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Abstract. This work aims to gain a better understanding of how the rheological properties of printable
materials affect their processability, as well as the quality of the final product, which at the end can lead
to reducing time and costs of the process and increase product development.

As the first step, the proper rheological non-Newtonian models are extracted from experimental studies.
Later, three-dimensional numerical simulation of extrusion process is performed in the context of Direct
Numerical Simulation (DNS) of governing equations, where the whole physics of fluid motion is taken
into account. A finite-volume fractional step approach is used to solve the Navier-Stocks equations on
collocated arbitrary meshes. Geometrical volume-of-fluid (GVOF) interface capturing approach is used
to resolve the topological changes of the moving interface. The governing equations are solved using
High-Performance Computing (HPC) parallel approaches.

Besides the contribution of this work to the advancement of numerical techniques applied to multiphase
complex flows, obtained results will shed light on the nature of non-Newtonian extrusion process with
vast applications in the 3D printer industrial sectors.

1 INTRODUCTION

3D printing has opened up new perspectives in the field of personalised medicine, with the possibility
of manufacturing patient-specific implants or even bioprinting cells through microextrusion processes.
Different types of inks have been developed for this purpose, with a wide spectrum of rheological prop-
erties, ranging from very thick ceramic pastes to very soft hydrogels. The knowledge and modelling
of how rheological properties affect printability is an indispensable tool to design inks with better per-
formance and to improve printing processes. The current study presents numerical simulations of the
micro-extrusion process of printable biomaterials, focusing more specifically on ceramic inks that con-
sist of a thick suspension of ceramic particles in a polymeric binder. This type of inks is used to fabricate
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customized implants for the repair and regeneration of bone defects. The rheological properties of these
inks, extracted from experimental data, are used to establish the rheological non-Newtonian models that
are subsequently fed to the numerical simulations.

The numerical simulation of 3D printing extrusion processes can provide valuable information on the
flow patterns which would be of huge importance, specially during the design stage [1]. While viscous
fluids strain uniformly when a stress is applied, non-Newtonian shear-dependent fluids strain as a func-
tion of local shear rate, which is a characteristic of the fluid. The modeling and simulation of this kind
of processing operations appears as a fundamental tool, which leads to a better understanding of how
the rheological properties of printable biomaterials affect their processability, and reducing the time and
costs related to the processes and the final products. The development of accurate numerical tools for the
simulation of printable biomaterial multiphase flows is vital from both fundamental and practical points
of view. Different approaches are used in literature to develop numerical tools to solve non-Newtonian
multiphase flow problems. Among the various numerical methods available, finite-volume methods are
reliable, flexible, fast and widely available tools, available in common simulation packages. Historically,
the main challenges to be faced in the modeling of extrusion processes by means of finite-volume based
solvers consist of: (1) the correct modeling of the non-Newtonian behavior apparent in many of the
printable biomaterials; (2) the correct representation of the interface that divides the extruded fluid and
the surrounding gas.

Regarding the representation of the interface, the Front-Tracking (Marker-and-Cell), Level-Set and Volume-
of-Fluid (VoF) methods are known as the most widely used approaches in literature. The advantages and
disadvantages of these methods in different applications have already been analyzed in the simulation of
high-viscous Newtonian and non-Newtonian flows. In VoF methods [2], the advected scalar field func-
tion represents the volume fraction of one of the phases, varying from 0 to 1 in interface, and having the
value of 0 or 1 in non-interface cells. Using this approach, Bonito et al. [3] assessed the appearance of
buckling in 2D and 3D Jets. A disadvantage of the VOF method is its difficulty in computing accurate
geometrical properties (interface normal and curvature) from the volume fraction function as it presents
a step discontinuity. Alternatively, in the Level-Set Method (LSM) [4] the interface is identified by the
zero contour of a signed level-set function, advected at every time step. Employing this approach, Ville
et al. [5] carried out simulations of fluid extrusion for square and rectangular inlets. The major defect of
LSM is due to the discrete solution of transport equations which leads to numerical errors in conservation
of mass of the fluid-phase. In the Marker-and Cell method the individual interfaces are represented by
sets of connected marker points. This approach is particularly effective in implementing free-surface
approximations, where the effect of the gas is neglected, but performs quite inefficient when complex
interfacial break-up and coalescence occur. Tome et al. [6] proved the ability of their updated MAC
method on capturing physical instabilities regarding the buckling of planar jets with high-viscous and
non-Newtonian properties.

The fluid buckling phenomenon is a challenging case usually employed to test the capability of numerical
models to effectively represent the behavior of high-viscous and non-Newtonian fluids. The case consists
of simulating a jet extruded downwards, under the effect of gravity, into a cavity. After hitting the solid
base of the box, oscillations may appear on the free-surface of the jet, leading to coiling and folding
patterns. Parameters influencing the appearance of buckling processes are the aspect ratio of the cavity
H/D (where H is the height of the cavity in the gravity direction, and D is the jet width), the Reynolds
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number of the jet, Re, the jet inlet section (circular, squared, rectangular) and the rheology of the jet. The
validation of the implementation of the numerical methods in the context of the extrusion process has
been done in our previous work [1] where the coiling process of a low Reynolds jet inside a cavity was
predicted correctly.

In this work, direct numerical simulation of the Navier-Stokes equations in the context of the two-phase
flows is used where the approach presented by [7] is utilized to resolve the non-Newtonian rheologies.
The set-up presented by [8] for liquid extrusion simulations at high Re numbers is employed to impose
inlet and outlet boundary conditions. The rest of the paper is organized as follows: mathematical formu-
lation are presented in Section 2, numerical methods are described in Section 3. The numerical set-up
is presented in Section 5, followed by the numerical results and discussion. Finally, conclusion remarks
are provided in Section 6.

2 Mathematical Formulations

The numerical framework employed in this work accounts for a finite-volume discretization of Navier-
Stokes equations for mass and momentum conservation on collocated unstructured meshes, Volume-of-
Fluid description of the interface and Generalized-Newtonian-Fluid (GNF) models to take into account
the non-Newtonian rheologies. A Volume-of-Fluid interface capturing approach is used to evaluate the
time-evolution of the moving interface. In this approach, as explained before, the interface is captured
implicitly using a scalar field α(x, t), representing the volume fraction of a phase inside each cell of the
discretized domain at a given time:

α(x, t) =

{
1 cell is filled with associated phase
0 otherwise

In this formulation, cells with 0 < α(x, t) < 1 are known as interface cells. For a given velocity field
extracted from the Navier-Stokes equations, the time evolution of the interface is resolved using an
advection equation as following:

∂α(x, t)
∂t

+∇ · (α(x, t)u) = 0. (1)

A piecewise linear interface calculation (PLIC) method [9] is used to geometrically reconstruct the inter-
face as planes with an arbitrary orientation in each interface cell. In this method, regardless of the grid
cell type, i.e. structured or unstructured, the interface in each cell is defined as:

x ·n−d = 0 (2)

where n is the unit-normal vector pointing outward with respect to the phase α(x, t), x is the position
vector of a point on the interface and d is the signed distance from the origin to the plane. In this work,
a point-cloud approach is used to evaluate the normal vectors of the interface cells [9].

The velocity scalar field, u(x, t), needed for the advection of the interface, is derived from the resolu-
tion of Navier-Stokes equations taking into account the incompressibility and variable properties limit
(density, viscosity). In a domain occupied by two incompressible and immiscible fluids separated by an
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interface, the velocity and pressure fields are governed by the following equations:

∂

∂t
(ρu)+∇ · (ρuu) = −∇p+∇ · τ+ρg+σκnδΓ (3)

∇ ·u = 0 (4)

With the stress tensor evaluated as:

τ = µ(γ̇)
(
∇u+(∇u)T ) (5)

In this formulation, the apparent viscosity µ could be described as a function of shear-rate tensor γ̇ in the
context of Generalized Newtonian Fluid (GNF) formulation. A continuum surface force (CSF) approach
[10] is used to transform the surface tension force into a volume force. The density and viscosity can be
defined as scalar-fields inside the whole domain as follows:

ζ = ζ1H +ζ2(1−H) (6)

where ζ ∈ {ρ,µ,} and H is the Heaviside step function which takes the value one in dispersed phase and
zero elsewhere.

3 Numerical Method

The numerical methods are implemented in an in-house parallel c++/MPI code called TermoFluids [11].
Validations and verifications of the numerical methods used in this work have been reported in [12, 13,
8, 14, 7, 18, 15, 16]. The Finite-volume (FV) approach is used to discretize the Navier-Stokes and VOF
equations on a collocated grid, so all the computed variables are stored at cell centroids.

The algorithm employed to solve the governing equations described in Section 2 at each time-step can
be described as follows:

1. Physical properties, interface geometric properties and velocity fields are initialized (only first
iteration).

2. Allowable time step is calculated. The value of ∆t is limited by CFL conditions on convective term
and also by explicit treatment of surface tension as used by [14]. To decrease the computational
costs, the maximum value of the CFL coefficient which leads to a stable simulation is used.

3. Using the evaluated normal vectors at the interface cells, the value of the d parameter in Equation 2
is calculated using the Brent’s root-finding algorithm [17], thus, locating the interface planes of
PLIC method at each interface cell.

4. In the context of finite-volume methods, the application of the divergence theorem and the spatial
discretization of this equation over a cell with volume ∂v and face set F with area vectors of dA f

results to: ∫
∂v

∂α(x, t)
∂t

+ ∑
fi∈F

(α(x, t)u) f ·dA fi = 0 (7)

where the first term deals with the temporal evolution of the interface and the second term evaluates
the total volumetric flux of the phase represented by volume-fraction function α(x, t) across the
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faces of the associated grid cell in a timestep based on the selected temporal scheme. A geometrical
approach as presented by Jofre et al. [12] is used to evaluate the second term by employing the
geometrically reconstructed interface calculated based on volume fraction values at interface cells.
In the classical formulation, the curvature is calculated as divergence of the gradient of color-
function: κ = ∇ · (∇α(x, t)/|∇α(x, t)|). However, given the fact that the color-function in VOF
is discontinuous by definition, applying derivative type operations to this discontinuous function
leads to numerical errors. To circumvent this issue, a sign distance function (ψ) representing the
minimum distance of each cell’s center from the PLIC interface is evaluated in a neighbouring area
of the interface. The curvature is then calculated using this continuous auxiliary distance-function
as: κ = ∇ · (∇ψ/|∇ψ|) [9].

5. Density and viscosity in the domain and geometrical properties at the interface (curvature and
interface normal) are updated from the advected color-function α(x, t) as described in Equation 6.

6. A semi-implicit fractional step projection method is used to solve the velocity-pressure coupling.
In high-viscosity/non-Newtonian fluids, the varying value of viscosity can increase dramatically
and lead to excessively small time-steps of the simulation and thus resulting in huge computational
costs. To circumvent this issue, the diffusion term in equation 3 is treated implicitly. A second-
order Adam-Bashforth scheme is used on convective, gravity, and surface tension terms. The
proposed discretization for the predictor step was already presented and employed by the authors
in [7, 13].

7. A correction to the predicted velocity applies as below:

ρun+1 −ρu∗

∆t
=−∇h pn+1 (8)

8. Poisson equation reads as follows and is solved using a preconditioned conjugated gradient method:

∇h ·
(

1
ρ

∇h(pn+1)

)
=

1
∆t

∇h · (u∗) (9)

9. The velocity un+1 is corrected by the updated pressure as:

un+1 = u∗− ∆t
ρ

∇h(pn+1) (10)

4 Extraction of the rheological properties

0.6 g of 30 wt. % pluronic F127 (BASF pharmaceutics, Germany) hydrogel were loaded with 1.4 g β-
tricalcium phosphate fine powder (3-4 µm particle size that was sintered and milled in the laboratory) in
a dual asymmetric centrifugal mixer (DAC 150, Speedmixer, USA), in order to create a printable ceramic
slurry. The rheological characterisation was carried out in a rotational rheometer (Discovery HR-2, TA
Instrument) after 5 min of the ceramic paste preparation, using a rough parallel plate geometry with a 20
mm diameter, a 0.5 mm gap (higher than 10 times the particles size) and solvent trap. The test consisted
in an amplitude sweep from 0.01 to 2000 % strain with a frequency of 1Hz, a temperature of 23 ºC and
50 points per decade.
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Figure 1: Stress vs. Strain-rate (left), Viscosity vs. Strain-rate (right) of the experimental data.

To be able to use these data in the numerical solvers, it is important to find the mathematical formulation
describing the rheological properties of the fluid. First step is to identify the type of non-Newtonian
fluid (shear-thinning, shear-thickening, viscoelastic, etc.) and after that the task is to extract the related
mathematical formulation and its associated parameters, e.g. power factor, solvent viscosity, polymer
viscosity, relaxation time etc.

The experimental data contains stress values ranged between 73.3426 to 5813.77 Pa. Figure 1 illustrates
the stress (pa) vs. strain-rate (1/s) and viscosity (Pa.s) vs strain-rate (1/s) plots. It can be seen that the
viscosity vs. strain-rate graph exhibits behaviour similar to shear-thinning material. Power-law (Eq. 11),
Carreau-Yasuda (Eq. 12), and Cross (Eq. 13) models are amongst the most famous equations for this
type of material:

µ = m|γ̇|n (11)

µ = µ∞ +(µ0 −µ∞)(1+(m|γ̇|)a)
n−1

a (12)

µ = µ∞ +
µ0 −µ∞

1+(m|γ̇|)n (13)

An effort was done to fit these formulas to the experimental data. Non-linear least-squares method was
used to minimize the cost function representing the differences of the experimental data and the given
equation. The open-source machine learning library scikit-learn was used for this task. The best fit was
achieved by cross model rheological type, as depicted in figure 2. The mathematical formulation for this
model would be as:

µ = 1+
205273

1+(41.38|γ̇|)1.25 (14)

5 Numerical experiments and discussion

The test case analyzed in the current work consist of a low Reynolds number extrusion of liquid l into
a rectangular box filled by quiescent gas g. The numerical set-up, depicted in Fig. 3, consists of a
rectangular box, where a heavier fluid is extruded from a circular shaped inlet of dimension D with
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Figure 2: Extracted viscosity vs. strain-rate for cross model.

Figure 3: The geometry used for the simulation of the jet extrusion.
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Figure 4: Time evolution of the printable biomaterial Jet in a domain with H/D=10

a constant inlet velocity, ul . The rectangular box has height of H equal to 10D. An outlet pressure
is imposed at the outlet boundaries, allowing the gas to go out of the domain as the liquid jet is being
extruded. The domain is discretized into (80, 40, 80) cubic cells in (x, y, z) directions, hence, a structured
mesh is employed.

Figure 4 illustrates the evolution of the extruded jet. Regardless of the time scale of the problem, we are
here exclusively interested in analyzing the evolution of the free surface during the discharge process.
The extruded liquid starts to fold immediately once it reaches the cavity floor. Hence, toroidal oscillations
appear and the jet starts to coil into itself with a regular frequency. Due to the high viscosity, however,
no break-up process of the free surface is visible, which will tend to fill the vessel on a regular basis.
Figure 5 illustrates the time evolution of the extruded jet in which the bottom plane is moving with the
velocity of ul . The extruded liquid illustrates non-uniform oscillations before and after impacting the
bottom wall.

6 Conclusion

This paper presents the results obtained in the simulation of non-Newtonian printable ceramic ink char-
acterized by high viscosity, applying a low printing speed. The numerical method presented incorporates
the finite-volume based/direct numerical simulation of the Navier-Stokes equations for a multiphase flow
consisting of a fluid and a gas. The transport of the interface is carried out through a geometrical VoF
method. The numerical methodology used in this work has been rigorously validated and verified in
previous works, especially in the context of numerical simulation of Newtonian/non-Newtonian fluids
extrusion process, used in 3D printing processes. The rheological formulation is extracted by fitting a
Cross type model into the experimental data. The numerical methodology presented proves to be stable
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Figure 5: Time evolution of the printable biomaterials Jet in a domain with H/D=10, where the bottom wall is
moving with the ul velocity.
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and conservative. Two test cases of extruding printable biomaterials into a cavity are solved, where in
one case, the bottom wall is fixed and in the other one the bottom wall is moving with a fix velocity, to
simulate the relative displacement of the printing nozzle and the substrate. As the next step, the results
of these simulations will be compared with their experimental countrparts.
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