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Abstract Tracking algorithms constitute an efficient
numerical technique for modelling fracture in quasi-
brittle materials. They succeed in representing localized
cracks in the numerical model without mesh-induced di-
rectional bias. Currently available tracking algorithms
have an important limitation: cracking originates ei-
ther from the boundary of the discretized domain or
from predefined “crack-root” elements and then prop-
agates along one orientation. This paper aims to cir-
cumvent this drawback by proposing a novel tracking
algorithm that can simulate cracking starting at any
point of the mesh and propagating along one or two
orientations. This enhancement allows the simulation of
structural case-studies experiencing multiple cracking.
The proposed approach is validated through the simu-
lation of a benchmark example and an experimentally
tested structural frame under in-plane loading. Mesh-
bias independency of the numerical solution, computa-
tional cost and predicted collapse mechanisms with and
without the tracking algorithm are discussed.
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1 Introduction

Almost half a century after the pioneering works of Ngo
& Scordelis [1] and Rashid [2], the numerical simulation
of cracking in quasi-brittle materials is still a challeng-
ing task. Although a wide range of novel formulations
has been proposed in the field of computational fail-
ure mechanics, up to date there is no such thing as a
panacea for the realistic and efficient numerical analy-
sis of failure in quasi-brittle materials. As a fact, the
analyst has to consider at least three aspects before
choosing the adequate numerical tool: the realistic nu-
merical modelling of cracking, the accurate simulation
of the material behaviour and the bearable computa-
tional cost.

Realistic modelling of cracking implies that the loca-
tion and direction of cracks are not spuriously affected
by the used mesh topology. This situation is commonly
referred as mesh-induced directional bias. The depen-
dency of the numerical simulation to the used mesh is
a common limitation of both smeared and discrete crack
approaches [3]. This defect has triggered the research,
first, on the possible limitations in the numerical dis-
crete problem and, second, on the adequate remedies to
overcome them. The proposed solutions depend on the
perception of the origin of the numerical problem. Some
approaches intervene in the mathematical formulation
of the continuum problem, such as gradient-enhanced
[4, 5], non-local [6, 7] or micropolar [8, 9] models. Other
formulations aim to overcome the error produced by the
spatial discretization of the continuum domain, such as
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mixed formulations [10], crack-tracking techniques with
[11, 12, 13, 14] or without [15, 16, 17] enrichment of the
used finite elements or nodes. Finally, another approach
reported in the literature bases on the modification of
the material model [18]. For a review on the issue the
interested reader is referred to [19, 20].

Of equal importance to the numerically objective
modelling of cracking, is the accurate simulation of the
material behaviour. The description of the mechani-
cal behaviour in quasi-brittle materials necessitates a
proper failure criterion and a constitutive law with soft-
ening behaviour controlled by the fracture energy. To
account for this behaviour various models have been ap-
plied for the simulation of quasi-brittle materials based
on plasticity [21, 22, 23], continuum damage models
[24, 25] or a combination of both [26, 27, 28]. The pre-
vious isotropic formulations have been complemented
by anisotropic models [29, 30, 31]. In the last years,
an increasing effort has been made to develop numer-
ical methods that consider the interaction of compo-
nents in composite materials (e.g. concrete, masonry).
Such methodologies can be based on computational ho-
mogenization [32, 33, 34, 35, 36, 37, 38], or on micro-
modelling techniques, also known as direct numerical
simulations, including all the information about the ma-
terial’s micro-structure [39, 40].

The micro- and multi-scale modelling approaches,
even though very sophisticated and characterized by a
remarkable level of accuracy, are still hardly applica-
ble to the study of large-scale structural problems ex-
periencing multiple cracking. This is due to the signifi-
cant computational cost required by these models. As a
consequence, the Continuum Finite Element Modelling
(also known as macro-modelling) based on the classi-
cal smeared crack-approach is still on the foreground
of applications in large-scale concrete [41] and masonry
structures [42, 43, 44].

The aim of this work is to apply the know-how of
objective mesh-localization approaches to the analysis
of structures made of quasi-brittle materials that expe-
rience multiple cracking. The adopted numerical tech-
nique is the classical smeared crack approach enhanced
with a local crack-tracking algorithm [16]. This choice
is justified by the following reasoning. Firstly, tracking
algorithms provide numerical solutions that are free of
mesh-induced directional bias [45, 16, 17, 46, 47, 48].
Secondly, the particular tracking algorithm can be ef-
fectively combined with constitutive models suitable
for quasi-brittle materials, like anisotropic [31, 49] or
isotropic ones [26]. Additionally, an important feature
of the algorithm is the possibility to define a minimum
distance between the discrete cracks. These exclusion
zones surrounding a crack render it possible to con-

sider indirectly the size of the material’s mesoscale (e.g.
masonry units), when the composite is simplified as a
homogenized continuum in the numerical simulation.
Finally, the overhead in the computational cost is lim-
ited, allowing the efficient simulation of multiple crack-
ing problems in large-scale structures.

Up to date approaches using tracking algorithms
have focused mostly on cracks nucleating from the bound-
ary of the domain or from pre-existent flaws and prop-
agating in a single orientation (see for instance [46, 47,
50, 51, 52, 53]). This confines the application of tracking
algorithms to a very narrow family of structural prob-
lems, in which the origin of cracks is either known prior
to the analysis, or it is imposed by including material
or geometrical perturbations within the analysed nu-
merical domain. Additionally, structural problems with
cracking starting from an arbitrary point within the
analysed domain and propagating in two opposite ori-
entations have not been addressed.

The main novelty of the present work resides in
the enhancement of a crack-tracking algorithm with
a technique that allows the initiation and propagation
of cracks at any element of the discretized domain. In
particular, the proposed methodology extends the use
of local crack-tracking algorithms to the simulation of
cracking starting from the interior of the discretized
domain and propagating along two opposite orienta-
tions. This novel contribution to the original methodol-
ogy [16] makes possible the efficient simulation of local-
ized cracks under shear, flexure and traction, without
any a priori definition of their location by the analyst.
Another original aspect of the proposed method is the
identification of the potential crack path prior to the oc-
currence of the damage, differently from the approach
recently proposed in [54].

The paper is structured in the following way. Section
2 presents the underlying continuum damage model.
Section 3 outlines the methodology for the simulation
of formation and propagation of internal cracking with
the use of a crack-tracking algorithm. The proposed
numerical strategy is validated with the simulation of
a single-crack problem with internal fracture (Brazilian
splitting test) and then with the analysis of a complex
multi-crack problem (frame wall with one-door open-
ing tested against horizontal loading), see Section 4.
Finally, conclusions are summarized in Section 5.

2 Continuum Damage model

In this work, a constitutive model based on the con-
tinuum damage mechanics presented in [25] is used for
the simulation of fracture. The model benefits from the
use of two separate damage scalar indexes to distinguish
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between tensile and compressive damage. This is an im-
portant characteristic for the simulation of degradation
in materials such as concrete and masonry which have
quite different capacity under tension and compression.
Other local models based on the same concept have
been proposed by Lee & Fenves [27], Comi & Perego
[55], Wu et al. [28], Pelà et al. [56], Voyiadjis et al. [57],
Mazars et al. [58]. He et al. [59] and Pereira et al. [60]
have recently proposed nonlocal counterparts of some
of the these models.

The constitutive model establishes on the concept of
the effective stress tensor σ̄, which basing on the strain
equivalence principle [61] is related to the strain tensor
ε according to the following equation

σ̄ = C : ε (1)

where C stands for the isotropic linear-elastic consti-
tutive tensor and (:) the tensor product contracted on
two indices. Aiming to model a different response under
tension and compression, the effective stress is split into
a tensile σ̄+ and a compressive part σ̄−. Such tensors
are respectively defined as

σ̄+ =

3∑
j=1

〈σ̄j〉pj ⊗ pj (2)

σ̄− = σ̄ − σ̄+ (3)

where σ̄j stands for the j-th principal stress value from
tensor σ̄ and pj is the unit vector of the respective prin-
cipal direction j. The symbol 〈•〉 denotes the Macaulay
brackets (〈x〉 = x, if x ≥ 0 ,〈x〉 = 0, if x < 0).

Following that, two internal damage variables are
introduced d+ and d−, with the first denoting the ten-
sile damage and the second the compressive one. The
constitutive relation can be expressed then as

σ = (1− d+)σ̄+ + (1− d−)σ̄− (4)

Loading, unloading and reloading conditions are dis-
tinguished with the use of two scalar positive quantities,
one for tension τ+ and a second for compression τ−,
termed as the equivalent stresses. Their values depend
on the stress tensor and the assumed failure criteria. In
this work, the failure criterion presented in [26] is used
so that the values of the equivalent stresses for tension
and compression are

τ+ = H [σ̄max]
1

1− α

[√
3J̄2 + αĪ1 + β〈σ̄max〉

] f+
f−

(5)

τ− = H [−σ̄min]
1

1− α

[√
3J̄2
−

+ αĪ1
−

+ β〈σ̄max〉
]
(6)

α =

(
f−b /f

−)− 1

2
(
f−b /f

−
)
− 1

(7)

β = (1− α)
f−

f+
− (1− α) (8)

In the above equations f−b and f− are the biaxial
and uniaxial compressive strengths respectively, Ī1 de-
notes the first invariant of the effective stress tensor,
J̄2 the second invariant of the effective deviatoric stress
tensor, while σ̄max and σ̄min stand for the maximum
and minimum principal stress respectively. The failure
surface for the case of the plane stress is shown in Fig-
ure 1. H [•] denotes the Heaviside step function. Tensile
damage is activated for stress states within the first, sec-
ond and fourth quadrants of the principal stress space,
see Figure 1, while compressive damage for stress states
only within the third quadrant.

σ 1
 =

 σ 3

σ
1
/f

 +

σ
3
/f

 +

σ
2
 = 0

Fig. 1: Adopted damage surface under plane-stress con-
ditions [26].

The damage criteria are defined then as [62]

Φ±
(
r±, τ±

)
= τ± − r± ≤ 0 (9)

where r± are internal stress-like variables that represent
the current damage thresholds and the respective ex-
pansion of the damage surface. As a consequence, their
initial values are equal to the uniaxial stress under ten-
sion r+0 = f+ and compression r−0 = f− and thereafter
vary according to

r± = max

[
r±0 , max

i∈(0,n)

(
τ±i
)]

(10)

The evolution of the internal damage variables d±

is defined as [63]

d± = 1− r±0
r±

exp

{
2H±d

(
r±0 − r±

r±0

)}
(11)



4 Savvas Saloustros et al.

In the above Equation (11), H±d ≥ 0 stands for the
discrete softening parameter, included to ensure mesh-
size objective results considering the compressive and
tensile fracture energy of the material G±f and the char-
acteristic finite element length. In particular, the spe-
cific dissipated energy (i.e. dissipated energy per unit
of volume) in tension or compression D± is regularized
considering the characteristic crack width ldis related
to the area (for two-dimensional elements) or volume
(for three-dimensional elements) of each finite element
in the crack band according to the equation [64]

D±ldis = G±f (12)

The specific dissipated energy for a damage model
with exponential softening is [65]

D± =

(
1 +

1

H±d

)
(f±)

2

2E
(13)

From Equations (12) and (13) the previously intro-
duced softening parameter is defined as

H±d =
ldis

lmat − ldis
(14)

For the current work, two-dimensional linear trian-
gular elements are used with ldis =

√
2A, where A de-

notes the area of each element. This selection can be
refined according to the work of Oliver [66]. The mate-
rial characteristic length lmat and the discrete softening
parameterHmat depend only on the material properties
according to [16, 65]

lmat =
1

Hmat
=

2EG±f

(f±)
2 (15)

It is noted that regularized stress versus strain mod-
els, as the present one, can be shown to be equivalent to
traction versus displacement jumps models such those
used in fracture mechanics [67], X-FEM and E-FEM
formulations [68].

3 Modelling of cracking with a local tracking
technique

As discussed in the Introduction, most of the currently
available crack-tracking algorithms focus on the simu-
lation of cracks starting from the boundary of the dis-
cretized domain and propagating towards a single ori-
entation. This drawback limits the application of such
algorithms, which cannot be applied to the analysis of
structures experiencing internal cracking such as shear
cracks. To overcome this limitation, in this work the
local-crack tracking algorithm presented by Cervera et
al. [16] is adequately enhanced for the simulation of

cracking initiating from internal elements of the mesh
and propagating along two opposite orientations. This
section presents the main features of the algorithm fo-
cusing on its novel contributions. The method is here
applied to constant strain three node elements but it
can be extended to other types of two-dimensional fi-
nite elements (see [17]).

The local crack-tracking algorithm constitutes an
enhancement of the classical smeared crack approach.
The algorithm is called at the beginning of each load
increment of the numerical analysis prior to the eval-
uation of the stresses. Its purpose is to identify and
“label” the elements pertaining to a crack path for the
current increment. For these elements, the evaluation
of the stresses is computed according to the nonlinear
constitutive law defined in Section 2. Contrariwise, the
elements falling out of the crack path will keep their
linear elastic stress-strain relation.

The first procedure carried-out by the crack-tracking
algorithm is the identification of new cracks. A new
crack starts at an element according to the tensile dam-
age criterion defined by Equations (5) and (9). The
above check is performed throughout the whole dis-
cretized domain and not only at the elements lying over
the boundary as in existing crack-tracking algorithms.
This is necessary to identify and allow the initiation
of internal cracking. The elements satisfying the failure
criterion of Equation (9) (Φ+ = 0) are defined as crack
root elements.

The control of the damage dispersion over a small
part of the discretized domain, and thus the simulation
of separate and individual cracks, is possible with the
use of an exclusion radius criterion. This criterion, in-
troduced in [16], defines as a crack root element the one
with the highest value of the tensile equivalent stress
τ+ within a radius rexcl (see Figure 2a). The value of
rexcl is defined a priori, and may be according to the
mesoscale geometry of the heterogeneous material.

Following the above procedure, the coordinates of
the crack origin are defined and stored. These depend
on the location of the crack root element within the dis-
cretized domain. For the family of internal crack root
elements, the crack origin is defined as the centroid of
the triangular element, i.e. the intersecting point of the
medians (Figure 2a). The same holds for corner ele-
ments, whereas for the remaining boundary elements
the midpoint of the side lying on the mesh boundary is
selected.

The second part of the algorithm, after the defi-
nition of the crack root and crack tip elements, is the
identification of the following elements pertaining to the
crack path. The procedure is different for the two crack
root elements, i.e. boundary and internal ones. For each
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Fig. 2: Simulation of internal cracking with the crack-tracking technique: (a) internal crack root element with the
two opposite vectors of the crack propagation, (b) labelling of the next potential elements towards the first side of
the crack, (c) labelling of the next potential elements towards the second side of the crack and use of the maximum
curvature criterion.

boundary crack root element, a vector is drawn, starting
from the crack origin location, with a direction perpen-
dicular to the one defined by the maximum principal
stress. The intersection of this vector with the neigh-
bouring element defines the exit point and the next po-
tential element of the crack. Similarly, starting from
this point the following next potential elements of the
crack are recognised. The same procedure is followed for
identifying the propagation path of consolidated cracks
from the crack tip elements. In this case the crack ori-
gin point is the exit point of the crack at the previous
cracked element.

Contrarily to cracking starting from the boundary,
other cracks, such as shear ones, initiate from the in-
terior and propagate along two opposite orientations.
To account for this damage typology, the algorithm is
enhanced with a different procedure. Starting from the
crack origin point of the internal crack root element,
two vectors (−→V e,1) and (−→V e,2) are defined, having a
direction perpendicular to that of the maximum prin-
cipal stress but opposite orientations (Figure 2a). Fol-
lowing this, the identification of the potential cracking
elements within the current increment takes part in two
steps. First, the elements pertaining to the path defined
by the orientation of vector (−→V e,1) are identified start-
ing from the crack origin point and following the same
process as described above for the boundary crack root

elements (Figure 2b). Upon concluding the labelling to-
wards that side of the crack, the elements lying at the
opposite face can be recognised starting again from the
crack origin point of the internal crack root, but using
the orientation of vector (−→V e,2) (Figure 2c). Figure 3
presents the main steps of the labelling in case of inter-
nal cracks.

The described procedure for the definition of crack
propagation stops on three alternative conditions: (i)
when the next potential element belongs to a different
crack, i.e. when the crack joins another one (meeting
criterion in Figure 3); (ii) when a crack reaches the
mesh boundary (boundary criterion in Figure 3); (iii)
when the stress-state of a potential element is lower
than a pre-defined threshold (stress threshold criterion
in Figure 3). This threshold can be conveniently de-
fined in terms of the failure criterion and experience has
demonstrated that labelling can be completed when the
inequality τ+

f+ < 0.75 holds [16].
The selection of the elements of a crack depending

on the local values of the stresses justifies the “local”
nature of the presented crack-tracking algorithm. Even
if this choice is very convenient in terms of computa-
tional efficiency and for cases of multiple cracks com-
paring to the global crack-tracking algorithms [16], it
can meet some difficulties under bending stress states,
when the local calculation of the principal stress di-
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Fig. 3: Flowchart including the main steps of the crack-tracking algorithm for the identification of crack paths
starting from the interior of the discretized domain.

rections may be relatively poor due to the high stress-
gradients, resulting in spurious changes in the crack di-
rection. To avoid such non-realistic result, the algorithm
is enhanced with a procedure for the apropos correc-
tion of the crack propagation. This procedure, termed
as maximum curvature, is activated at each element ly-
ing at the propagating front of the crack before the
selection of the next potential element. The idea is to
compare the crack direction defined at the element (−→Ve),
according to the principal stresses, to the direction of
the vectorial sum of the crack directions (−→Vc) of both
the potential and the damaged elements within a neigh-
bourhood of radius rneigh (see Figure 2c). If the rela-
tive angle among them is larger than a maximum angle
amax, the vector

−→
Vc is used for the definition of the crack

direction. The values of rneigh and amax are explicitly
pre-defined.

Upon concluding the above procedure for all crack
root and crack tip elements, the crack-tracking algo-
rithm ends. The elements labelled as potential, as well
as the already damaged ones, will be allowed to damage

according to the constitutive model described in Section
2. For the rest, the stress-strain relationship will remain
linear elastic for the current load increment.

The flexible design format of the presented algo-
rithm can allow its possible enhancement to account
for diverse problems. A branching criterion at the crack-
root/tip elements would allow the simulation of crack-
branching problems. However, the development of reli-
able criteria is necessary for a successful combination
with tracking algorithms [20]. Another important ex-
tension, currently under development by the authors,
concerns the modelling of intersecting cracks. This im-
provement can allow the simulation of problems includ-
ing load-reversal (e.g. seismic actions).

4 Numerical examples

This section presents two examples to demonstrate the
capacity of the proposed crack-tracking algorithm to
simulate internal and multiple localized fracture in quasi-
brittle materials. The first one is the Brazilian splitting
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test, being a case of internal cracking propagating to-
wards the two ends of the tested specimen. The second
one is a frame wall with a door opening, tested against
in-plane loading. Both examples demonstrate the ca-
pacity of the proposed technique to simulate boundary,
internal and multiple localized cracks.

4.1 Benchmark for mesh objectivity: Brazilian
splitting test

The first numerical application considers the simula-
tion of the Brazilian splitting test. This example has
three objectives. Firstly, to validate the capacity of the
proposed algorithm to simulate cracking that initiates
from the interior of the discretized domain and propa-
gates along two opposite orientations. Secondly, to in-
vestigate the dependency of the tracking technique on
the mesh discretization, both in terms of direction and
size of the finite elements. Finally, to provide informa-
tion regarding the computational cost induced by the
use of the tracking algorithm.

Fig. 4: Geometry and testing scheme of the Brazilian
splitting test.

4.1.1 Experimental set-up and failure pattern

In the Brazilian splitting test, the tested specimen has
a circular cross-section of diameter D and a depth l

(Figure 4). The test consists in applying a compressive
force along the diameter of the tested cylinder until
failure occurs. The failure pattern is characterized by
a tensile crack, starting from the interior of the tested
specimen and propagating towards the boundaries fol-
lowing the direction of the applied compressive forces,

i.e. along the diameter of the tested specimen. The ob-
tained value of the maximum load is used to define the
splitting tensile strength of the tested material. The
Brazilian splitting test is a standard method for the es-
timation of the splitting tensile strength of geomaterials
such as concrete [69] and rocks [70].

4.1.2 Numerical simulation

The dimensions considered in the numerical simula-
tion, with respect to Figure 4, are D = 15 cm, a =

D/10 = 1.5 cm. The cylinder is analysed under plane
strain conditions. Typical material properties for con-
crete have been adopted: E = 30.1 GPa, f+ = 2.2

MPa, v = 0.25, f− = 20 MPa, = 2400 kg/m3,
G+ = 50 J/m2, G− = 15000 J/m2. The tracking pa-
rameters are rexcl= 0.5 cm, amax = 45◦ and rneigh
= 0.5 cm.

The experiment is simulated by imposing a vertical
displacement at the top of the upper bearing plate. The
numerical solution of the discrete problem is performed
in a step-by-step manner. At each step, the correspond-
ing nonlinear equations are solved with the use of a full
Newton-Raphson method along with a line-search pro-
cedure. Convergence of an increment is attained when
the ratio between the iterative residual forces and the
norm of the total external forces is lower than 10−3

(0.1%).
The numerical calculations are performed with an

enhanced version of the finite element programme COMET
[71], while pre- and post-processing with GiD [72]. Both
software have been developed at the International Cen-
ter for Numerical Methods in Engineering (CIMNE), in
Barcelona.

4.1.3 Mesh-induced bias

This section focuses on the sensitivity of the numerical
solution to the typology of the used discretization, both
in terms of orientation and size of the finite elements.

Figure 5 presents the four meshes used for study-
ing the dependency of the numerical solution on the
direction of the mesh. The first two are discretized in
an unstructured manner with average element sizes, at
the region where damage is expected, he=0.5 cm (984
nodes, Figure 5a) and he=0.25 cm (1711 nodes, Figure
5b), respectively. The same region is discretized in a
structured manner in the last two meshes, with average
element sizes he=0.5 cm. It is noted these meshes have
been designed avoiding the alignment of the predomi-
nant directions of the triangular elements with the ver-
tical axis, where the cracking is expected to occur. This
has been done to show the capability of the numerical
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Fig. 5: The four meshes used for the mesh-induced directional bias study.
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Fig. 6: Mesh-induced directional bias sensitivity. Contour of the tensile damage index (d+) after the peak load for
four different meshes: (a) without the crack-tracking algorithm, (b): with the crack-tracking algorithm.

technique to provide mesh-bias independent results. In
particular, for the structured mesh Mesh-C (994 nodes,
Figure 5c) the sides of the rectangular triangles create
angles of around -10◦, 80◦, 125◦ with the horizontal
axis. In the structured mesh Mesh-D (1016 nodes, Fig-
ure 5d) the structured region has been split into two,
with the triangles in the lower part being a mirror of
the ones in the upper part.

Figure 6 presents the contour of the d+ tensile dam-
age index for both the analyses with and without the
use of the proposed tracking algorithm. The results us-
ing the classical smeared crack approach present a large
spreading of damage within the discretized domain. In
addition, the localization of damage depends spuriously
on the mesh. This can be better visualised in the plot
of the maximum principal strains, in Figure 7. The

use of the tracking algorithm successfully addresses the
aforementioned flaws of the classical smeared crack ap-
proach, resulting in a vertical crack emanating from the
interior of the mesh and propagating along the loading
direction for all the used meshes.

Apart from the sensitivity of the numerical solution
on the directionality of the mesh, the effect of the finite
element size is also investigated. To this aim, simula-
tions have been performed with two additional meshes
keeping the mesh-orientation of Mesh-C, but changing
the sizes of the finite elements. Mesh-C’ has mean el-
ement sizes he=0.075 m (384 nodes, Figure 8a), while
in Mesh-C” he=0.025 m (1983 nodes, Figure 8c).

The refinement of the mesh has no positive effect on
the simulation of the expected crack direction using the
classical smeared crack-approach (Figures 9a and 10a).
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-1.4613e-05

GiD(a) Without crack-tracking
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0.0023437
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0.0013379
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0.0020749
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0.001036

-3.0143e-06

GiD(b) With crack-tracking

Fig. 7: Mesh-induced directional bias sensitivity. Contour of the maximum principal strains (σmax) after the peak
load for the four different meshes: (a) without the crack-tracking algorithm, (b): with the crack-tracking algorithm.
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Fig. 8: The three meshes used for the mesh-size sensitivity study.

A vertical crack could not be simulated, even in the finer
mesh, and the spurious spreading of damage around
the localized band does not reduce on mesh refinement
(Figure 9a). On the other hand, the use of the tracking
algorithm predicts the expected vertical crack pattern
independently of the discretization size (Figure 9b and
Figure 10b.

Table 1 presents a comparison among the peak load
obtained for each of the performed analysis and the
analytical solution. The latter is calculated through the
formula proposed by [69, 70] that is

P/l =
πDfsp

2
(16)

where P/l is the capacity per unit length and fsp is the
splitting tensile strength. Its value is considered equal

to fsp = f+/0.9 according to Eurocode 2 [73]. Good
agreement with the analytical result is achieved when
the tracking algorithm is used. Contrariwise, the large
spreading of damage in the numerical solution without
the tracking algorithm lowers unrealistically the capac-
ity of the specimen.

4.1.4 Computational cost

Table 2 presents the computational cost, in terms of
time and memory resources, needed for the performed
analyses with and without the tracking-algorithm. All
the numerical analyses have been performed in a single
machine equipped with an Intel Core i7-4790-3.60GHz
CPU and 16.0 GB RAM.
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(a) Without crack-tracking
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0
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(b) With crack-tracking

Fig. 9: Mesh-size sensitivity. Contour of the tensile damage index (d+) after the peak load for four different meshes:
(a) without the crack-tracking algorithm, (b): with the crack-tracking algorithm.
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Fig. 10: Mesh-size sensitivity. Contour of the maximum principal strains (σmax) after the peak load for the four
different meshes: (a) without the crack-tracking algorithm, (b): with the crack-tracking algorithm.
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No-Tracking Tracking

Mesh Analytical ca-
pacity [kN/m]

Capacity
[kN/m]

Difference from ana-
lytical [%]

Capacity
[kN/m]

Difference from ana-
lytical [%]

Mesh-A 575.96 537.56 -6.67 579.39 0.60
Mesh-B —"— 538.22 -6.55 585.29 1.62
Mesh-C’ —"— 514.98 -10.06 539.65 -6.30
Mesh-C —"— 529.66 -8.04 544.44 -5.47
Mesh-C” —"— 532.35 -7.57 549.10 -4.66
Mesh-D —"— 529.14 -8.13 554.09 -3.80

Table 1: Comparison between numerical and analytical results with and without the proposed tracking algorithm
for the Brazilian splitting test.

No-Tracking Tracking Overhead using tracking

Mesh Number of
nodes

Memory
[Mb]

CPU-time [s] Memory
[Mb]

CPU-time [s] Memory [%] CPU-time
[%]

Mesh-A 984 1.33 14.52 1.56 13.06 17.29 -10.06
Mesh-B 1711 2.37 28.66 2.78 24.96 17.30 -12.91
Mesh-C’ 384 0.52 4.38 0.61 5.07 17.31 15.75
Mesh-C 994 1.35 10.47 1.58 13.15 17.04 25.60
Mesh-C” 1983 2.76 24.98 3.24 32.74 17.39 31.06
Mesh-D 1016 1.38 10.61 1.62 13.48 17.39 27.05

Table 2: Computational cost with and without the use of the tracking algorithm for the Brazilian splitting test.

As can be seen, the tracking algorithm is very effi-
cient both in terms of memory requirements and com-
putational time. The arrays necessary for the labelling
system of the elements result to additional memory
requirements of around 17 % using the tracking al-
gorithm. The performed analyses show that the com-
putational time overhead using tracking increases, as
expected, with the increase of the number of degrees
of freedom, with a maximum overhead of around 31%
for the case of the refined Mesh-C”. Note that in some
cases (Mesh-A and Mesh-B) the computational cost us-
ing the tracking algorithm is lower than a calculation
done without using it. This is because of the improve-
ment of the non-linear iterations convergence rate due
to the correct damage localization when using the track-
ing algorithm.

4.2 Structural Application: Frame wall with one door
opening

In this section, we investigate the capacity of the pro-
posed algorithm to simulate the response of a large-
scale structural problem exhibiting multiple cracking.
The simulated experiment consists in the in-plane lat-
eral loading of a full-scale unreinforced masonry frame
with an opening [74]. This structural example has been
selected due to the complexity given by the structural
interaction among the piers and the spandrel, repre-

senting a meaningful case with different types of cracks
due to traction, shear and flexure. In fact, this test can
show the capacity of the used approach to represent
both the experimental cracking pattern and the redis-
tribution of actions among structural members as soon
as the different cracks appear.

4.2.1 Experimental setting and results

The masonry is built of yellow tuff bricks with dimen-
sions 150 × 300 × 100 mm3 and hydraulic mortar of
100 mm thickness. The wall has overall dimensions of
5100 mm length, 3620 mm height and 310 mm thick-
ness. The spandrel above the opening lies over a timber
lintel with bond length of 150 mm at both sides.

The experimental test was performed in two steps.
Initially, a distributed load was applied at the top of
each pier with a resultant V = 200 kN . This was fol-
lowed by the application of a horizontal displacement
d at the left of the wall keeping the vertical load con-
stant. Figure 11a illustrates the geometry and the load
configuration of the experiment. Figure 11b and Figure
11c show the resulted cracking in the whole structure
and the spandrel respectively. The in-plane loading ac-
tivated different failure phenomena in masonry result-
ing in a complex cracking of the structure. In partic-
ular, two horizontal cracks formed at the base of the
piers due to the debonding between the units and the
mortar. Flexural cracking, crossing both the units and
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V

(a)

(b)

V

d

(c)

Fig. 11: (a) Geometry and load configuration of the
experiment. Cracking after the end of the experiment
of (b) the whole frame and (c) the spandrel (pictures
adapted from [74].

Fig. 12: Discretized domain used for the numerical sim-
ulation.

mortar-units interface, appeared in three locations at
the lower and the upper part of the spandrel. Finally,
the last reported damage was a diagonal shear crack
starting from the middle of the spandrel and extending
diagonally towards its opposite corners. For a detailed
description of the experimental setup, the loading pro-
cedure and the damage pattern the reader is referred
to the original work [74].

4.2.2 Numerical simulation

The experimental test is simulated using the numeri-
cal algorithm presented in Section 3. The material of
the wall is idealized as homogeneous with its proper-
ties derived from the available experimental data [74],
while appropriate values from the literature are chosen
for the non-available material parameters. The consti-
tutive model of Section 2 is used as an approximation
of the masonry behaviour. In this work, focus is given
on the capacity of the algorithm to simulate the differ-
ent typologies of the localized cracking observed in the
particular example.

For masonry, the selected material properties are
E = 1.54 GPa, f+ = 0.13 MPa, v = 0.2, f− = 3.9

MPa, = 1200 kg/m3, G+ = 15 J/m2 , G− = 35000

J/m2, while the ratio between uniaxial and biaxial com-
pressive strength is considered as f−b /f

− = 1.15. Lin-
ear elastic behaviour is assumed for the timber lintel
with Young’s modulus E = 15 GPa. The connection
between the masonry and the timber lintel is modelled
with care in order to provide a realistic representation
of the actual interaction between the two neighbouring
materials. This interconnection is modelled through a
soft layer with thickness of 10 mm and limited strength
and stiffness (E = 0.02 GPa, f+ = 0.01 MPa, v = 0.2,
f− = 3.9 MPa, G+ = 5 J/m2 , G− = 35000 J/m2).
This zone can be seen as the continuous counterpart of
a no-tension discontinuous interface.

Following the experiment, the numerical simulation
consists of two steps: first, the application of the dead
load along with a vertical force equal to 200 kN at the
top of each pier, and second, the incremental applica-
tion of a horizontal displacement at the left part of the
structure, keeping the load of the first step constant.

The masonry frame is discretized in an unstructured
mesh of 2D plane-stress three-noded triangles with av-
erage mesh size of he = 4 cm (10678 nodes) (Figure 12).
In the reference case the input parameters for the lo-
cal crack-tracking algorithm are rexcl= 300 mm (equal
to the length of the bricks), amax = 45◦ and rneigh
= 200 mm. The influence of these values is investigated
in Section 4.2.5.
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(a) (b) (c)

(d) (e) (f)

Fig. 13: Tensile damage contour for: (a) d = 1.5 mm, (b) d = 3.3 mm, (c) d = 12.3 mm, (d) d = 17.3 mm, (e)
d = 20.7 mm. (f) Maximum principal strains contour for d = 20.7 mm.

Fig. 14: Tensile damage contour (a) and maximum prin-
cipal strains (b) for the analysis with the smeared crack
approach without a crack-tracking technique (horizon-
tal displacement d = 25 mm)

4.2.3 Results and discussion

Figure 13 illustrates the sequence of the tensile cracks
obtained from the numerical analysis. In the first part
of the numerical simulation, which includes the appli-

cation of the dead load as well as the load of 200 kN
at the top of the piers, no damage occurs. Two verti-
cal cracks at the corners of the spandrel are the first
damage occurring in the structure during the second
stage of the analysis (Figure 13a). An increase of the
horizontal displacement results in the formation of two
horizontal cracks at the base of the piers (Figure 13b)
and their subsequent rocking. Following this, internal
cracking starts to form within the spandrel (Figure 13c-
d). Finally, at a horizontal displacement of 21 mm, a
diagonal shear crack has totally formed and secondary
flexure cracks are observed at the top and bottom of
the spandrel (Figure 13e).

It can be appreciated in Figure 13f that the obtained
damage is in good agreement with the resulted cracking
pattern of the experiment (Figures 11b-c). The open
localized cracks at the end of the analysis, displayed
by the contour of the tensile principal strains in Figure
13f, are located at the both ends of the spandrel, at
its middle and at the bottom of the piers as in the
experiment.

Finally, it is noted that the numerical simulation
of this particular example would be impossible using a
crack-tracking technique without the enhancement for
internal cracking. Apart from the internal shear crack-
ing affecting the middle of the spandrel, the flexural
cracks at its left bottom do not start from the bound-
ary of the numerical domain.

The numerical result using the classical smeared
crack approach, without the enhancement given by a
crack-tracking technique, is illustrated in Figure 14.
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Cracking at the base of the piers is almost localized
within a single row of elements, facilitated by the align-
ment of the mesh with the expected crack direction.
Contrarily, a dispersion of the damage can be observed
at the region of the flexural cracks at the spandrel,
where the solution is biased by the mesh topology. This
spurious spreading of the damage results in the unreal-
istic release of elastic energy due to the elastic unload-
ing of the elements surrounding the damaged ones. As
a consequence, the capacity of the structure reduces be-
fore reaching the necessary force for the opening of the
internal shear crack that was observed experimentally.
This limitation of the classical smeared crack approach
prevents to capture correctly the experimental obtained
damage.

Figure 15 presents the smeared cracking strain field
resulting from a numerical analysis of the same experi-
ment performed with a micro-model approach by Parisi
et al. [75]. The results obtained with the tracking al-
gorithm (see Figure 13e & Figure 13f) agree with the
damage pattern simulated by the micro-model.

(a)

(b)

Fig. 15: Micro-model used in [75] for the simulation
of the in-plane loaded masonry frame: (a) mesh, (b)
smeared cracking strain field (pictures adapted from
[75]).

Figure 16 presents the comparison between the nu-
merical and experimental load-displacement diagrams.
The use of the crack-tracking algorithm allows to cap-
ture correctly the experimentally obtained failure curve,
both in terms of maximum strength and ductility of the
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Fig. 16: Load-displacement graph of the experimental
test and the numerical analyses.

structure. The first significant loss of stiffness is related
to the rocking of the piers and the relative cracking at
their base, which results in the increasing opening of the
flexural cracks at the two opposite ends of the spandrel
(see Figure 13b). The latter damage is the dominating
cause for the loss of stiffness of the structure until the
shear crack forms in the spandrel, which results in the
sudden drop of the applied force for a displacement of
about 20 mm.

An important aspect of the numerical result is its
capacity to reproduce satisfactorily the loss of struc-
tural stiffness occurring due to all the different fracture
phenomena throughout the loading history. This is es-
sential for the evaluation of the seismic capacity of an
existing structure, or the design of a new one, since
common procedures (e.g. [76, 77]) rely on the realistic
estimation of the initial stiffness, the ductility and the
strength reduction. When the crack-tracking technique
is not used, the load versus displacement graph fails to
represent the correct sequence of fracture in the nonlin-
ear range, as the brittle shear cracking in the spandrel.

4.2.4 Computational cost

As in the example of the Brazilian splitting test, Table 3
presents information regarding the computational cost
with and without the use of the tracking algorithm for
the particular example. The additional requirements in
memory lie within the same range of values as in the
Brazilian splitting test, i.e around 16% higher using the
tracking algorithm. The processing time with the pro-
posed technique is around 11% higher than that of the
classical smeared crack approach.
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No-Tracking Tracking Overhead using tracking

Memory [Mb] CPU-time [s] Memory [Mb] CPU-time [s] Memory [%] CPU-time [%]

16.97 238.06 19.62 264.03 15.61 10.90

Table 3: Computational cost with and without the use of the tracking algorithm for the frame wall with a door
opening example.

(a) (b) (c) (d)

Fig. 17: Contour of tensile damage (left) and maximum principal strain (right): (a) rexcl = 0.1 m, (b) rexcl = 0.2
m, (c) rexcl = 0.3 m, (d) rexcl = 0.5 m (horizontal displacement d = 0.21 m).

4.2.5 Effect of tracking parameters

This section presents a sensitivity analysis on the crack-
tracking parameters to assess their influence on the nu-
merical results. Figure 17 presents the obtained damage
pattern with four different values of the exclusion radius
rexcl= [0.1; 0.2; 0.3; 0.5 m]. As expected, the exclusion
radius rexcl has significant effect in the numerical simu-
lation, affecting the distribution of cracking within the
analysed structure. Values lower than the unit size re-
sult in a denser cracking within the spandrel, changing
the response of the structure and the damage pattern.
In particular, for rexcl = 0.1 m various cracks appear
at the both ends of the spandrel, facilitating the rocking
mode of the whole structure, while the shear crack at
the middle of the spandrel cannot be reproduced. This
change in the structural response can be appreciated
in the load vs displacement graphs of Figure 18, where
for rexcl = 0.1 m the typical graph for a rocking failure
mode is obtained, without however, the sudden drop at-
tributed to the shear cracking of the spandrel. On the
contrary, when values higher of 0.2 m are chosen, the
numerical model reproduces the experimental obtained
structural response (Figure 17b-d and Figure 18). Ac-
tually, a value of the exclusion radius lower than 0.2 m
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Fig. 18: Sensitivity of structural capacity to rexcl.

does not take into account the internal microstructure
of masonry defined by the size of the brick.

The above results demonstrate the utility of the ex-
clusion radius. The failure mechanism of masonry struc-
tures is determined by the relative position of the cracks
and consequently the division of the whole structure
into macroblocks. The relative geometry and strength
of the components play a decisive role in the type of
cracking of masonry structures. This can be appreciated
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0.2 m

0.3 m

0.5 m

35º 45º 55º

Fig. 19: Sensitivity of damage distribution at the spandrel to amax and rneigh.

Fig. 20: Sensitivity of structural capacity to amax and
rneigh

in the experimental test under investigation, in which
cracking occurred mainly at the joints between bricks
and mortar. A continuum finite element model ignores
the internal geometry of the composite and therefore
fails to capture failure mechanisms determined by it.
This drawback can be partially overcome with the use
of the exclusion radius, which can be perceived as a way
to take into account the size effect of the units within
a continuum finite element model. On the contrary, a
micro-model could simulate this cracking phenomenon
in a more direct way due to the a priori detailed ge-
ometrical definition of the problem, at the cost of a
computation time largely higher than that of the pro-
posed model. This disadvantage of micro-models ren-
ders them hardly applicable to the analysis of large and
complex structures. The proposed model based on a

crack-tracking method shows to be a good compromise
between accuracy and computational cost.

Figures 19 and 20 present the cracking affecting
the spandrel and the relative load against displacement
curves respectively for nine different combinations of
amax and rneigh for rexcl = 0.3 m. Once the exclusion
radius is well defined, the effect of amax and rneigh is
minor to the global response of the structure. The shear
cracking at the middle of the spandrel is identical for
all combinations of the above correction parameters.
This is to be anticipated, since shear cracking, domi-
nant in this case, is not affected by these parameters,
on contrary with cracking under bending stress states
(see [16]). Restricting the change in the crack curvature
with low values of amax has a small effect on the sec-
ondary flexural cracking affecting the lower and upper
boundaries of the spandrel. In any case, the collapse
mechanism is identical for all the investigated values of
amax and rneigh.

5 Conclusions

The structural behaviour of constructions made of quasi-
brittle materials, such as concrete or masonry, is deter-
mined by the formation of discrete cracks that define
the collapse mechanism. Continuum finite element ap-
proaches based on the classical smeared crack approach
simulate poorly this complex response since (a) they
may represent damage spread in an unrealistic way and
(b) the numerical solution is determined by the mesh-
induced directional bias.

To circumvent the above drawbacks, this article pro-
poses the use of a crack-tracking technique for the real-
istic simulation of cracking in structures made of quasi-
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brittle materials. A novel algorithm is presented for the
simulation of cracking starting at any location within
the discretized domain making possible the simulation
of both boundary and internal cracking. This contri-
bution, along with the capacity of the approach to al-
low the nucleation of new cracks without the a priori
definition by the user, extends the application field of
tracking algorithms to the structural assessment of new
or existing structures.

Two numerical examples are used to validate the
proposed algorithm: a Brazilian splitting test and the
in-plane loading of a frame wall with a door opening.
The numerical simulations prove the capability of the
model to represent correctly the formation and propa-
gation of tensile, flexural and shear cracks within the
discretized domain. The accurate representation by the
model of the cracking phenomena produces a realistic
simulation of the experimental failure mechanisms and
the correct estimation of the nonlinear response of the
structure. The model yields a damage pattern more re-
alistic than the well-known smeared crack approach.

The limited computational cost of the proposed ap-
proach and its accuracy render it a reliable tool for the
analysis of complex structural problems experiencing
multiple cracking. The tracking technique proposed for
the modelling of internal cracking has shown to be ro-
bust and it can be used in conjunction with other finite
element formulations and material models.
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