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Abstract. Performance metrics serve as useful tools and indicators for many applications. For the 
building industry, various metrics exist; typically, these metrics do not assess the whole building 
performance. Instead, these represent separate components or heat transfer mechanisms of a building 
like R-value, U-factor/value, and airtightness. The mechanisms defined under these metrics all 
contribute significantly to the overall thermal performance of a building but will rarely act 
independently. There are metrics that account for the overall energy performance of a building, such as 
Energy Use Intensity (EUI). However, these metrics tend to be highly influenced by how the building is 
operated and used. There are also metrics which provide assessment on a relative basis. These indices 
are based upon comparison to a baseline, which complicates meaningful metric-based energy analyses. 
This paper presents a performance metric developed to account for various thermal properties and 
behaviors of a building. The metric accounts for all the relevant mechanisms that influence heat losses 
and gains in buildings and is thus directly related to the energy performance. In addition, the metric is 
designed to comprise air infiltration and allows users to account for workmanship quality, and 
imperfections of the building thermal resistance due to penetrations and other installations. This paper 
will describe how the metric can be applied for various building types and in different climates. 
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1 Introduction 
The thermal performance of a building depends on various building characteristics, including 
outdoor climate, building usage, HVAC equipment, occupants’ indoor climate preferences, etc. 
Due to complex interaction between these variables, describing the thermal performance of a 
building is difficult. Many metrics exist to describe single variables, such as R-value, U-factor, 
airtightness (ACH50/75), Solar Heat Gain Coefficient (SHGC). However, none of these 
indicators can fully, or even realistically, solely describe the overall thermal performance. 
 Several attempts have been made to define metrics which account for most variables that 
possess a significant impact on the energy performance (Ferrari and Zanotto, 2016). Many of 
these efforts focus on the building envelope thermal mass, such as the TER (Reilly and Kinnane, 
2017), the M-factor (Masonry Industry Committee, 1978; Yu, 1978), and the T-value (Alterman 
et al., 2012). Typically, the greatest hurdle to overcome is to account for solar loads and the 
impact it has on exterior building envelope surface temperatures and interior heat loads. The 
sol-air temperature (O'Callaghan and Probert, 1977) defines a fictious ambient temperature that 
accounts for solar induced heat transfer through the opaque building envelope, but that does not 
reflect solar induced interior heat gains.  
 There are also various simplified methods to calculate heating and cooling loads in buildings 
from estimating the overall thermal performance of buildings, such as CLTD/CLF (Spitler, 
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McQuiston, and Lindsey, 1993) and the RTS method (ASHRAE, 2017). These methods include 
all variables relevant to the energy demand in buildings, including interior loads from solar 
radiation through windows. However, these methodologies do not result a single indicator that 
represents the whole building energy performance.  

This paper proposes a simplified assessment that accounts for mechanisms relevant to the 
heat loss and gains through the building envelope and its impact on interior loads.  

2 Method 
This paper presents a methodology to assess the thermal performance of building using a single-
valued metric. The metric is based on the following principle. 

   (1) 

The HVAC energy demand (no internal loads), (J[Btu]), will mainly depend on the 
efficiency of the HVAC system (-) and the net building envelope heat transfer (J[Btu]). 
In Eq. (1), we introduce the Building Envelope Performance metric, BEP (J/m2[Btu/ft2]), which 
is defined by the overall building envelope thermal load per building envelope area, . For 
annual heating and cooling loads, BEP is a combination of the thermal resistance of all building 
envelope components,  ((m2·K)/W [(°F·ft2·hr)/Btu]), and the effective cooling (c) and 
heating (h) degree hours, as seen in Eq (3). includes heat transfer from conduction, 
convection and radiation: 

   (2) 

where  
= Effective cooling degree hours (K·hr [°F·hr]), 
= Effective heating degree hours (K·hr [°F·hr]), 

  = Conductive thermal resistance, R-value ((m2·K)/W [(°F·ft2·hr)/Btu]), 
  = Air leakage resistance ((m2·K)/W [(°F·ft2·hr)/Btu]), 
  = Window solar and internal heat gains resistance ((m2·K)/W [(°F·ft2·hr)/Btu]), 

  = Opaque envelope solar and thermal radiation correction factor (-). 
 and are calculated from average outdoor and indoor temperatures during 

cooling and heating mode respectively. 
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Here, 
= Average outdoor temperature during cooling (c) or heating (h) (K [°F]), 

 = Indoor setpoint temperature for cooling (K [°F]), 
 = Indoor setpoint temperature for heating (K [°F]),  

 = Time for which cooling occurs (hr), 
 = Time for which heating occurs (hr). 

Note that the effective cooling and heating degree hours defined in Eq. (3) are not the same 
as regular cooling and heating degree hours (Erbs, Klein, and Beckman, 1984). For example, 
because of heat loads (solar and internal), cooling may occur when the ambient outdoor 
temperature is below the indoor cooling setpoint temperature. Defining effective degree hours 
are essential to account for all loads/sinks contributing to the HVAC running cycle.  

2.1 Conductive Heat Transfer 

The resulting building envelope R-value, , is expressed as: 

  . (4) 

where  
  = Thermal resistance (R-value) of envelope component  ((m2·K)/W [(°F·ft2·hr)/Btu]), 
  = Conductive correction factor for envelope component , due to thermal bridges, 

installation quality, etc. (-). (Not validated in this study) 
The opaque envelope radiation correction factor, , accounts for increased surface 

temperatures due to solar radiation and is given by: 

  , (5) 
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   (7) 

and  
  = Equivalent building envelope surface temperature (K [°F]), 

  = Average outdoor temperature when either cooling or heating occurs (K [°F]), 

  = Annual average incident solar radiation on vertical surface in direction   
(W/m2[Btu/(hr·ft2)]), 

  = Annual average infrared radiation on vertical surface in direction   
(W/m2[Btu/(hr·ft2)]), 

  = Annual average incident solar radiation on vertical surfaces (W/m2[Btu/(hr·ft2)]), 

 = Annual average infrared radiation on vertical surfaces (W/m2[Btu/(hr·ft2)]), 
  = Material solar absorptivity of envelope component k (-), 
  = Material infrared emissivity of envelope component k (-), 
  = Exterior surface transfer resistance ((m2·K)/W [(°F·ft2·hr)/Btu]), 

 = East, South, West and North respectively (-). 
The opaque envelope solar and thermal radiation correction factor seen in Eq. (5) needs to 

be calculated for both heating ( ) and cooling ( ) since  and  varies 
accordingly.  

  . (8) 

2.2 Convective Heat Transfer 

The effective thermal resistance due to air infiltration through the building envelope, , is 
defined as: 

 .  (9) 

   (10) 
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heating (m3/hr [ft3/hr]), 
  = Density of air (kg/m3 [lb/ft3]), 
  = Specific heat of air (J/(kg·K) [Btu/(lb·°F)]), 

  = Air flow coefficient (m3/(s·Pa) [cfm/Pa]), 
  = Air pressure (Pa), 
  = Air leakage exponent (-). 

 
The average air pressure difference is calculated during the time of either cooling or heating. 

Typically, the overall pressure gradient, , around the building envelope is the sum of three 
components; wind loads, , buoyancy effect (stack), , and ventilation, . 
   (11) 

As for all variables in Eq. (2),  is defined for either cooling or heating. 

2.3 Solar, Thermal and Internal Heat Gains 
Finally, an effective thermal resistance is found, due to interior heat loads. These loads consist 
of solar and thermal radiation through windows and all interior loads from equipment, 
appliances, lighting, humans, etc. The heat gain resistance, , is written as 

 . (12) 

   (13) 

where 
= Window solar heat gain coefficient (-), 

 is a fictitious thermal resistance based on the assumption of a given temperature gradient, 

, which allows all thermal resistances in Eq. (2) to be lumped together. 

3 Result 
The proposed BEP metric of this paper has been validated against transient energy modelling 
simulation tools (EnergyPlus, 2018). The simulated building was setup as a rectangular building 
and with characteristics described in Table 1.  

The overall heating and cooling demands were computed for 16 different U.S. climate zones 
(IECC, 2015) and the indoor temperature was kept at 20°C [68°F]. As seen in Eq. (2), BEP 
relies on the effective heating and cooling degree hours. These hours are calculated based on 
all loads contributing to the indoor temperature. In general, cooling and heating degree hours 
are calculated under the following conditions: 
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   (15) 

Table 1. Simulation model used to validate the BEP metric. 

 

 
 

Length x Width x Height 20 x 15 x 4 m [65.6 x 49.2 x 13.1 ft] 
Window Area 84 m2 [275.6 ft2] 
SHGC 0.352 (-) 
R-value Wall/Roof/Window/Slab 1.013/3.509/0.391/adiabatic (m2·K)/W 
Solar absorptance Wall/Roof 0.92/0.7 
Surface heat transfer coefficient - Interior/Exterior 8/25 W/(m2·K) 
Air tightness Not validated 

 
Figure 1 reveals how the cooling and heating cycle varies in the simulations for warm 

(Miami, FL) and a cold (Minneapolis, MN) climate respectively. 

 
Figure 1. Variation in effective heating and cooling degree hours between a hot (Miami, FL) and cold 

(Minneapolis, MN) climate. and are calculated in accordance with Eq. (15).  

A comparison was made for BEP between various comprehensive simulation models 
(EnergyPlus, 2018; IBP, 2019; van Dijk, Spiekman, and Hoes-van Oeffelen, 2016). Figure 2 
depicts simulated cooling and heating demand for 16 locations in the U.S. According to this 
result, the BEP shows good agreement with more sophisticated simulation models. The main 
reason to the discrepancies depicted in Figure 2 for the simulated heating and cooling demand 
seems to be a result of dissimilar approaches to compute heat surface film coefficients. 

As previously discussed, the BEP metric will account for various variables that are 
dependent on exterior climate conditions. Figure 3 reveals the variation of BEP for various 
climates. According to the figure, colder climates tend to require an overall greater energy 
demand, thus a higher value of BEP. 
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Figure 2. Validation between the proposed metric, EnergyPlus, R5C1, and finite element simulations. The 

proposed metric shows good agreement with more sophisticated simulation procedures.  
 

 
Figure 3. Variation in BEP between 16 different locations and U.S. climate zones for the validated building. 

4 Conclusions 
This paper introduces a new building envelope thermal performance metric, BEP. The metric 
accounts for all relevant heat transfer mechanisms affecting the energy demand of a building 
due to outdoor climate and interior thermal loads; conductive heat transfer, air infiltration, solar 
heat gains affecting opaque building envelope surface temperatures and indoor heat loads. This 
paper also presents an initial validation study by comparing simulation results from various 
whole building energy simulation tools. According to the comparison, BEP can predict overall 
energy performance similarly to existing simulation tools. 

The purpose and advantage of BEP are that it does not require an iterative simulation 
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procedure. Instead, the proposed metric relies on input data given by the geometry of the 
building, thermal characteristics and outdoor climate date. This feature allows for a quick, yet 
accurate, thermal performance assessment of a building.  

Lastly, BEP serves as an overall building envelope thermal performance metric. This allows 
for easy comparison of the thermal performance of buildings with varying building type, 
characteristics, and climate location. Additionally, the BEP allows for efficient comparison of 
the predicted energy performance of planned retrofits.   
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