now given by La = Ḟa F−1

a = C F−1
a .

By inserting this expression into the mass production rate in
(3) and the dissipation energy in (15), we may write these
equations as,

Γ = tr(C F−1
a ),

Ja

(

FT
e Pe − ρ0

(

ψ I + ∂ψ

∂Fa
FT

a

))

: C F−1
a −Θ S̄ ≥ 0.

(23)
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As a consequence, the condition D ≥ 0 imposes some
restrictions on the plausible expressions of C , which will be
analysed in the next sections.

With regard to point 2 stated above, it is convenient to dis-
cretise in time Eq. (22). We perform this task by introducing
the following time-stepping,

Fa,n+1 = Fa,n +�tCn+θ , (24)

where Cn+θ = C(Fe,n+θ ), 0 ≥ θ ≥ 1, (�)n+θ = (1 −
θ)(�)n + θ(�)n+1 and �t = tn+1 − tn . The values θ =
0, 1/2, 1 correspond to the standard forward Euler, mid-point
rule or backward Euler, respectively. It is shown in Appen-
dix A that in all these cases, the relation in (24) allows us to
write the following relation between the virtual deformation
gradients:

δFa = L : δF, (25)

This relationship may be interpreted as a constriction on
the motion, in a similar manner to Eq. (21) in the case with
a fixed deformation. Inserting relation (25) into Eq. (19), the
following equilibrium equation can be derived,

∇X ·
(

Pe +
(

ρ0 ∂ψ

∂Fa
FT

a + ρ0ψ I − FT
e Pe

)

F−T
a : LFT

a

)

= 0, ∀X ∈ Ω, (26)

which should be complemented with the corresponding
boundary conditions. Clearly, this equation differs from the
standard elastic equilibrium in (20b). While other references
such as Rodriguez et al. (1994), Taber (2008), Ramasubra-
manian and Taber (2008) model growth by solving Eq. (20b)
in parallel with an evolution law for Fa , we also apply this
evolution law but in conjunction with Eq. (26), which fully
couples the elastic equilibrium in (20b) and the configura-
tional balance equations (20a).

In the next Section, we apply these ideas to a system of
unidimensional bars in order to model stress-controlled mor-
phogenesis. We show that some of the terms in (26) simplify
substantially.

3 Mechanics of trusses

We here particularise the decomposition and equilibrium
equations described in the previous sections to a system of
trusses, composed by bars connected at their ends. We also
decompose the motion of each bar element into an active
elongation and an elastic deformation. In the context of cel-
lular deformations, the active elongation may be seen as the
inclusion of new parts of the actin helix onto which the myo-
sin head is sliding. The elastic deformation is instead the
result of applying some external forces q̄ or the compatibility
of the joints with other bars connected at its ends (see

Fig. 2 Representation of the three configurations for an actin–
myosin complex. The biological system modelled through a single bar
is represented by the actin–myosin chain portion outlined by the dashed
line. The reference, intermediate and deformed lengths of the system,
respectively, denoted by L0, L and � are also indicated in the Figure.
Due to the movement of the myosin head along the actin helix, new
mass enters the system at constant density as the chain length changes
from L0 to L and the system moves from the initial configuration Ω0

to the intermediate Ω (see Sect. 2.2)

Fig. 2). The growth process and the elastic deformation
will eventually cause the whole bar to reorient, and there-
fore produce a remodelling of the cell, and as a by-product,
change the global shape of the cell and the epithelium. The
examples analysed in Sect. 4 will illustrate this sequence of
events.

3.1 Bar kinematics

The bar elements employed in our model are defined by the
following kinematic assumptions:

• Each bar is a body much longer in one direction that in
the other 2 perpendicular directions.

• The bar remains as a straight body in all the configura-
tions, with a constant area.

• The cross-section of the bar remains perpendicular to the
centroid axis and has a constant area.

• The bar in the reference configuration is oriented in such
a way that its long axis is parallel to the vector E1 of a
reference triad (see Fig. 3).

• The active deformations deform the bar only in the
longitudinal direction, that is in the direction of E1.
Also, and in agreement with our hypothesis in the three-
dimensional case, no density changes occur during this
active deformation.

• The elastic deformations correspond to a change in the
longitudinal along E1 axis plus a rotation R, constant for
each bar.
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Fig. 3 Maps between the reference, intermediate and deformed con-
figurations for each bar element

Such a motion of the bar is visualised with the maps indi-
cated in Fig. 3. The positions of the material point in each
configuration are accordingly given by,

X0 = X0
i Ei

X = Xi Ei

x = xi ei = xi REi

where R is a rotation matrix that transforms the vector Ei

into ei , i.e. R = ei ⊗ Ei and ei = REi . We remark that in the
previous equations we do not constrain the material points
to be only along the axis E1 (the bar is assumed slender, but
the area of the cross-section is not zero). From the kinematic
assumptions, the three configurations are related through the
following relations:

X = X0 + ua(X
0
1)E1 = ua(X

0
1)E1 + X0

i Ei

x = R(X + ue(X1)E1) = ue(X1)e1 + Xi ei (27)

= (ua(X
0
1)+ ue(X1))e1 + X0

i ei ,

where summation on the repeated subscript i = 1, 2, 3 must
be understood. The scalar functions ua(X0

1) and ue(X1) are
the active and passive displacements, respectively, which
determine the corresponding deformations in the interme-
diate and deformed configurations.

We denote by [0, L0], [0, L] and [0, �] the domains of
X0

1, X1 and x1, respectively. The values L0, L and � corre-
spond to the lengths of the bars in the reference, intermediate
and deformed configurations, respectively. The expressions
of the deformation gradients may be then written as,

Fa = ∂X

∂X0 = u′
a E1 ⊗ E1 + Ei ⊗ Ei

Fe = ∂x
∂X

= u′
ee1 ⊗ E1 + ei ⊗ Ei (28)

F = ∂x

∂X0 = u′e1 ⊗ E1 + ei ⊗ Ei .

In the last equation, we have introduced a scalar function
u(X0

1) that, after comparing the last equations in (27) and

(28), is defined by the following equality:

1 + u′ = 1 + u′
a + u′

e
∂X1

∂X0
1

= 1 + u′
a+u′

e + u′
eu′

a

= (1 + u′
a)(1 + u′

e). (29)

In view of this result and the expression in (28), it is easy
to verify that the multiplicative decomposition F = Fe Fa

holds. Note that u′
a = ∂ua

∂X0
1

and u′ = ∂u
∂X0

1
, but u′

e = ∂ue
∂X1

.

The associated strain and stress measures of the bars
are obtained by particularising the expression of the elas-
tic power Ẇ = ∫

L0 P : Ḟ dX0
1, to the kinematic assump-

tions mentioned earlier. It is demonstrated in Appendix B
that using the kinematic assumptions of the bar, Ẇ may be
expressed as,

Ẇ =
∫

L0

q · ε̇ dX0
1 =

∫

L

(1 + u′
a)

−1q · ε̇ dX1 (30)

where ε = (1 + u′)E1 and q = RT
∫

A0 P1d A0. Here, the
vector P1 is the tension in the deformed configuration per
unit of area A0 perpendicular to vector E1 of the reference
configuration. Consequently, q corresponds to the axial force
in the deformed bar, but rotated back in the direction E1.
We note that the stress and strain measures obtained for the
bars are those of the geometrically exact beam theory (Simo
1985), but with no bending stiffness. We also remark that
the obtained strain measure ε̇(1 + u′

a)
−1 mimics the tensor

product Ḟ F−1
a in the three-dimensional case.

In general, we assume that the free energy of the bar ψ
depends on the elastic strain measure γe = 1 + u′

e and an
active deformation γa = 1 + u′

a . The relation between those
measures and the deformation γ = ε · E1 = 1+u′ in (30) is
obtained from the relations of the displacement derivatives
in (29), i.e.

γ = γaγe, (31)

which is a scalar version of the deformation gradient decom-
position F = Fe Fa .

3.2 Constitutive law

Proceeding like in the three-dimensional case, the reduced
dissipation inequality in (15) yields, after recalling that P : Ḟ
is equivalent to the product q · ε̇, the following expression:

D =
(

γeqe − ρ0
(

ψ + ∂ψ

∂γa
γa

))

γ̇a −Θ S̄ ≥ 0, (32)

where we have introduced the stress scalar qe = ρ0 ∂ψ
∂γe

=
γaq · E1, with q = ρ0 ∂ψ

∂γ
E1.
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3.3 Equilibrium equations

3.3.1 Unconstrained deformations

It has been shown in Sect. 2.4 that when allowing independent
virtual displacements δua and δue, the equilibrium equations
in (20) are obtained. We here use the same methodology
assuming an external point load q̄ at the bar ends, and the
following energy functional, equivalent to the one in (16):

Π =
∫

L

ρ0ψ dX1 − q̄ · u
∣
∣
∣

x1=�
x1=0

,

where u = ue1. The minimisation of Π above, noting that
δe1 = (uδ̂w+δu I)e1, with δ̂w a skew-symmetric matrix (see
Appendix B), yields the following equilibrium equations:

∂

∂X1

(

ρ0 ∂ψ

∂γa
(1+u′

a)+ρ0ψ − γeqe

)

= 0, ∀X1 ∈ [0, L]
(33a)

∂

∂X1
qe = 0, ∀X1 ∈ [0, L] (33b)

ρ0 ∂ψ

∂γa
γa + ρ0ψ − γeqe = 0, at X1 = {0, L} (33c)

qe = q̄ · n, at x1 = {0, �} (33d)

q̄ = (q̄ · e1)e1 (33e)

where now n
∣
∣

X1=L = e1 = −n
∣
∣

X1=0. Equations (33b) and
(33d) are the standard spatial equations due to the variations
δu, which state that the axial load qe is constant along the bar
and equal to the values of the external load applied at the bar
ends. Equation (33e) imposes the condition that the external
load must be aligned to vector e1.

When dealing with a truss system of I bars and J joints,
the local equilibrium Eqs. (33a) and (33b) are applied to each
bar i = 1, . . . , I , whereas the boundary conditions (33d–
33e) must be replaced by the static equilibrium at each joint
j = 1, . . . , J , that is

∑

i∈ j

qi j
e Ri E1 = q̄ j , j = 1, . . . , J (33f)

where the sum is performed over all the elements i connected
to joint j, qi j

e is the elastic stress of each bar i connected to
joint j, q̄ j is the external load at joint j and Ri is the rotation
matrix of each bar element i . In fact, this equilibrium equa-
tion is a consequence of the equality of all the spatial virtual
displacements δui j of the bar ends connected to a joint j .
Instead, the active virtual displacement δui j

a are internal and
not shared among different bars.

3.3.2 Stress-dependent active displacements

In parallel with Eq. (22), we here hypothesise that the elastic
and active bar displacements are related through a control
function C : R → R as follows,

u̇′
a = C(u′

e). (34)

By inserting this evolution law into equations (23), noting
that γa is equivalent to Ja and that γ̇a = u̇′

a = C , we arrive
at the following two relations,

Γ = u̇′
a

γa
= C

γa
,

(

γeqe − ρ0
(

ψ + ∂ψ

∂γa
γa

))

C ′γ−1
a

−Θ S̄ ≥ 0, (35)

where C ′ = ∂
∂u′

e
C , and here and in the following expres-

sions, the argument of function C is omitted. We discretise
in time Eq. (34) using the following Crank–Nicholson time-
step algorithm:

u′
a,n+1 = u′

a,n +�tCn+θ ,

with Cn+θ = C(u′
e,n+θ ). After noting δu′

a = γeδu′
a +γaδu′

e,
the following relation between the virtual displacements is
obtained:

δu′
a = θ�tC ′(δu′ − γe,n+1δu

′
a)γ

−1
a,n+1

or, rearranging terms,

δu′
a = θ�tC ′

γa,n+1 + θ�tC ′γe,n+1
δu′. (36)

From these expressions, the minimisation of Π yields
equivalent equations to those in (26):

∂

∂X1

(

qe +
(

ρ0 ∂ψ

∂γa
γa + ρ0ψ − γeqe

)

× γaθ�tC ′

γa + γeθ�tC ′

)

= 0, ∀X1 ∈ [0, L] (37)

3.3.3 Model simplifications

With the aim of applying our model to a biomechanical
process, we particularise and simplify in this section those
variables that are as yet undefined, namely the free energy
function ψ and the control function C . The latter is now
reduced to the following linear relationship:

u̇′
a = β(qe − qT ) = β(ρ0ku′

e − qT ), (38)

where qT is the target stress, assumed constant, and β ≥ 0 is
a material parameter. The physical interpretation of this law
is simple: when qe > qT , that is, the bar is under tension,
the bar elongates in order to diminish the actual elastic stress
and vice-versa. The rate of active elongation or contraction is
determined by the parameter β. Such a law is represented in
Fig. 4. It is worth pointing out that if this law was applied to
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Fig. 4 Evolution law for the active deformations

a material that surrounds a cell, the limit value of the stresses
qT is equivalent to the behaviour of the membrane, which has
a tendency to be at a constant stress state or surface tension
qT . A model that reproduces such constant stress state of the
cell boundary is described in Brodland et al. (2006).

Due to the linearity of the evolution law in (38), we have
that C ′ = βρ0k, which is constant. Consequently, by resort-
ing to Eq. (36), the following relations between δu′, δua and
δue may be derived (see Appendix C):

δu′
a = Gδu′

δu′
e = G

τ
δu′. (39)

where G and τ are defined also in Appendix C.
We additionally assume for simplicity that the free energy

function does not depend on ua , but solely on ue. Further-
more, we choose an energy function that mimics the behav-
iour of a spring, that is we consider the following energy
function ψ :

ψ = 1

2
k(tr(Fe)− 3)2 = 1

2
k(u′

e)
2 (40)

with k a constant material parameter. We note that the elas-
tic deformation of the bars is not assumed incompressible,
since a variation of the cross-section area of the microfila-
ment as it deforms would be unrealistic. Also, we point out
that, although the stored energy in the intermediate config-
uration ψ = J−1

a ψ0 depends solely on Fe, the free energy
ψ0 still depends on the two deformation gradients, Fa and
Fe. In this case, the stored energy ψ0 increases even if Fe is
constant due to the increase of matter when growth occurs.
However, since ψ does not depend on Fa , the configuration
Ω is indeed stress-free, like in Rodriguez et al. (1994).

Using these simplifications, since C ′ = βρ0k, the equa-
tion in (37) turns into,

∂

∂X1

(

ku′
e
) − ∂

∂X1

(

(u′
e + 1

2
(u′

e)
2)kGγa

)

= 0, ∀X1 ∈ [0, L]
(41a)(

ku′
e − (u′

e + 1

2
(u′

e)
2)kG

)

= q̄ · E1, X1 = {0, L}, (41b)

where henceforth we omit the subscript n +1 for clarity. The
local equation in (41a) differs substantially from the usual

spatial equilibrium for bars, that is,

ku′′
e = 0. (42)

After comparing this equation and (41), it can be con-
cluded that the active elongation process, together with the
evolution law in (38), are equivalent to an additional body
force given by the expression underlined in (41a). We remark
that this additional body force is similar to considering addi-
tional material stresses, as the accretive forces introduced in
DiCarlo and Quiligotti (2002), Ambrosi and Guana (2007).
In our case, the additional terms in Eq. (41a) are a by-product
of the coupling between the active and elastic deformations,
which in turn couples the elastic equilibrium and the condi-
tion for growth in (33a).

By noting that the quadratic free energy function in (40)
may be expressed as ρ0ψ = 1

2 qeu′
e, the reduced dissipation

inequality in (35) simplifies to,
(

1 + 1

2
u′

e

)

kβ�tθu′
e −Θ S̄ ≥ 0. (43)

SinceΘ > 0, this equation allows to bound explicitly the
entropy source as,

S̄ ≤
(

1 + 1

2
u′

e

)

kβ�tθu′
eΘ

−1. (44)

Moreover, since ρ0 > 0,C ′ = β�t θ > 0 (for θ > 0 and
β > 0) and �t > 0, it can be deduced that no extra entropy
energy is strictly necessary when u′

e > 0. However, when
u′

e < 0, the term S̄ becomes necessary in order to satisfy the
second law of thermodynamics. We note though that other
more sophisticated forms of ψ and control functions C may
allow to make S̄ unnecessary in a larger set of situations.
It is worth emphasising that although no microstructure has
been explicitly considered, the fact that S̄ becomes neces-
sary when u′

e < 0 is physically in agreement with the fact
that additional entropy is inserted in the system whenever the
chain complex is in compression, that is, when the chain has
more freedom to vibrate and therefore its entropy increases (a
larger set of states are accessible for the given stored energy).

3.4 Finite element implementation

The equilibrium equations in (41) are solved at each time t
by resorting to the finite element method. We therefore mul-
tiply the local equation in (41a) along direction e1 for each
bar i by a test function (or virtual displacement) w = we1

and integrate over the domain of each bar, which yields
∫

L

w · e1
∂

∂X1

(

u′
e −

(

1 + u′
e

2

)

u′
eGγa

)

k d L = 0,

∀w ∈ H1,
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where H1 is the Hilbert space of functionswwhose L2 norm,
and the L2 norm of the first derivatives are bounded. Due
to the use of a Newton–Raphson iterative procedure, which
requires the linearisation of the resulting equations, it is con-
venient to modify the previous expression as an integral along
the reference length L0. After integrating by parts, by mak-
ing use of (41b) and using the finite element interpolation
w ≈ wi Ni (X0

1), with Ni (X0
1) a set of complete functions,

and wi the set of arbitrary nodal values of the test func-
tions w(X0

1), we obtain the following system of nonlinear
equations:

g = ḡ. (45a)

The component i , associated to node i in the vectors g
and ḡ are, respectively, given by,

gi =
∫

L0

N ′
i

(

1 −
(

1 + u′
e

2

)

Gγa

)

u′
eke1 d L0

ḡi = q̄. (45b)

It is shown in Appendix D that using linear interpolat-
ing functions Ni (X0

1) for the test functions and the deformed
positions x(X0

1) = Ni (X0
1)x

i , the computation of the resid-
ual and its linearisation simplifies substantially.

4 Results

We will first analyse in a single cell the effects of the equi-
librium conditions of the coupling active and passive defor-
mations. The model is then used to simulate the invagination
process in the Drosophila melanogaster embryo.

4.1 Single cell model

In order to quantify the differences between the equilibrium
equations derived here and the standard elastic equations, we
will here consider the simple truss model depicted in Fig. 5,
formed by 4 nodes and 6 bars. All the bars are purely pas-
sive elastic (β = 0), except the horizontal bar at the bottom,
which has the target stress qT = 0.25. All the 6 bars have a
stiffness parameter k = 2.

The inner volume of the cell is kept constant during the
analysis. Due to the constraints applied to the nodes, the
bottom bar tries to shorten in order to achieve the tensile
target stress qT . The model has been run solving the equilib-
rium equations after introducing the coupling (Eq. (45) and
the standard elasticity equations in (42) in conjunction with
the evolution law in (34). Figures 6a–b show the interme-
diate length L and the elastic deformation u′

e of the bottom
bar, respectively. While the two set of equations yield obvi-
ously the same final homeostatic value of u′

e, some difference

(a) (b)

Fig. 5 Schematic model for one cell (a) and final deformation (b).
Dark and light grey indicate tensile and compressive stresses, respec-
tively
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(b)

Fig. 6 Evolution of the active length L (a) and the elastic force (b) u′
e

using the current approach and the standard elasticity equations

in their evolution can be appreciated. More importantly, the
intermediate length L converges in each case to slightly dif-
ferent values, due to the presence of the additional underlined
term in Eq. (41a).
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4.2 Invagination of the Drosophila melanogaster embryo

We apply the truss model described so far to analyse the
ventral furrow invagination in the Drosophila melanogas-
ter. This process involves the first large deformations of the
embryo and is characterised by the internalisation of the ven-
tral cells into a furrow formation (see detailed description
in (Costa et al. 1993)). The process is thought to be driven
by shape changes caused by active structural changes in the
cytoskeleton of individual epithelial cells surrounding the
embryo.

4.2.1 Model geometry

As in previous work (Muñoz et al. 2007, 2009), we use a
model of the embryo that consists of a 2D circular rigid mem-
brane encapsulating an epithelium of single cell thickness,
which itself surrounds a circular yolk. The epithelium of the
embryo is discretised into 96 cells, 16 in the mesoderm (dark
grey in Fig. 7) and 80 ectodermal cells (light grey). Each cell
is composed by a set of basal (in contact with the yolk), api-
cal (in contact with the membrane), lateral and internal bars,
as depicted in Fig. 8. The external bars simulate the stiff-
ness of the actin microfilament networks branching under-
neath the cellular membrane and the microtubules running
through the cell from the apical to the basal side, whereas the
internal bars simulate the rigidity furnished by the system,
constituted by the cytoplasm, the nucleus and endoplasmic
reticulum. The difference between cells in mesoderm and
the ectoderm lies not only in their location in the embryo but
also in their material properties, which will be described in
the next section. The vitelline membrane that surrounds the
embryo is assumed to be rigid. A unilateral contact condition
is introduced between the epithelium and this external rigid
material.

Fig. 7 Initial geometry and discretisation of the embryo cross-section.
Ectoderm is in light grey and mesoderm in dark grey

Fig. 8 Scheme of the trusses in the cells of the epithelium

4.2.2 Material parameters

The material stiffness k, densityρ0, target stress qT and mate-
rial parameter β employed for the different bar elements of
the embryo are given in Table 2. Ectoderm and mesoderm
have the same stiffness properties. External bar elements
(basal, apical and lateral, see Fig. 8) have the same value
of k = 50, while the one of the internal cells is 4 times
larger.

Superimposed onto the deformation of the cytoskeleton,
it is assumed that the yolk and the cell cytoplasm are invis-
cid nearly incompressible materials. We model them by just
imposing the incompressibility of each cell and the whole
yolk. This is equivalent to supplementing the free energy
density with the following term:

ψinc = py

2

(

vy − V 0
y

)2 + pc

2

nel
∑

i=1

(

vc,i − V 0
c,i

)2

where pc and py are penalty parameters, V 0
y and vy are the

initial and deformed volume of the yolk and V 0
c,i and vc,i

are the initial and deformed volume of the quadrilateral ele-
ment i . We note that each cell in the model represents one

Table 2 Material and time-integration parameters

Epithelium Cytoskeleton k ρ0 qT β

Ectoderm Apical 50 1 0 0

Ectoderm Basal 50 1 0 0

Ectoderm Lateral 50 1 0.03 10

Ectoderm Internal 200 1 0.03 10

Mesoderm Apical 50 1 0.03 50

Mesoderm Basal 50 1 0 0

Mesoderm Lateral 50 1 0 0

Mesoderm Internal 200 1 0 0
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biological cell, and therefore, the incompressibility of the for-
mer is a necessary but not sufficient condition for the point-
wise volume preservation of the fluid in the cell. We assume
that this discrepancy does not affect exceedingly our final
deformations. The higher the values of the penalty parame-
ters pc and py are, the more accurate the incompressibility
constraints vy − V 0

y = 0 and vi,c − V 0
i,c = 0 are, but also the

more ill-conditioned the system of equations becomes. We
have chosen the values pc = 6 and py = 0.05, which is a
compromise between accuracy and solvability of the numer-
ical simulations. In all cases, we obtained volume differences
smaller than 4%.

The parameters employed for the control function are
listed in Table 2. We have simulated the apical constriction
of the mesodermal cells (shortening of their apical side, see
Fig. 8) by assigning the values β = 0.03 and qT = 50 to
the apical bars in the mesoderm. A radial thinning of the
ectodermal domain is introduced by assigning is simulated
assigning also the values β = 0.03 and qT = 10 to the lateral
and internal cells. These parameters intend to provide refer-
ence values in order to represent the qualitative behaviour of
the cells.

The nonlinear differential equations have been integra-
ted by using the parameter θ = 0.5 and a time-step size
�t = 0.05, which has been able to solve the nonlinear equa-
tions without convergence problems. For the values of k and
β employed, the duration of the invagination process is found
to be approximately 0.9 time units.

4.2.3 Influence of boundary constraints

Figure 9a shows that with all the constraints activated (vite-
lline membrane contact conditions and incompressibility of
the cell cytoplasm and the yolk) the stress feedback mech-
anism can reproduce successfully ventral invagination. This
is an important result since it shows that even though each
cell behaves in an autonomous manner, changing shape to
satisfy its own internal stress-state requirements, a coordi-
nated global morphogenetic movement is accomplished. In
other words, invagination of an embryo can be brought about
through stress control alone, without the need for other reg-
ulatory or signalling mechanisms.

In order to investigate the main mechanism responsible
of the invagination process, we have tested the same model
but in the absence of some of the constraints. Interestingly,
we found that when the yolk is removed, the ventral cells do
not invaginate. Figure 9b shows the deformed configuration
at the same time t = 0.85 as for the successful invagination,
and with the same stress limits, but with the yolk missing. We
have also shown in the same figure the elastic stress of the
bars. Dark grey is a positive (tensile) stress, while lighter grey
corresponds to negative (compressive) stress. Comparison
of the stress profiles in Fig. 9 indicates that the apical bars

(a) (b)

Fig. 9 Stress intensity of the external bars of the cross-section with the
yolk constraint (a) and without it (b). Dark grey are positive stresses
(tension) and light grey are negative stresses (compression)

(a) (b)

Fig. 10 Stress profile at the internal and lateral bars applying the yolk
constraint (a) and removing it (b). Darker grey means larger tensile
stresses

shorten, but while this shortening is favoured in successful
invagination, in the failed invagination the apical bars remain
under tension. The incompressibility constraint of the yolk
produces a negative pressure due to the shortening of the ecto-
derm. This negative pressure is apparently necessary to rise
the mesoderm. The stress profile of the internal and lateral
bars in Fig. 10 at t = 0.3, reveals that indeed, in the presence
of the yolk, these bars are in general under a higher tensile
stress. Eventually, at t = 0.5, the mesoderm has successfully
risen, while in the absence of the yolk constraint, the meso-
derm remains at the bottom of the ventral side (see Fig. 9).
Figure 11 shows the profile of the deformed epithelium at
this instant. Interestingly, similar deformed configurations
are achieved if we increase the β-values of the apical meso-
dermal bars and we leave those of all the ectodermal bars
unaltered, i.e. if we favour apical constriction of mesoder-
mal cells (mesodermal arching) against radial shortening of
ectodermal cells (ectodermal pushing).

5 Conclusions

A set of equilibrium equations has been derived for the stress-
controlled shape change of cells due to the remodelling and
growth of their internal architecture. The approach involves
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(a) (b)

Fig. 11 Profile of the deformed configuration of the cross-section with
the yolk constraint (a) and without it (b)

the decomposition of the deformation gradient into an active
and a passive component, where the former is allowed to
include a growth process, while the latter is assumed to be
hyperelastic and mass-preserving. The two components are
coupled with a control function that provides the required
feedback mechanism. While such a control law has already
been introduced in Rodriguez et al. (1994), Taber (2008),
Ramasubramanian and Taber (2008), the resulting modified
equilibrium equations, and their particularisation to a truss
system, have not to our knowledge been previously studied.

The results are applied to a system of trusses whose func-
tion is to simulate the cytoskeletal network constituted by
myosin microfilaments and microtubules, which are found
experimentally to control shape change in cells. The behav-
iour of the system is justified by a thermodynamically con-
sistent arguments stemming from a continuum model.

The model has been used to simulate the multicellular
shape changes observed during ventral furrow invagination
of the Drosophila melanogaster embryo. The results show
that ventral furrow invagination can be achieved through
stress control alone, without the need for other regulatory
or signalling mechanisms. The model also reveals that the
yolk plays a distinct role in the process: the presence of the
inner incompressible yolk alters the mesodermal stress con-
figuration so as to contribute to the formation of the ventral
furrow by facilitating its inward bending and rise. This fea-
ture emerges in the system because active deformations are
determined through stress-controlled feedback mechanisms,
which provides the necessary active response. It is interest-
ing to notice that our previous models (Muñoz et al. 2007;
Conte et al. 2008) were not able to reproduce this feature
because active deformations were externally imposed inde-
pendently from the inner stress state of the material. Accord-
ingly, in these works, the alterations in the mesodermal stress
induced by the inner yolk were uncoupled from the imposed
active deformations and, therefore, did not affect epithelial
phenotype.

As a consequence, the results shown here are an important
contribution to the study of self-assembling living organisms,
in that they provide further evidence that stress can play an

important role (as also recently shown in Ramasubramanian
and Taber 2008, Taber 2008) and they give further evidence
in favour of Beloussov’s hyper-restoration hypotheses.

We have here restrained our model to constant target
stresses. Variable target stresses have been modelled and
implemented in Taber (2008), which may be a more real-
istic assumption. However, we note that the correct choice
of a variable or constant target stress requires first the deter-
mination of the cellular parameters that determine the active
response of the cytoskeleton, and also further experimental
analysis to elucidate how these parameters vary.

A Derivation of the constraints due to the control
function

From the general time-stepping in (24), we obtain the fol-
lowing relationship between the virtual active displacements
δua and δue:

δFa = θ�t∇Cn+θ :
(

(δF)F−1
a − Fe(δFa)F−1

a

)

,

where [∇C]i jkl = ∂[C]i j
∂[Fe]kl

. This relation may be written as,

δFa = (I + FT
eK)−1K : δF = L : δF,

whenever the fourth-order tensor (I + FT
eK) is invertible.

I i jkl = δi jδkl is the fourth-order identity tensor, and K =
θ�t (∇C)F−T

a is given, in indicial notation, as [K]i jkl =
[∇C]i jkm[F−1

a ]lm , whereas the product FT
eK denotes

[FT
eK]i jkl = [Fe]mk[∇C]i jml .

B Strain and stress measures for bars

Let us express the associated first Piola–Kirchhoff stress as
P = P i ⊗ Ei , where P i = Pi ei (no summation on i) is
the tension in the deformed configuration per unit area per-
pendicular to the Ei direction in the reference configuration.
The time differentiation of the deformation gradient F is,
according to relations in (27), equal to,

Ḟ = ω̂ei ⊗ Ei + u̇′e1 ⊗ E1 + u′ω̂e1 ⊗ E1 (46)

where ωT = (ω1, ω2, ω3) is the angular velocity and
the symbol ω̂ denotes the skew-symmetric matrix ω̂ =
⎡

⎣

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤

⎦, such that ûv = −v̂u = u × v. With

this notation, and the expression in (46), the tensor product
P : Ḟ results in,

P : Ḟ = −tr((P i ⊗ ei )ω̂)− u′tr((P1 ⊗ e1)ω̂)+ u̇′ P1 · e1

= −ω · ( P̂ i ei + u′ P̂1e1)+ u̇′ P1 · e1. (47)
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To proceed further, we note that the i j component of
P FT − F PT is given by,

[P FT − F PT]i j =
∑

k

(

[Pk]i
∂x j

∂Xk
− ∂xi

∂Xk
[Pk] j

)

=
∑

k

εi jl

[

P̂k
∂x
∂Xk

]

l

with εi jl the permutation index. Since P FT − F PT = 0, it
follows that

∑

k P̂k
∂x
∂Xk

= 0, which for the kinematics of the
bar described here yields,

P̂ i ei + u′ P̂1e1 = 0.

Using this relation in Eq. (47) and denoting by qq =
∫

A0 P1d A0, we have that the stress power Ẇ = ∫

V 0 P :
Ḟ dV 0 reduces to,

Ẇ =
∫

L0

u̇′e1 · qq dX0
1 =

∫

L0

u̇′ E1 · q dX0
1,

where q = RTqq , with R the rotation matrix introduced in
Sect. 3.1. Since u′∣∣

t=0 = 0, it follows from this equation that
we can then define ε = (1 + u′)E1 as the strain measure of
the bars, conjugate to the stress measure qe, and then rewrite
the stress power as:

Ẇ =
∫

L0

ε̇ · q dX0
1 =

∫

L

(1 + u′
a)

−1ε̇ · q dX1, (48)

where, after assuming u′
a + 1 > 0, we have made use of the

identity dX1 = |1 + u′
a | dX0

1 = (1 + u′
a) dX1.

C Relation between virtual displacements in bars

By introducing the following definitions:

τ = θ�tβρ0k (49)

G = τ

γa,n+1 + τγe,n+1
, (50)

the relations between δu′
a and δu′ in (36), and δu′

e and δu′,
read

δu′
a = Gδu′

δu′
e = (δu′ − γeδu

′
a)γ

−1
a = G

τ
δu′.

We emphasise that G may be expressed solely as a func-
tion of the elastic displacement, since the active displacement
may be related to ue through the evolution law in (38). By
resorting to the previous relations, the variation of G(u′

e) is
obtained as,

δG = −G2

τ
(τδu′

e + δu′
a) = −2G3

τ
δu′. (51)

D Residual vector and Jacobian of the equilibrium
equations

If the deformed positions are interpolated as x(X0
1) =

Ni (X0
1)x

i , with Ni (X0
1) a set of complete linear functions,

the vectors u′ and δu′ are element-wise constant and equal
to:

1 + u′ = x′ · e1 = x2 − x1

L0 · e1 = �e1

L0 · e1 = �

L0 ,

δu′e1 = δ�

L0 e1 = e1 ⊗ e1δx′ (52)

where x1 and x2 are the nodal deformed positions. Further-
more, from this result, and the relationships in (29) and (38),
the elastic and active deformations may be explicitly obtained
as,

u′
e =

−1 − cn − τ ±
√

(1 + cn − τ)2 + 4�τ
L0

2τ

u′
a = �

L0(1 + u′
e)

(53)

where cn does not depend on variables at the current time-
step n + 1, and is given by,

cn = u′
a,n +�tβ

(

ρ0k(1 − θ)u′
e,n − qT

)

.

After observing the expressions of u′
e and u′

a in (53), it
can be concluded that the linearity of x implies the linearity
of u, ue and ua . Therefore, the intermediate length may be
computed as,

L = (1 + u′
a)L

0 = �

1 + u′
e
.

We remark that these equalities allow us to use � and L as
primary unknowns, instead of u′

e and u′
a , and rewrite ψ, γa

and γe simply as,

ψ = 1

2
k

(
�− L

L

)2

, γa = L

L0 , γe = �

L

The nonlinear system of equations in (45b) are solved
by resorting to a Newton–Raphson iterative process, which
requires the computation of the Jacobian matrix K of the
residual vector g in (45). It can be verified that, using rela-
tions (39) and (51), the component Ki j , corresponding to the
contribution of nodes i and j , is given by,

K i j =
∫

L0

N ′
i N ′

j (c1 + c2) ke1 ⊗ e1 dL0

+
∫

L0

N ′
i N ′

j c3
kL0

�
M dL0
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with M = I − e1 ⊗ e1, and

c0 =
(

1 + u′
e

2

)

u′
e,

c1 = (1 − γeGγa)
G

τ
,

c2 = c0G3
(γa

τ
− γe

)

,

c3 = u′
e − c0Gγa .
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