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ABSTRACT

To effectively predict and control the peak particle velocity (PPV) induced
by tunnel blasting, this study investigates the Qinhuangdao Jiaoshan Tun-
nel as a case study. This study first proposes an Improved Particle Swarm
Optimization (IPSO) algorithm through theoretical derivation. Building
upon IPSO, a further enhanced algorithm, termed CIPSO, is developed by
integrating a dependency model derived from Copula theory. The CIPSO
algorithm is then employed to optimize a Support Vector Regression
(SVR) model, establishing the final CIPSO-SVR prediction framework.
Copula theory was employed to quantify the correlation between PPV
and surface cumulative settlement (S). A regularization term incorporat-
ing Kullback-Leibler (KL) divergence was then embedded into the SVR
objective function. The Hyperparameters of the CIPSO-SVR model were
optimized using fixed-step rolling cross-validation. The model’s predictive
performance was rigorously compared against CIPSO-optimized Convo-
lutional Neural Network (CNN) and Long Short-Term Memory (LSTM)
models, as well as against SVR, CNN, and LSTM models optimized by
the Grey Wolf Optimizer (GWO) and Moth-Flame Optimization (MFO)
algorithms. The results show that the CIPSO-SVR model achieves superior
accuracy and robustness on the test set (R2 = 0.9569) in predicting
PPV compared to the alternative models. Crucially, the model effectively
captures the inherent nonlinear relationships of complex engineering
problems, even with small-sample data.
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1 Introduction

Blasting is one of the most commonly used methods for tunnel construction. However, it generates
stress waves that can reduce the mechanical properties of the surrounding rock mass, compromise its
stability [1], and thus pose a threat to nearby structures [2]. The PPV induced by blasting is a key
metric for assessing its impact on adjacent buildings and structures [3,4]. Consequently, the accurate
prediction of PPV is essential for ensuring project safety [5]. Currently, the primary approaches for
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PPV prediction include empirical formulas, fuzzy inference systems, and machine learning techniques,
among others.

The formulaic approach relies on the regression and empirical fitting of extensive field data.
However, in practice, factors like the internal interactions within the rock and soil mass significantly
limit its predictive accuracy for PPV. As a result, substantial deviations often occur between predictions
and measured data [6].

To address these limitations, numerous studies have proposed new empirical methodshave been
proposed. For instance, Deng et al. [7] derived an attenuation formula for elastic stress wave propaga-
tion based on stress wave theory, which was subsequently corrected for multi-hole, multi-stage blasting
conditions. Field validation demonstrated that the modified formula achieves PPV prediction with low
relative error. Luo et al. [8] noted that the distribution of PPV in deep underground spaces differs from
that on the surface, finding Sadovsky’s formula inadequate for such environments. To tackle this issue,
they employed a method combining field measurements, numerical simulation, mechanical analysis
and dimensional analysis to derive a new PPV prediction formula for cavern sidewalls. Comparisons
with field data, Sadovsky’s formula, and simulation results confirmed the superior performance of
their formula in deep underground settings. Separately, Tribe et al. [9] introduced a novel PPV formula
based on quantile-based analysis (DA), integrating key blast design parameters. Their model was field-
validated, achieved a high R2 and had the lowest MAE values.

Fuzzy inference systems have also been widely applied to PPV prediction. For example,
Chen et al. [10] introduced a method based on the Mamdani fuzzy inference system. This approach
first employs minimum redundancy maximum correlation to identify key blast design parameters
influencing PPV, then uses K-means clustering to determine their value ranges. These parameters and
ranges are subsequently input into the Mamdani system for prediction, with field data confirming the
model’s superior performance. In a separate study, Ghasemi et al. [11] combined an Adaptive Neuro-
Fuzzy Inference System (ANFIS) with PSO to predict PPV in open-pit mines. The accuracy of this
ANFIS-PSO model was validated through favorable comparisons with USBM empirical equations.

Recent advances in computer technology have enabled the widespread adoption of deep learn-
ing for predictive models in engineering [12,13]. Driven by this trend, research in PPV predic-
tion has increasingly focused on hybridizing different models to enhance accuracy, with promising
results [14–16].

Although machine learning models have improved PPV prediction to some extent, there are still
some problems. Traditional machine learning methods often struggle with large-scale datasets, while
deep learning approaches can be hampered by training difficulties and high computational costs [17].
To address these issues, this study proposes a novel method that integrates Copula theory into a deep
learning framework by capitalizing on the correlation between PPV and S. Copula theory provides a
well-established means of characterize dependence between variables [18,19]. Consequently, the first
step of our methodology involves constructing a Copula model to identify the function that best
describes the PPV-S correlation. Subsequently, a theoretically enhanced PSO algorithm is employed to
optimize an SVR model. Finally, the dependence structure captured by the Copula model is embedded
into the machine learning objective function as the regularization term using the KL divergence. This
constraint forces the model’s predictions to adhere to the statistical correlation between PPV and S.,
enabling accurate prediction even with limited samples and thereby facilitating the proactive mitigation
of potential accidents. The novelty and niche of this study are highlighted in the following aspects:
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Novelty:

1) A key novelty of this work lies in the application of Copula theory to precisely characterize the
complex, non-linear interdependence between Peak Particle Velocity (PPV) and surface settlement (S)
during tunnel blasting. By constructing a Gumbel Copula model, we identified a significant positive
correlation and, more importantly, a strong upper-tail dependence between these two parameters. This
finding indicates that the probability of observing substantial settlement increases non-linearly when
blast-induced vibration intensifies to extreme levels. In other words, under conditions approaching
the safety threshold, PPV and S exhibit an amplified, coordinated response rather than varying
independently.

2) Furthermore, we integrate this quantitatively established dependence as a physical constraint
into the learning process of the Support Vector Regression (SVR) model. This is achieved by
incorporating a Kullback-Leibler (KL) divergence-based regularization term into the SVR’s loss
function. Consequently, during training, the CIPSO-SVR model is optimized not only for predictive
accuracy but also for ensuring its outputs adhere to the discovered physical relationship between PPV
and S.

Niche

1) The model is specifically designed for challenging engineering scenarios where data is expensive
or difficult to obtain. In such contexts, standard deep learning models are prone to overfitting, and
traditional empirical methods are not accurate enough. Our method provides a robust solution tailored
to these constraints.

2) A key advantage of our model over conventional machine learning is the physical consistency
constraint introduced via the KL divergence term. This ensures the predictions are not only accurate
but also physically plausible, which fosters greater trust and acceptance among field engineers, thereby
significantly promoting their practical adoption.

2 Background

The Jiao Shan Tunnel is a component of the National Highway G102 improvement project in
Qinhuangdao City, situated in the Jiao Shan area of Shanhaiguan District. Given that the tunnel
passes beneath the Great Wall, strict control of deformation and blasting vibration is paramount.
In this study, five monitoring sections (S1–S5) were established 100 m west of the Great Wall, spaced
10 m i apart. Each section contained eleven monitoring points (D1–D11) installed at 5 m intervals, with
point D6 aligned with the tunnel centerline. The layout plan and longitudinal section are provided in
Figs. 1 and 2, respectively.

Vibration data generated during blasting operations were recorded using a Donghua DH5908N
vibration acquisition instrument, coupled with magnetoelectric vibration sensors. The sensitivity of
the sensors was 0.3 V/(m/s). The data acquisition system was configured with a sampling frequency
of 100 kHz and incorporated a built-in 1–500 Hz band-pass filter to suppress high-frequency noise
and low-frequency interference. The system exhibits a dynamic range greater than 100 dB and an
overall measurement accuracy of 1%. Annual calibration was performed by an accredited metrology
laboratory to ensure measurement traceability.

The peak particle velocity (PPV) was derived from the three-channel data (vertical, radial, and
tangential) using the vector synthesis method:

PPV =
√

PPV 2
x + PPV 2

y + PPV 2
z (1)
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Figure 1: Layout plan of the monitoring system at the Jiao Shan Tunnel site. Five monitoring sections
(S1–S5) are spaced 10 m apart, each containing eleven monitoring points (D1–D11) at 5 m intervals.
Point D6 is aligned with the tunnel centerline, which is the focus of subsequent correlation and
modeling analysis (a, b). The tunnel was excavated using gas-generating devices for pre-splitting, with
the working face divided into three parts: the upper portion of the upper, the lower portion of upper
bench and the lower bench. The blast hole arrangement is illustrated in Fig. 2. Since the settlement
data were collected following vibrations induced by the lower bench excavation, this study specifically
focuses on the lower bench excavation parameters for analysis

Figure 2: Longitudinal profile illustrating the settlement monitoring points and the blast hole layout.
The settlement data analyzed in this study were specifically collected during the blasting operations of
the lower bench, hence the focus on its excavation parameters

The unit for Peak Particle Velocity (PPV) throughout this study is centimeters per second (cm/s).
Outliers were identified and removed based on two criteria: (a) data records showing clear signs of
sensor failure, such as signal saturation or loss of connection; and (b) records where the measured PPV
fell outside the range of ±3 standard deviations from the value estimated by the Sadovsky empirical
formula. Furthermore, the dominant frequency (F), which was extracted from the vibration signal
using Fast Fourier Transform (FFT) analysis, served as an input feature for the prediction model.

Settlement data collected from the five sections during identical blasting periods, yielding a total of
25 datasets. After the exclusion of outliers, 23 datasets remained. These were subsequently partitioned
into training and testing sets with an 80:20 ratio, the first 80% of the data were used for training, and
the remaining 20% were reserved for testing. The corresponding settlement curve is presented in Fig. 3.

https://www.scipedia.com/public/Cao_et_al_2026 4

https://www.scipedia.com/public/Cao_et_al_2026


Y. Cao, R. Ma, L. Zhang, X. Du, W. Liu, and Q. Gao,

Combining copula theory and machine learning for prediction of ground vibrations

induced by tunnel blasting,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 26

Figure 3: Cumulative settlement curves for each section and each monitoring point

According to Fig. 3, it can be seen that the surface settlement distribution across all sections
approximates an orthogonal distribution, with the maximum settlement consistently located at the
tunnel centerline. Specifically, section S1 exhibits the greatest settlement at its centerline. As Fig. 1
shows, both monitoring point D6 and the blasting vibration monitoring points are aligned with the
tunnel centerline, and the settlement at D6 is indeed the largest. This typical behavior justifies the focus
of this study on point D6 within section S1.

Blast vibration data were collected concurrently, digitized by the data acquisition system, and
simultaneously transmitted to the data processing center and control system via a dedicated protocol.
The data were then relayed to the field engineer via the Internet. The relationship between PPV and
settlement at point D6 is shown in Fig. 4.

Figure 4: PPV vs. D6 settlement curves
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Fig. 4 reveals a clear positive correlation between PPV and S, where larger settlements correspond
to stronger vibrations. Therefore, when building a prediction model, the correlation between parame-
ters can be considered to improve the prediction performance of the model. The S correlation between
PPV and D6 is modeled by Copula theory to find a suitable Copula theory model for the Jiao Shan
Tunnel.

3 Research Methodology
3.1 Copula Theory

Copula theory, first proposed by Sklar [20] in 1959, is a widely used statistical tool for character-
izing dependence structures among random variables. Consider random variables X1, X2, . . . , XN with
joint distribution function F (X1, X2, · · · , XN) and marginal distribution function U1 = F1 (X1) , U2 =
F2 (X2) , · · · , UN = FN (XN). Sklar’s theorem states that there exists a function C (U1, U2, · · · , UN),
called a Copula, such that the joint distribution can be expressed as:

F (X1, X2, · · · , XN) = C (F1 (X1) , F2 (X2) , · · · , FN (XN)) = C (U1, U2, . . . , UN) (2)

The Archimedean Copula function expression is [21,22]:

C (U1, U2, . . . , UN; ϕθ) = ϕ−1
θ

(ϕθ (U1) + ϕθ (U2) + · · · + ϕθ (UN)) (3)

where θ is the parameter; ϕθ (·) is the generator function; ϕ−1
θ

(·) is its inverse.

Copula functions mainly include elliptic function clusters and Archimedean function clusters,
and elliptic function clusters include Gaussian, t, while Archimedean function clusters include Frank,
Clayton, Gumbel. This study evaluates these five candidate functions to identify the most suitable one
for modeling dependencies in the Jiao Shan Tunnel project.

The optimal Copula function is selected using the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC), where lower values indicate a better model fit [23].

AIC = 2i − 2 ln (L) (4)

BIC = ln (N) i − 2 ln (L) (5)

where i is the number of parameters, N is the sample size, L is the maximum likelihood function.

The optimal Copula function is selected by computing the corresponding AIC and BIC values
for each candidate using Eqs. (4) and (5). Furthermore, as indicated in Section 4.1, a certain positive
correlation exists between PPV and settlement, which suggests potential upper tail dependence.
To quantitatively describe the correlation under extreme variable values, this study employs tail
dependence coefficients. The upper and lower tail dependence coefficients, denoted as λU and λL,
respectively, are defined in Eqs. (6) and (7) [24].

λU = lim
q→1

P
[
X ≥ F−1

X (q)
∣∣Y ≥ F−1

Y (q)
]

(6)

λL = lim
q→0

P
[
X < F−1

X (q)
∣∣Y < F−1

Y (q)
]

(7)

where X and Y are random variables, q is a random probability value from 0 to 1, FX , FY are the
marginal distribution function of X and Y , respectively, F−1

X (q) and F−1
Y (q) are the quantile function

of X and Y , respectively, and P is the probability function.

When λU = 0 or λL = 0, the variables are independent under extremely high or low values,
respectively. When λU = 1 or λL = 1, the variables exhibit perfect co-movement under the
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corresponding extremes; When 0 < λU < 1 or 0 < λL < 1, it indicates a positive correlation under
extremes, with the strength of dependence increasing with the value of the coefficient [25].

To facilitate a clearer comparison of the differences between the Copula functions, simulations
were conducted using the five candidate functions. Fig. 5 illustrates the simulation results for each
function alongside radar charts of their AIC and BIC values. The corresponding tail dependence
coefficients, λU and λL values are shown in Table 1.

Figure 5: Comparison of Copula functions for modeling the dependence between PPV and settlement
(S): (a) Scatter plots of simulated data from Gaussian Copula functions; (b) Scatter plots of simulated
data from t Copula functions; (c) Scatter plots of simulated data from Frank Copula functions;
(d) Scatter plots of simulated data from Clayton Copula functions; (e) Scatter plots of simulated
data from Gumbel Copula functions; (f) Radar chart comparing the Akaike (AIC) and Bayesian
(BIC) information criteria for each function; lower values indicate a better fit. The Gumbel Copula
demonstrates the lowest AIC/BIC values and its simulated data (c) best capture the upper-tail
dependence (high PPV with high settlement) observed in the actual data, making it the most suitable
model

Table 1: Tail dependence coefficients corresponding to different functions

Dependence on the tail Gaussian t Frank Clayton Gumbel

λU 0.0000 0.4947 0.0000 0.0000 0.7417
λL 0.0000 0.4947 0.0000 0.7035 0.0000

The selection of the optimal Copula function is based on AIC/BIC criteria and tail dependence
analysis, as summarized in Fig. 5 and Table 1. Fig. 5f clearly shows that the Gumbel Copula yields
the lowest AIC and BIC values, indicating the best statistical fit. More importantly, the scatter plot of
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the Gumbel Copula (Fig. 5c) shows a higher density of points in the upper-right quadrant (high PPV,
high settlement), which visually confirms its ability to capture the upper-tail dependence (λU = 0.7417,
Table 1). This characteristic aligns with the physical intuition that strong vibrations are associated with
significant settlements. Therefore, the Gumbel Copula is selected to quantify the PPV-S correlation.

3.2 Modeling of Blasting Vibration and Surface Settlement
3.2.1 SVR Principles

SVR was proposed by Vapnik et al. [26] in 1997, is suitable for modeling and identifying
nonlinear, small-sample, and high-dimensional problems [27]. The core objective of SVR is to find a
functionf (x) = kφ (X) + b that maps input data to a high-dimensional feature space via the function
φ (X). The Radial Basis Function (RBF) was selected as the kernel function for this study.

3.2.2 Improved Particle Swarm Optimization (IPSO) Algorithm

Particle swarm optimization was proposed by Kennedy and Eberhart in 1995, and is a heuristic
global optimization algorithm inspired by the social behavior of animals warms. The goal of the PSO
algorithm optimization is to find the parameters of the best objective function in the search space. In
this algorithm, each particle represents a potential solution within the search space. The algorithm
iteratively updates each particle’s velocity and position based on its own historical best position (Pbest),
and the swarm’s global best position (Gbest), guiding the population toward the optimal. Assuming that
the total number of particles in the N-dimensional space is D, the update equations for the positions
and velocities of the particles are shown below [28].

xij (t + 1) = xij (t) + vij (t + 1) (8)

vij (t + 1) = ωvij (t) + c1r1 (t)
(
Pbest − xij (t)

) + c2r2 (t)
(
Gbest − xij (t)

)
(9)

where i = 1, 2, 3,..., N and j = 1, 2,..., D. N is the total number of particle in the swarms and D is
the dimensionality of the search space. The parameter ω is the inertia weight; xij and vij represent the
position and velocity components of the i-th particle in the j-th dimension, respectively; c1 and c2 are
the learning factors; r1 and r2 are random numbers uniformly distributed in the range [0, 1]; Pbest is the
best position of the i-th particle at time t; and Gbest is the global best position of the i-th particle in the
overall.

The standard Particle Swarm Optimization (PSO) algorithm can suffer from slow convergence
and a tendency to become trapped in local optima when dealing with complex problems. To address
these limitations, an Improved PSO (IPSO) is proposed. A key modification involves simplifying the
position update by removing the direct influence of the velocity term, leading to the following update
equation:

xij (t + 1) = c1r1 (t)
(
Pbest − xij (t)

) + c2r2 (t)
(
Gbest − xij (t)

)
(1 − ω)

(10)

A comparison of the convergence performance between the standard PSO and the Improved PSO
(IPSO) algorithms is presented in Fig. 6.

As shown in Fig. 6, the fitness value of the IPSO algorithm converges after 50 iterations, whereas
the PSO algorithm requires approximately 60 generations to stabilize. Moreover, the converged fitness
value achieved by IPSO is lower than that of PSO, demonstrating its faster convergence rate and
superior accuracy in addressing complex nonlinear engineering problems.
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Figure 6: Convergence performance comparison between the standard PSO and the proposed
Improved PSO (IPSO) algorithms

3.2.3 Modeling of CIPSO-SVR Coupling

Suppose: X is the S, Y is the PPV, x and y are arbitrary real numbers, and the marginal distribution
function is shown below:

u = FX (x) = P {X ≤ x} , v = FY (y) = P {Y ≤ y} (11)

According to Section 4.2, it is known that the Gumbel function can better express the correlation
between S and PPV, so the joint distribution function is [29]:

Cθ (u, v) = exp
[
− (

(− ln u)
θ + (− ln v)θ

) 1
θ

]
(12)

The corresponding Copula density function is [30]:

∂2C
∂u∂v

= Cθ (u, v) · [(− ln u) (− ln v)]θ−1

uv
·
[

1 + (θ − 1)
(
(− ln u)

θ + (− ln v)θ
)− 1

θ

]
(13)

where θ is the basic parameter that determines the Copula function.

The Copula conditional probability density function of PPV on S is:

pc = ∂2

∂u∂v
C (u, v) · fY (y) (14)

where fY (y) is the edge probability density function of the PPV.

The difference between the predictive distribution of the model and the distribution of the true
values is quantified by the KL divergence, and the KL definition formula is shown as follows [31]:

KL (pm ‖ pc) =
∫

pm (x) log
pm (x)

pc (x)
dx (15)
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Monte Carlo approximation:

KL ≈ 1
N

N∑
i=1

log
pm (x)

pc (x)
(16)

where N is the number of samples.

Eq. (16) is added to the SVR objective function so that the model predicted distribution obeys the
Copula-theoretic dependence of the PPV on the S, as shown in the following equation:

min
ω,b,ξ

1
2

‖ω‖2 + c
N∑

i=1

(
ξi + ξ ∗

i

) + ηKL (17)

where η is the weight factor of the constraint term (η > 0) which was optimized alongside other
hyperparameters via cross-validation. When η is relatively large, the model tends to prioritize the
Copula theory constraints. Conversely, an excessively small η value leads the model to focus primarily
on error minimization in traditional SVR, potentially neglecting the physical constraints.

The introduced regularization term provides more than a mathematical constraint; it enhances
model generalizability and physical consistency. This term first serves as a strong physical inductive
bias. Under small-sample conditions, it mitigates overfitting and unreasonable predictions for new
data by ensuring outputs align with the learned PPV-S dependence. This significantly improves the
model’s generalization capability and practical reliability. Second, from a blasting dynamics viewpoint,
it acts as an energy consistency constraint. The upper-tail dependence identified by the Gumbel Copula
reflects the nonlinear correlation between intense vibration (high PPV) and substantial deformation
(large S), rooted in energy transfer. This regularization guarantees that the predictions are not only
consistent with the data but also comply with this fundamental energy principle, ensuring physical
plausibility.

The CIPSO-SVR flowchart is shown in Fig. 7.

To evaluate the performance of the CIPSO-SVR model in small samples PPV prediction, the
CIPSO and IPSO algorithms were configured with identical parameter values. Both models were
trained and tested on the field measured dataset. The prediction errors (PPV (Predicted value-True
value)) for both models are presented using box plots in Fig. 8 to determine the performance of SVR
models optimized by the CIPSO and IPSO algorithms, respectively.

As shown in Fig. 8, the box plot for CIPSO-SVR is narrower than that of IPSO-SVR, demonstrat-
ing a more concentrated distribution of prediction errors. the CIPSO-SVR results contain no outliers,
whereas two outliers are present in the IPSO-SVR results. This suggests that CIPSO-SVR relies on the
correlation between PPV and S correlation to align the predictions more closely with actual values.

3.2.4 PPV and Surface Settlement Modeling

The model incorporates four main parameters: cumulative settlement (S), maximum charge per
delay (Q), blast center distance (R), and frequency (F). The parameter S is employed solely during the
initial modeling phase, where Copula theory is applied to identify a function that accurately captures
the nonlinear dependence between S and PPV. In the subsequent phase, an Improved Particle Swarm
Optimization-based Support Vector Regression (IPSO-SVR) model is constructed, integrating the
previously determined Copula function into the SVR objective function. This leads to the proposed
CIPSO-SVR model, which accepts Q, R, and F as inputs and outputs the predicted PPV. The KL
scatter constructs regularization terms embedded in the SVR objective function so that the model
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can predict values closer to the true values under small sample conditions. In order to demonstrate
the performance of the CIPSO algorithm, two optimization algorithms, GWO and MFO, are used
as comparisons. Using these three algorithms coupled with three prediction models, SVR, CNN
and LSTM, respectively. The range of parameter values for each prediction model and optimization
algorithm are shown in Tables 2 and 3.

Figure 7: CIPSO-SVR flowchart

Figure 8: Prediction error comparison of SVR models optimized by the IPSO and the CIPSO
algorithms
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Table 2: Range of values for each model parameter

Prediction model Key parameters Value range

SVR Regularization parameter-C [0.1, 100]
Gamma [0.001, 100]
Epsilon [0.01, 100]

η1 (0, + ∞)
CNN FilterSize [1, 10]

NumFilters [5, 100]
η2 (0, + ∞)

LSTM Number of hidden units [10, 1000]
Learning rate [0.0001, 0.1]
Dropout rate [0, 0.5]

η3 (0, + ∞)

Table 3: Parameter settings for the three optimization algorithms

Algorithm type Parameters Values

CIPSO Population size 10
Number of iterations 50

C1 1.75
C2 1.75

wmax 0.9
wmin 0.4

GWO Population size 10
Number of iterations 50

MFO Population size 10
Number of iterations 50

The particle swarm optimization algorithm requires strong global exploration capabilities at the
initial stage and refined local exploitation capabilities near convergence. To balance this trade-off, a
time-varying inertia weight ω is introduced [32], which decreases as the iteration count increases.

ω = ωmax − (ωmax − ωmin) × i
Tmax

(18)

where ωmax is the maximum inertial weight, set to 0.9; ωmin is the minimum inertial weight, set to 0.4;
Tmax is the maximum iteration count; i is the current iteration count.

3.2.5 Cross-Validation Hyperparameter Optimization

This study employed a fixed-step rolling cross-validation [33] approach to verify model robustness
and determine the optimal hyperparameters. To prevent data leakage, the entire cross-validation
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process was strictly confined to the training dataset, while the test set was reserved exclusively for
the final performance evaluation. This is done The specific process was as follows: G1–G13 were used
for the training, set and validated on G14; subsequently, group 2–14 were used for the training, set and
validated on group 15; as the validation set; group 3–15 as thewere used for training, set and validated
on group 16; as the validation set, and is the entire process was repeated for a total of five times in
total rounds. The specific flowchart is shown in Fig. 9.

Figure 9: Schematic of the model development and evaluation workflow. The model was developed
using a two-stage process. A fixed-step rolling cross-validation was conducted exclusively on the train-
ing set (Groups G1–G18) for hyperparameter tuning and model selection. This internal validation,
detailed in the diagram, involves five folds where each subsequent blast event is predicted based on
past data, preventing data leakage. The final model, trained on the entire training set (G1–G18), was
evaluated on a strictly independent hold-out test set (G19–G23) to assess its generalizability

4 Model Application

Following the five rounds of fixed-step rolling cross-validation, the optimal hyperparameters
for each coupled model were determined. These optimized parameters were then used to train the
final models and generate predictions. The resulting optimal hyperparameter sets are summarized in
Table 4.

Table 4: Table of optimal hyperparameters of the model

Predictive
model

Key
parameters

Optimization algorithm
CIPSO GWO MFO

SVR Regularization parameter c 7.2041 30.9095 9.8384
Gamma 0.001 0.4 0.01
Epsilon 0.01 0.2752 0.01

(Continued)
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Table 4 (continued)

Predictive
model

Key
parameters

Optimization algorithm
CIPSO GWO MFO

η1 0.01 0.05 0.02
CNN FilterSize 2 4 5

NumFilters 53 7 31
η2 0.04 0.1 0.06

LSTM Number of hidden units 68 83 137
Learning rate 0.0319 0.01 0.0256
Dropout rate 0.32 0.45 0.44

η3 0.02 0.05 0.01

4.1 Model Evaluation
In this paper, six assessment metrics are used to evaluate and analyze the final prediction results,

as shown below [34–36]:

R2 = 1 −

m∑
i=1

(Xi − Yi)
2

m∑
i=1

(
Xi − X

)2
∈ [0.1] (19)

MAE = 1
m

m∑
i=1

|Xi − Yi| (20)

RMSE =
√√√√ 1

m
×

m∑
i=1

(Xi − Yi)
2 (21)

d = 1 −

m∑
i=1

(Xi − Yi)
2

m∑
i=1

[∣∣Xi − X
∣∣ + ∣∣Yi − Y

∣∣]2
∈ [0, 1] (22)

where m is the number of data points, X i is the true value, Y i is the predicted value, and X is the average
of the true values

4.2 Performance Analysis of the Prediction Result Set
Fig. 10 presents the predicted vs. true value plots for the nine coupled models. A comparative

performance analysis of these hybrid models is provided in Fig. 11.

As illustrated in Fig. 10, under the same optimization algorithm, the overall prediction trends of
the SVR, CNN, and LSTM models align approximately with the measured values on both training
and testing sets. Among them, the CIPSO-SVR model yields predictions that most closely match the
true values. Fig. 11 further reveals that the CIPSO-SVR model demonstrates the most outstanding
performance, achieving high R2 values of 0.990 on the training set and 0.957 on the testing set. Its data
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points cluster tightly around the y = x line and maintain strong consistency across the entire PPV range,
indicating not only high overall accuracy but also stable predictive capability for blast vibrations of
varying intensities. Notably, the three CIPSO-optimized models exhibit very few outliers significantly
deviating from the y = x line. In contrast, models optimized by GWO and MFO, particularly those
corresponding to subplots (e), (f), (h), and (i) in Fig. 11, display noticeable outlier points. The presence
of these outliers, combined with the greater overall dispersion of the data, suggests a compromised
generalization ability in these models.

Figure 10: Comparison of predicted and measured PPV for the hybrid models: (a) corresponds to a
comparison of predicted vs. measured values for the three models (LSTM, CNN, SVR) optimized by
the GWO algorithm; (b) corresponds to a comparison of predicted vs. measured values for the three
models (LSTM, CNN, SVR) optimized by the MFO algorithm; (c) corresponds to a comparison of
predicted vs. measured values for the three models (LSTM, CNN, SVR) optimized by the CIPSO
algorithm

Figure 11: (Continued)
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Figure 11: Scatter plots of predicted vs. measured PPV values for the nine hybrid models on both
training and testing sets: (a) CIPSO-SVR; (b) CIPSO-CNN; (c) CIPSO-LSTM; (d) GWO-SVR;
(e) GWO-CNN; (f) GWO-LSTM; (g) MFO-SVR; (h) MFO-CNN; (i) MFO-LSTM. The solid line
represents the ideal fit (y = x). Models whose data points cluster tightly around this line exhibit
higher accuracy. The CIPSO-SVR model (a) shows the closest agreement between predictions and
measurements across both datasets, with minimal deviation from the ideal line, indicating its superior
performance and generalizability

The integration of the Improved Particle Swarm Optimization (IPSO) algorithm with Support
Vector Regression (SVR), further regularized by a physical constraint derived from Copula theory (the
KL divergence term), establishes a robust framework for addressing tunnel blast vibration prediction
under the challenges of small sample sizes and high nonlinearity. In contrast, while CNN and LSTM
possess strong learning capabilities, their predictive performance diminishes in data-scarce scenarios.
The comparative analysis confirms the superior efficacy of the CIPSO algorithm over GWO and MFO
alternatives. These findings collectively demonstrate the enhanced capability of the proposed CIPSO-
SVR approach in capturing complex nonlinear relationships within small-sample engineering contexts,
offering a scientifically sound and effective predictive tool for analogous engineering problems.

To further analyze the prediction performance of the coupled models, the prediction errors
(PPV(Predicted value-True value)) for each model are plotted in Fig. 12.

Figure 12: Error values for each coupled model
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Fig. 12 demonstrates that the CIPSO-SVR model achieves superior accuracy compared to all
other benchmark models (CIPSO-CNN, CIPSO-LSTM, GWO-SVR, GWO-CNN, GWO-LSTM,
MFO-SVR, MFO-CNN, MFO-LSTM).

A comprehensive comparison of the error metrics for each coupled model is provided in Fig. 13 to
further evaluate their prediction performance. In this figure, a larger R2 value denotes a superior model
fit, and a larger d indicates stronger consistency between predictions and measurements. Conversely,
smaller values of both MAE and RMSE indicates lower prediction bias and higher overall accuracy,
respectively.

Figure 13: Error indicator plots for coupled models

Fig. 13 demonstrates that the SVR model optimized by the CIPSO algorithm achieves superior
metrics (higher R2and d, lower MAE and RMSE) compared to models optimized with the GWO
and MFO algorithms. This confirms that CIPSO enhances both the model’s fitting capability and
its predictive accuracy. Among all nine coupled models, CIPSO-SVR delivers the best performance,
with respective R2, d, MAE, and RMSE values of 0.9569, 0.9888, 0.0138, and 0.0168, significantly
outperforming the other eight models. These results affirm the high effectiveness of the proposed
CIPSO-SVR model in solving complex nonlinear engineering problems.

The predictive performance of each coupled model on the test set, which can reflect solve real
problems ability, is further evaluated using a Taylor diagram, as shown in Fig. 14.

As shown in the Fig. 14, the predictions of the CIPSO-SVR model are the closest to the measured
data, followed by those of CIPSO-LSTM and CIPSO-CNN. This result demonstrates the superior
practical performance of the CIPSO optimization algorithm compared to the GWO and MFO
algorithms.
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Figure 14: Taylor diagram visualizing the statistical agreement between predicted and measured PPV
for each hybrid model on the test set. The proximity of a model’s marker to the reference point
(“Measured”) on the diagram indicates the degree of similarity in terms of standard deviation,
correlation coefficient, and centered RMS difference. The CIPSO-SVR model is located closest to
the reference point, signifying the best overall statistical match to the observed data

4.3 Comparative Analysis of the CIPSO-SVR Model and Empirical Formulas for Prediction
Performance

To further validate the practical contribution and engineering relevance of the proposed model, we
compared its performance against the conventional empirical Sadovsky formula [37], which remains
the most widely used method in blasting engineering practice for PPV prediction. The Sadovsky
formula is expressed as:

PPV = k

(
3
√

Q
R

)α

(23)

where PPV is the peak particle velocity (cm/s); R is the distance from the measuring point to the charge
center (m); Q is the maximum amount of explosive detonated at one time (kg); k is a parameter related
to the blasting site conditions; and α is a coefficient related to the geology.

ln PPV = ln k + α ln
3
√

Q
R

(24)

Letting Y = ln PPV , b = ln k, a = α, X = ln
3
√

Q
R

, the above formula can be written as:

Y = b + aX (25)

Fitting the training data using Eq. (12) yielded b = 6.1921 and a = 2.2071. Therefore, α = 2.2071
and k = 488.8717. The Sadovsky formula is:

PPV = 488.8717

(
3
√

Q
R

)2.2071

(26)
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The fitting results are shown in Fig. 15:

Figure 15: Linear regression fit of the Sadovsky equation on the training dataset

The test set was predicted using Eq. (26), and the results were compared with those from the
CIPSO-SVR model. The performance of both approaches was evaluated using the mean absolute
error (MAE), index of agreement (d) [38], root mean square error (RMSE), and Pearson correlation
coefficient (PC), as summarized in Table 5.

Table 5: Comparison between the CIPSO-SVR model and the Sadovsky empirical formula

Prediction model MAE d RMSE PC

CIPSI-SVR 0.01382 0.98883 0.016779 0.99363
Sadovsky equation 0.040259 0.90341 0.048628 0.94661

As summarized in Table 5, the proposed CIPSO-SVR model demonstrates superior accuracy and
consistency across all evaluated metrics compared to the Sadovsky empirical formula. Specifically,
the CIPSO-SVR model achieved an index of agreement (d) of 0.98883 and a Pearson correlation
coefficient (PC) of 0.9936, outperforming the empirical model, which yielded corresponding values
of 0.90341 and 0.94661. This represents an improvement of 9.46% in predictive consistency and 4.97%
in linear correlation. These results substantiate that the CIPSO-SVR model not only provides higher
predictive accuracy but also yields results that are in closer agreement with physical reality. In contrast,
the Sadovsky formula, owing to its simplistic form that considers only charge weight and distance, fails
to capture the complex nonlinear interactions arising from varying geological conditions and blast
design parameters. Furthermore, as a generalized model derived from broad empirical practice, it may
lack the specificity required for optimal performance in particular engineering contexts.
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4.4 Safety Control Interval Analysis and Engineering Decision Support Based on the CIPSO-SVR
Model

To further elucidate the quantitative advantages of the CIPSO-SVR model for blasting safety
decision-making, this section presents a safety control interval analysis. Unlike traditional empirical
formulas, the proposed model outputs a full probability distribution for its predictions, enabling the
construction of safety intervals and a formal risk assessment. Using 0.45 cm/s as the safety threshold,
we conduct an in-depth analysis of the test set predictions, with the results presented in Fig. 16.

Figure 16: PPV Safety interval prediction and risk assessment based on the CIPSO-SVR model: The
blue solid line represents the PPV values predicted by the CIPSO-SVR model, and the black dots
denote the measured PPV values. The light blue shaded area depicts the 95% prediction interval,
quantifying the uncertainty of the predictions. The red dashed line indicates the safety threshold of
0.45 cm/s. The safety threshold was established per the Chinese Blasting Safety Regulations (GB6722-
2014), which stipulate a limit of 0.5 cm/s for the protection of ancient structures and historic sites.
Given that the Ming Dynasty Great Wall is a National Key Cultural Relic, a more conservative
threshold of 0.45 cm/s was adopted to ensure its maximum protection. The entire prediction interval
lies consistently below the safety threshold, demonstrating a negligible risk of exceedance and
providing a quantitative basis for safe blasting optimization

As shown in Fig. 16, the PPV values predicted by the CIPSO-SVR model closely align with the
measured data, confirming its high predictive accuracy. The 95% prediction interval fully captures
the variability in the measured values, while its upper boundary remains consistently below the safety
threshold. Analysis indicates that the probability of the PPV exceeding the 0.45 cm/s safety threshold
is extremely low, representing a negligible risk. This quantitative output provides a direct and reliable
basis for optimizing blast designs. Supported by this evidence, engineers can safely adjust blasting
parameters to improve efficiency, leading to significant savings in both project time and cost.

This study presents a hybrid prediction model, the Copula-theory-fused Improved Particle Swarm
Optimization-based Support Vector Regression (CIPSO-SVR), for estimating peak particle velocity
(PPV). The model incorporates the dependency structure characterized by the Copula function as a
regularization term into the SVR objective function via the Kullback-Leibler (KL) divergence, thereby
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enhancing prediction accuracy. Nevertheless, further refinements and optimizations of the proposed
model are warranted.

Assumptions:

1) It is postulated that incorporating the Copula-derived dependency structure as a regularization
term, via Kullback-Leibler (KL) divergence, into the Support Vector Regression (SVR) objective
function can effectively guide the machine learning process. This integration is expected to steer
predictions towards alignment with observed physical relationships, in addition to minimizing data-
fitting errors, thereby potentially enhancing model generalizability under small-sample conditions.

2) The model training and cross-validation procedures operate under the assumption that data
samples from individual blast events are independent and identically distributed. While the fixed-step
rolling cross-validation method partially accounts for potential sequence dependence, the intrinsic
dynamic time-series characteristics of vibration propagation are not explicitly modeled.

Limitations:

1) The model’s development and evaluation are constrained by the dataset, which comprises only
23 valid samples obtained from the Jiao Shan Tunnel project. Its general applicability should be further
tested across projects involving a broader range of geological settings.

2) Although the model demonstrates superior performance compared to other machine learning
algorithms and empirical formulas within this study, a direct and systematic empirical comparison
against established industry-standard methods in broader practical engineering.

Future Research Directions:

1) Future work will prioritize collecting blasting vibration data from a variety of tunnel projects
and mining operations. Building a larger, more diverse dataset is crucial for a comprehensive assess-
ment of the model’s generalizability. Furthermore, Applying the proposed method to mining blasting
scenarios will further test its applicability and robustness across different engineering environments.

2) Conducting parallel applications and comparative analyses alongside widely adopted empirical
formulas and industry-standard software in future real-world projects is essential. Such comparisons
will provide more compelling evidence regarding the model’s practical value and effectiveness in
engineering applications.

5 Conclusion

This study developed a novel blasting PPV prediction model by integrating Copula theory into an
IPSO-SVR model framework, termed CIPSO-SVR. The core of this approach involves using a Copula
function to quantify the correlation between PPV and surface settlement (S), which is then embedded
as a physical constraint into the SVR objective function via KL divergence, ensuring the predictions
adhere to engineering physics. This approach establishes the Copula theory-incorporated, termed
the CIPSO-SVR blasting PPV prediction model. The proposed CIPSO-SVR model was validated
using the Jiao Shan Tunnel project and compared against eight other machine learning methods. The
principal conclusions are as follows:

1) Copula theory was successfully employed to quantify the nonlinear dependence between PPV
and S. Based on the AIC/BIC criterion and tail dependence analysis, the Gumbel Copula function
was identified as the optimal model for characterizing the PPV-S correlation at monitoring point D6
in section S1.
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2) IPSO stabilizes the fitness function within 50 iterations, whereas PSO requires 60 iterations. The
stabilized fitness value achieved by IPSO is lower, indicating faster convergence and higher solution
accuracy when addressing complex nonlinear engineering problems.

3) On the test set, the proposed CIPSO-SVR model achieved superior performance metrics (R2 =
0.9569, d = 0.9888, MAE = 0.0138 and RMSE = 0.0168) compared to the eight models. This result
confirms the enhanced capability of the CIPSO-SVR model in solving complex nonlinear engineering
problems.

Tunnel blasting construction is prone to safety accidents, which not only generate huge economic
losses to society, but also bring injuries to the workers. Therefore it is necessary to predict the PPV
generated by blasting. The results of this study show that it is feasible to analyze and predict using the
CIPSO-SVR model.

The model can solve complex nonlinear engineering problems and provides a scientific basis for
construction units to predict and control the impact of blasting vibration in advance.
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