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 e recent trend for vehicles to be connected to unspeci�ed devices, vehicles, and infrastructure increases the potential for external 
threats to vehicle cybersecurity.  us, intrusion detection is a key network security function in vehicles with open connectivity, such 
as self-driving and connected cars. Speci�cally, when a vehicle is connected to an external device through a smartphone inside the 
vehicle or when a vehicle communicates with external infrastructure, security technology is required to protect the so�ware network 
inside the vehicle. Existing technology with this function includes vehicle gateways and intrusion detection systems. However, it is 
di�cult to block malicious code based on application behaviors. In this study, we propose a machine learning-based data analysis 
method to accurately detect abnormal behaviors due to malware in large-scale network tra�c in real time. First, we de�ne a detection 
architecture, which is required by the intrusion detection module to detect and block malware attempting to a�ect the vehicle via 
a smartphone.  en, we propose an e�cient algorithm for detecting malicious behaviors in a network environment and conduct 
experiments to verify algorithm accuracy and cost through comparisons with other algorithms.

1. Introduction

As automobiles become more intelligent, so do transportation 
systems [1]. New business requirements in the automotive 
market and advances in automotive communication technol-
ogy are increasing the connectivity of automobiles.  is 
greater connectivity portends the increased likelihood of 
future automobile cyberattacks [2].  erefore, it is necessary 
to prepare countermeasures for various attack vectors to com-
bat threats to vehicle cybersecurity.

For example, in 2015, Miller and Valasek  [3] remotely 
hacked a traveling Jeep Cherokee to control the audio, wind-
shield wipers, steering and braking, revealing that an unpre-
pared cybersecurity system can threaten driver safety. 
Furthermore, in 2016 and 2017, Keen Security Lab [4] hacked 
a Tesla vehicle to demonstrate security threats and potential 
attacks related to connected vehicles. Typically, connected 
vehicles are a closed environment that only accepts remote 
control commands in an authorized communication path, 
such as a server built by the manufacturer or dedicated appli-
cations published by the manufacturer. In a closed 

environment, unauthorized commands are blocked. However, 
recent self-driving vehicles share their control signals and 
internal data with not only the controllers inside the vehicle, 
but also various unspeci�ed vehicles, infrastructures, and 
smart devices outside the vehicle in real time.  us, vehicle 
network protection should be prioritized in open 
environments.

 e security of a self-driving vehicle is directly related to 
passenger safety; therefore, it is necessary to comprehensively 
consider the various attack vectors against vehicles based on 
the integrity, availability, and con�dentiality of their cyberse-
curity [5]. When a connected vehicle’s so�ware is updated, it 
is essential to verify the integrity of the so�ware. Attackers 
may use malicious applications to illegally steal privileges or 
gain access, repackage the so�ware installed in the vehicle by 
injecting malicious code, and induce the installation of mali-
ciously modi�ed applications.  is malicious so�ware looks 
the same as the authorized so�ware, but malicious code con-
tained in the modi�ed applications can collect the user's input 
to steal account information, activate abnormal service ports, 
or retain authorization for the attacker to access later. Such 
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malicious so�ware can be even used as a medium for addi-
tional remote attacks through communication with the com-
mand and control server. �us, it is important to protect 
vehicle so�ware when either the vehicle is connected to an 
external device such as a smartphone via an interface inside 
the vehicle, or a communication channel is opened between 
the vehicle and surrounding infrastructure. Previous research 
has installed vehicle gateways which allow only authorized 
communication to the vehicles and introduced vehicle 
Intrusion Detection Systems (IDSs) to detect abnormal behav-
iors in the Controller Area Network (CAN) [6]. However, it 
is difficult for a gateway or IDS to block these actions in 
advance, as most malware and adware are behavior-based. In 
order to detect unknown threats, it is vital to introduce a tech-
nology that can detect abnormal behaviors and analyze anom-
alous indicators using data analysis technology.

In this study, we review the various security threats to 
self-driving vehicles imposed by malware in Android operat-
ing system (OS) and discuss a method for detecting such mal-
ware. In an embedded environment such as a vehicle, both 
response time and detection accuracy are key factors because 
resources are limited, and real-time responses are required. 
�erefore, we propose a machine learning-based detection 
model that can reduce analysis time and improve detection 
accuracy. �e specific contributions of this research are as 
follows:

 (i)  � We present a method for detecting adware and mal-
ware in a self-driving vehicle environment.

 (ii) � We define the intrusion detection module architec-
ture required to detect malware and prevent it from 
affecting the vehicle through a smartphone.

(iii) � We experimentally compare the detection accuracy 
and cost of different algorithms and present the most 
efficient algorithm.

First, we describe the security technology protecting the inter-
nal and external communication networks of self-driving 
vehicles. We then propose an architecture for an intrusion 
detection module that detects malicious behavior in the vehi-
cle network based on machine learning. �en, we present an 
effective intrusion detection method and compare it with 
existing algorithms in experiments. Finally, we present the 
conclusions and future work.

2. Preliminaries

2.1. Vehicle-to-Device Communication.  In the paradigm 
of vehicle-to-everything communication, communicating 
with a specific device is termed vehicle-to-device (V2D) 
communication [7]. Android-based smartphones are typical 
devices that communicate with a vehicle. Services that 
identify vehicle operational information or diagnose vehicle 
abnormalities via a smartphone are classified as performing 
V2D communication. Initially, to carry out these functions, 
vehicles were directly connected to an external device outside 
the vehicle through a universal serial bus connector or 

Bluetooth, and the data on the device were used. Because a direct 
wired connection from the vehicle to the device occurred only 
if the target vehicle was physically occupied, a hacker could not 
directly control multiple vehicles remotely, even if the vehicles 
were successfully stolen. Since then, vehicle manufacturers 
have installed telematics control units (TCUs) or connectivity 
control units (CCUs) in vehicles and implemented interfaces 
for remote control of vehicles that include communication 
functions. In addition, this service is not limited to the 
original equipment manufacturer. Global telecommunication 
companies or Internet of �ings device manufacturers can 
also install Long-Term Evolution communication modules on 
the on-board diagnostics II terminal to collect and manage 
various data inside the vehicle. When the vehicle is connected 
to a server or smartphone through such a communication 
module, information from the vehicle can be transmitted 
externally. Similarly, it is also possible to control the vehicle 
by injecting commands to the vehicle from the outside. A 
connection to a smartphone or external communication 
device is used not only for convenience services such as music 
playback and navigation, but also for important functions for 
updating the vehicle so�ware. If a connection is unauthorized 
or infected by malicious codes, it can be a serious security 
threat to the vehicle network. �erefore, security technology 
to protect the vehicle so�ware and network is essential in V2D 
communication.

2.2. Android-Based Hacking Attacks.  Malicious code is a 
widely used attack method at the application level that comes 
in various forms [8]. Various security threats such as leakage 
of private information, elevation of application privileges, and 
a denial-of-service (DoS) attack have been reported. �e most 
common attack in the Android OS is the use of an application 
containing malicious code imported when a specific web page 
or email is loaded. Most malicious code is injected into the 
device without the user’s awareness during the attack. When 
an application containing malicious code is executed on an 
Android OS, the code collects device and user information 
and sends it to a remote server. It also configures a backdoor 
by activating the service port to allow the attacker to reenter 
the device and elevate the privileges of available accounts. 
Subsequently, the malicious code can gain entire access to the 
infected device by rooting it. In particular, when an infected 
Android OS is connected to the inside of a self-driving vehicle, 
malicious code can be infiltrated directly into the vehicle to 
take control of the embedded OS or application so�ware 
environment. For this reason, we need to detect malicious 
code from a self-driving vehicle.

2.3. Dataset.  Recently, machine learning algorithms have been 
used to detect malicious code. �is study proposes a machine 
learning-based intrusion detection module using the Android 
Adware and General Malware (AW&GM) dataset [9], which 
was developed by the Canadian Institute for Cybersecurity 
(CIC) in 2017. �is publicly available dataset comprises 
Android sandboxes, Android adware, malware, and normal 
application traffic. It consists of traffic from 1,900 applications 
downloaded from Google Play (Android official application 
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market) and is used to classify normal and malicious code 
based on network traffic. �is dataset is categorized with the 
following three classes (see Table 1).

2.4. Related Work for Protecting Vehicle Communication 
Networks.  Kwon et al. [10] proposed a method for 
reconfiguring the electronic control units (ECUs) in a 
vehicle and deactivating attack packets to defend against 
network intrusion. In the proposed architecture, an IDS is 
introduced to detect cyberattacks in the network inside the 
vehicle, and a control module, called a mitigation manager, 
is applied to mitigate the damage from detected attacks. 
�ey then proposed an architecture to deliver commands 
to reconfigure ECUs, deactivate packets, reconfigure head 
units, delete packets in gateways at each domain, or switch 
domains into a secure mode. However, the framework and 
algorithms for the methodology were only proposed and not 
developed, and performance evaluations of the specific shape 
or architecture were insufficient. �erefore, a testbed and 
simulation environment should be prepared in order to verify 
the architecture appropriateness based on practical data such 
as detection accuracy, detection time, and resource utilization.

Han et al. [11] suggested an anomaly intrusion detection 
method for vehicular networks based on survival analysis. �e 
method is based on an anomaly detection algorithm that 
detects a suspicious pattern within the usual pattern informa-
tion. �e method aims to detect three typical attack scenarios—
flooding attacks, fuzzy attacks, and malfunction attacks—that 
attempt to manipulate and control using malicious packets. 
�e authors noted that the proposed method can detect 
unknown attacks; however, they did not describe how to detect 
scenarios other than the three mentioned.

Zhang et al. [12] presented a cloud-assisted vehicle mal-
ware defense framework to defend vehicles against malware 
attacks. Such a service can help defend resource-constrained 
vehicle systems against malware by detecting new malware 
and updating onboard malware defense capabilities. Although 
the method is a cloud-based malware detection service, in-ve-
hicle devices are also required to perform onboard threat 
defense functions. �e premise of this service is that a single 
gateway should be able to control all external communication 
interfaces in the vehicle. If the vehicle cannot access the secu-
rity cloud, it must find another way to inspect malware, how-
ever, no alternatives were explicitly suggested by the authors.

3. Machine Learning-Based Intrusion 
Detection Module

3.1. Malware Detection in Vehicle Networks.  Study Group 
SG17 of the Telecommunication Standardization Sector, one 
of the International Telecommunication Unions that develops 
telecommunications standards, established the Intelligent 
Transport System (ITS) security investigation branch in order 
to standardize the ITS [13]. Specifically, X.itssec-4, which 
covers methodologies for IDSs for in-vehicle systems, defines 
the system structure and methods. Existing mechanisms for 
detecting unauthorized access into a CAN, injection of a 
malicious control message, and DoS attack include vehicle 
gateways and vehicle IDSs [14]. Attacks using adware and 
malware have various user interaction scenarios that can 
intrude into a vehicle through a smartphone (see Table 2).

Connected or self-driving vehicles are connected to 
external or public networks outside the vehicle via various 
interfaces. TCUs or CCUs are equipped with a modem and 
external communication interfaces to enable receipt of Global 
Positioning System signals and access to mobile networks. 
In-vehicle infotainment systems, which provide entertainment 
and information content, enable various applications by 
applying an embedded OS, such as QNX OS or Android OS. 
If security design is not considered in wired or wireless 
networks, these interfaces can be abused as a path for malware 
or malicious commands to enter the vehicle network (see 
Figure 1). In particular, the embedded OS environment can be 
controlled from the malware or malicious commands when 
these malicious processes bypass OS-level security logic or 
acquire root authority from self-privilege elevation. �erefore, 
in order to prevent malicious commands from gaining control 
of the embedded OS, this paper proposes a CAN gateway 
architecture that includes an intrusion detection module and 
detects malicious behaviors when Android OS-based devices 
are connected to the vehicle.

In this study, a machine learning-based intrusion detec-
tion module is installed in the vehicle IDS, which can detect 
intrusion into the CAN or any abnormalities, so that a head 
unit or ECU can be protected from malicious code. Such 
detection methods are implemented in the form of so�-
ware-based computing modules to monitor malware injection 
or malicious code behaviors in the vehicle. �e so�ware can 
be installed as a component of the vehicle intrusion detection 
module or as an anti-virus agent in a head unit.

Table 1:  �ree categories of the android adware and general 
malware dataset.

Class Malware family Number of apps

Adware
Airpush, dowgin, 

kemoge, mobidash, 
shuanet

250

General malware
AVpass, fakeAV, 

fakeflash/fakeplayer, 
GGtracker, penetho

150

Benign
Google play market (top 
free popular and top free 

new, 2015-2016)
1,500

Table 2: User interaction scenarios analyzed in this study.

Category User interaction scenario

Confidentiality
Information leakage (trip/location records, 
camera video/images, contact list, call/SMS 

history)

Integrity
Intentionally manipulated application 

installation (injection of malicious code 
disguised as a modified application)

Availability

Continuous resource consumption  
(large-scale traffic transmission) and system 

termination (intentionally resulting in various 
exception cases)
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is applied by employing correlation-based feature selection 
(CFS) and an entropy-based information gain (IG) method. 
Constructing a validated dataset for an e�cient experimental 
environment is important in machine learning. In this paper, 
we propose the improved feature selection (IFS) method, 
which combines the higher values derived from correlation 
and IG methods.  

 e proposed learning algorithm uses the selected net-
work tra�c features to detect malware. Unlike existing feature 
selection methods, IFS �nds both greedy features and the 
highest correlation.  ere are two broad categories that can 
be used to measure the correlation between two random var-
iables, one based on classical linear correlation (i.e., CFS) and 
the other based on information theory (i.e., the IG method). 
First, a pair of variables is de�ned for the CFS method and the 
linear correlation coe�cient is derived [16]. In addition, the 
IG method decides how important a given attribute of the 
feature vectors is [17].  ese two vectors are combined in order 
to determine the �nal features from the dataset that are highly 

 e proposed detection so�ware consists of input, analy-
sis, evaluation, and noti�cation modules.  e tra�c injected 
through the CAN is processed through the input module and 
entered into the analysis module, which is equipped with a 
machine learning algorithm (see Figure 2).  e analysis mod-
ule evaluates intrusion or abnormal behaviors based on a 
learned model and provides intrusion behavior information 
to a user or control center in real time.  is machine learn-
ing-based intrusion detection module can improve the model’s 
accuracy by repeatedly learning, verifying, and evaluating 
message patterns. Furthermore, detection rules for malicious 
behaviors can be updated to the vehicle gateway and each con-
troller to accurately detect malicious code.

3.2. Data Preprocessing for Malicious Code Analysis.  e 
characteristics of 79 features included in the CIC AW&GM 
dataset are analyzed using the Waikato Environment for 
Knowledge Analysis [15]. Feature selection is needed to reduce 
the dimensionality of the data. First, ten-fold cross-validation 
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Figure 1: Schematic showing the head unit connected to an Android mobile device.
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have reported that malware can be detected in the network 
tra�c of devices [18, 19].  is paper selected nine features 
using the IFS method and shows that malware can be detected 
from the network tra�c using a machine learning-based IDS 
module.

As the original data has unique characteristics and distri-
butions, learning from these data may be slow or result in 
modeling errors. In the case of network tra�c, it is essential 
to perform scaling because each feature has a uniquely de�ned 
data range and unit. Scaling is a data preprocessing task that 
helps prevent under²ow and over²ow when learning from 
experimental data. It is performed based on the nine selected 
features.  e F1 score results a�er applying the MinMaxScaler 
and StandardScaler are described in Table 4.  e MinMaxScaler 
scales all features to be exactly between zero and one.  e 
StandardScaler, in contrast, does not limit the minimum and 
maximum values, but ensures that all features have an average 
of zero and a variance of one.  us, all features have the same 
size. A comparison of their F1 score results of the two scaling 
methods indicates that MinMaxScaler is more advantageous 
due to the nature of the network tra�c, which comprises a 
wide range of data.  erefore, in this study, the MinMaxScaler 
technique is applied to each algorithm.

Next, we analyzed algorithms that detect adware and mal-
ware typical in Android OS. In this study, these attack detection 
techniques are compared by applying six machine learning 
algorithms to the dataset. Furthermore, we analyzed the results 
of using a general machine learning algorithm, assuming that 
the computing power employed in the vehicle-embedded so�-
ware can analyze tra�c data using a general speci�cation rather 
than a high-performance system.  e dataset used in this study 
consists of three classes: benign, adware, and general malware. 
 ere is a strong imbalance between these classes (see Table 5).

When the data modeling results are evaluated with general 
accuracy, the evaluation result may suggest that its 

Table 3: Feature selection results.

1 e feature of min_�owpktl means minimum length of a ²ow; max_�owpktl means maximum length of a ²ow; max_idle means maximum time a ²ow was idle 
before becoming active; bVarianceDataBytes means variance of total bytes used in backward direction; avgPacketSize means average size of packet; max_fpktl 
means maximum size of packet in forward direction; max_�owiat means maximum inter-arrival time of packet; fPktsPerSecond means number of forward 
packets per second; Init_Win_bytes_forward means the total number of bytes sent in initial window in the forward direction, respectively. Especially the last 
item is included in both CFS and IG results.

Category Selected Features1 from IFS F1 score
CFS (5) min_�owpktl, max_�owpktl, max_idle, bVarianceDataBytes, Init_Win_bytes_forward 0.796
IG (5) avgPacketSize, max_fpktl, max_�owiat, fPktsPerSecond, Init_Win_bytes_forward 0.806

Table 4: Feature scaling results.

Category F1 score
MinMaxScaler 0.813
StandardScaler 0.810

Table 5: Types of applications and their ratio.

Category Count Ratio (%)
Benign 471,597 74.6
Adware 155,613 24.6
General malware 4,745 0.8

Input: � is a universal set with all features.
Output: Ω∗ is a subset with selected feature by IFS 
method.
 1: Initialize ��, ��, �� ∈ �, (1 ≤ � ≤ �).
 2: Get all �(��, ��) by linear correlation coe�cient.
 3: Sort 

�������� ,��
����� values for (1 ≤ � ≤ �).

 4:  Choose � sets for top �� with high value of |�|, for 
relevant variable � and (1 ≤ � ≤ �).

 5:  Get combination ��, �� ∈ ��, where �� ⊂ � and 
�(��) = �.

 6:  Determine ��∗, where the maximum of F1 score 
with ��.

 7:  Get all �(�) by information gain.
 8:  Get � is related to highly ranking variable.
 9:  Choose � sets for top �� with high value of  
�(�), relevant variable � and (1 ≤ � ≤ �).

10:  Get elements �� ∈ ��, where �� ⊂ � and �(��) = �.
11:  Determine ��∗, where maximum of F1 score with ��.
12: Merge Ω∗ = {��∗} ∪ {��∗}.

Algorithm 1: Improved feature selection

correlated and have a strong impact between classes (see 
Algorithm 1).

In the CFS stage, we derive the linear correlation coe�-
cient, �(��, ��). In this paper, we determine the veri�ed features 
xi with high value of |�|.  e number of elements in the set ��
with elements �� is �.  ese elements are selected with a rele-
vant variable from CFS.  e �nal Cj

∗ consists of a set with 
elements �� calculating the highest F1 score (see Table 3 for 
CFS features). In the IG stage, we derive the IG ranking  
�(�).  e IG method �nds the top 20% of �� features, according 
to the �2 statistical distribution, from the 79 features. It �nds 
that the statistic result is saturated at around �.  e �nal �∗�
consists of a set with elements �� calculating the highest F1 
score (see Table 3 for IG features).  e �nal feature selection 
is made by �nding the union of the CFS and IG method feature 
sets. In this paper, each method selected �ve features; in total, 
nine features are used as input features (one feature was 
included in both feature sets). A total of 631,955 elements with 
these features were used for our model.

In-vehicle applications can be infected by Android mal-
ware via wireless or wired communication channels, as illus-
trated in Figure 1. Several studies suggesting IDS architectures 
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gradient boosting classi�er (GB), extra tree classi�er (ET), and 
bagging classi�er (BC) algorithms—are used to analyze the 
data and their results are compared to those of the proposed 
algorithm. In addition, we also present hyperparameters for 
each algorithm for comparative veri�cation of the machine 
learning used to implement the malware detection module in 
a self-driving vehicle gateway. It is important to tune hyper-
parameters for result, performance, and cost optimization 
when analyzing data using a machine learning algorithm. 
Indeed, signi�cant di�erences in the performance and accu-
racy of analysis results can occur depending on the con�gu-
ration of the hyperparameters. We present the hyperparameters 
used in each experiment with the F1 score and elapsed time 
for each algorithm.  ese hyperparameters were derived by 
changing various experimental conditions repeatedly for each 
algorithm.

 e nine input features are de�ned through the feature 
selection process and the output is de�ned using two classi�-
cation scenarios to analyze the experimental results. In the 
�rst scenario (see Figure 4(a)), benign code, adware, and gen-
eral malware are accurately detected, whereas the second sce-
nario (see Figure 4(b)) is a binary classi�cation scenario where 
only benign code and adware are detected because general 
malware accounts for only 0.8% of the dataset. It is meaningful 
to compare the results of the binary classi�cation because its 
impact can be predicted through the �rst scenario.

In this paper, malware detection using machine learning 
is included to develop the IDS module included in self-driving 
vehicles.  e F1 score used in machine learning calculates the 
accuracy, recall, and precision values for all cases to evaluate 
the model’s performance.  is general method, which took 
about 3.570 s to verify the dataset on average, is not suitable 
for real-time detection. We applied a faster F1 score evaluation 

performance is good even when it is not. For example, the 
overall accuracy can be high if the benign category, which has 
high importance in the dataset, is accurately predicted, even 
if general malware, which has low importance, is not accu-
rately predicted.  erefore, the F1 score, which uses the har-
monic mean based on recall and precision, is used to evaluate 
prediction accuracy.

In summary, the proposed machine learning-based intru-
sion detection module detects Android malware for a self-driv-
ing vehicle and labels its type (i.e., adware or general malware). 
 e procedure, which is based on the detection of the network 
tra�c deviation on Android OS, is divided into three phases, 
as shown in Figure 3.  e �rst phase focuses on data preproc-
essing. Feature selection is performed to select the most rele-
vant features from all measuring features in the dataset.  e 
second phase consists of modeling. Using ten-fold cross-vali-
dation, this phase trains the machine learning model using 
75% of the dataset and suggests the most suitable hyperparam-
eters for the retraining model. In addition, this phase uses 25% 
of the dataset for testing and evaluating the proposed intrusion 
detection module.  erefore, a machine learning model tuned 
by hyperparameters is created using the training dataset, and 
a testing dataset is applied to evaluate the model. In the third 
phase, the intrusion detection module can detect malicious 
behaviors in real time when real data ²ows into the self-driving 
vehicle. Speci�cally, the proposed intrusion detection module 
should be included in the vehicle gateway shown in Figure 2.

4. Simulation Results

Six machine learning algorithms—the random forest (RF), 
decision tree (DT), k-nearest neighbors classi�er (KC), 

1.Preprocessing

2.Modeling

In-vehicle network

<Detection result>

Hyperparameter

Benign Malware

Intrusion detection
module

Retraining model

Training & validating

10–fold cross validation

75%

3.Detecting

Scaling

Feature selection

Adware

Real data
(in-vehicle network)

Evaluation

Testing

25%

Datasets

Malicious behavior

Figure 3: Intrusion detection module in a vehicle network.
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the highest F1 score is observed when the random state is 42, 
the number of estimators is 50, the maximum depth is 15, and 
the maximum number of features is 5. Its prediction accuracy 
is generally high, but its learning time is the longest of all 
algorithms, at 2,556,517 ms; for comparison, the learning time 
of the second longest algorithm, KC, is 60,967 ms and that of 
the shortest, ET, is merely 976 ms.  erefore, although GB is 
suitable for binary classi�cation, the learning time costs are 
too large for general classi�cation. For ET, the highest F1 score 
was observed when the random state is 42, the splitter is ran-
dom, and the number of estimators is 100.  is algorithm 
shows the shortest learning time under both scenarios. 
Although the binary classi�cation has high prediction accu-
racy and the shortest learning time (95 ms), making it very 
e�cient, its prediction accuracy is signi�cantly reduced in 
scenario 1. For BC, the highest F1 score is observed when the 
random state is 42 and the number of estimators is 10. Similar 
to ET, BC is e�cient because of its high prediction accuracy 
in the binary classi�cation scenario, but it has signi�cantly 
reduced prediction accuracy under scenario 1.

In summary, the algorithm’s overall prediction accuracy 
was 90% or greater with binary classi�cation for all algorithms 
except GB.  erefore, in this case, an algorithm with a short 
learning time can be selected. In order to detect malware or 
adware in an embedded so�ware environment such as a vehi-
cle, high accuracy and a fast response time are very important. 
 erefore, the ET algorithm, with its learning time of 95 ms 
and prediction accuracy of 90.6% in binary classi�cation sce-
narios, would be suitable. However, considering that the attack 
detection method in the Android OS is classi�cation scenario 
1, the RF algorithm, which has the highest prediction accuracy 
and a learning time of 19,401 ms, would be the most 
suitable.

We use the receiver operating characteristic (ROC) curve 
to evaluate the experimental results of each algorithm.  e 
ROC curve, a widely used tool for binary classi�cation, plots 
the method’s sensitivity against its speci�city.  e area under 

method because malware should be detected in real time on 
autonomous vehicles. In order to generate a class that calcu-
lates and returns a confusion matrix quickly, we proposed a 
new score function.  rough this function, we obtained the 
F1 score directly when the model was training.  e function 
stored the value of the computed confusion matrix and was 
reusable when the F1 score was called for performance eval-
uation. In this case, the elapsed average time was 0.049 s, which 
is acceptable for real-time detection. Abnormal behavior pre-
diction can therefore determine within 0.049 s when new traf-
�c occurred in the self-driving vehicle (see Table 6).

For the RF algorithm, the highest F1 score is obtained 
when the random state is 42, the number of estimators is 85, 
the maximum depth is 24, and the maximum number of fea-
tures is 4. Although the RF’s prediction accuracy is typically 
higher when using binary classi�cation, in this case, it is higher 
under scenario 1. Overall, the RF algorithm had the highest 
prediction accuracy of the machine learning algorithms tested. 
For the DT algorithm, the highest F1 score was observed when 
the random state is 42 and the minimum leaf sample is 2. For 
KC, the highest F1 score was observed under the following 
conditions: uniform weights and 7 estimators. For both DT 
and KC, accuracy may decrease in datasets with large data 
imbalances. Moreover, although the KC algorithm exhibits 
higher prediction accuracy in binary classi�cation scenarios, 
its learning time is more than twice that in scenario 1. For GB, 
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Figure 4: Simulation results. (a) Multiclass classi�cation. (b) Binary classi�cation.

Table 6: Comparison of the proposed score–function model with a 
basic scikit-learn method.

Evaluation factors Basic model Score-function model
Elapsed time (second) 3.570 0.049
Accuracy 0.929 0.929
Precision 0.849 0.849
Recall 0.761 0.761
F1 score 0.796 0.803
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the micro-average and macro-average detection results for GB 
are 0.97 and 0.84, respectively. However, the detection result of 
class 2 is low (0.58) due to class 2’s scarcity in the dataset.  at 
is, GB can perform well for binary classi�cation, but is not suit-
able for multiclass classi�cation. In conclusion, the ROC curve 
and AUC of each classi�er show that the RF algorithm better 
detects malware than the other algorithms.

5. Conclusion

 e increasing connectivity of vehicles has also increased secu-
rity threats. Malicious code can ²ow into a vehicle’s internal 
network when a device infected with malicious code is con-
nected to the vehicle through an external communication 
channel. High accuracy and speed are key for detecting 

the ROC curve (AUC), which represents the surface integral 
under the curve, is an indicator of the detection performance 
of each classi�er. When the curve approaches the graph of 
y = x, the classi�er is purely random and the  AUC is near 0.5; 
likewise, detection performance is better when the curve at 
the top le� area is far from the random classi�er line.  e AUC 
of the perfect classi�er is 1.

We compared the performance of four algorithms: RF, DT, 
KC, and GB (see Figure 5). In the RF algorithm shown in Figure 
5(a), the AUC of the macro-average obtained by calculating the 
measurement of each class is 0.97 and the micro-average for 
integrated classes is 0.99. For the imbalanced (class 2) malware, 
the AUC was 0.93, which is relatively good compared to other 
classi�ers. In Figures 5(b) and 5(c), the DC and KC show similar 
detection results. However, when class 2 malware is detected, 
the DC is slightly better than the KC. Moreover, in Figure 5(d), 
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(c) k-nearest neighbors classi�er
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Figure 5: Simulation results with ROC curve and AUC, where “Area” denotes the AUC and classes 0, 1, and 2 correspond to benign, adware, 
and general malware, respectively. (a) RF. (b) DT. (c) KC. (d) GB.
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[10] � H. Kwon, S. Lee, J. Choi, and B. Chung, “Mitigation mechanism 
against in-vehicle network intrusion by reconfiguring ECU and 
disabling attack packet,” in Proceedings of 2018 International 
Conference on Information Technology (InCIT), pp. 55–59, IEEE, 
�ailand, 2018.

[11] � M. L. Han, B. I. Kwak, and H. K. Kim, “Anomaly intrusion 
detection method for vehicular networks based on survival 
analysis,” Vehicular Communications, vol. 14, pp. 52–63, 2018.

[12] � T. Zhang, H. Antunes, and S. Aggarwal, “Defending connected 
vehicles against malware: challenges and a solution framework,” 
IEEE Internet �ings Journal, vol. 1, no. 1, pp. 10–21, 2014.

[13] � E. Yagdereli, C. Gemci, and A. Z. Aktas, “A study on cyber-
security on autonomous and unmanned vehicles,” �e Journal 
of Defense Modeling and Simulation: Applications, Methodology, 
Technology, vol. 12, no. 4, pp. 369–381, 2015.

[14] � B. Groza and P.-S. Murvay, “Security solution for the controller 
area network: bringing authentication to in-vehicle networks,” 
IEEE Vehicular Technology Magazine, vol. 13, no. 1, pp. 40–47, 
2018.

[15] � M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 
I. H. Witten, “�e WEKA data mining so�ware: an update,” 
ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 
2009.

[16] � M. Doshi and S. Chaturvedi, “Correlation based feature selection 
(CFS) technique to predict student performance,” International 
Journal of Computer Networks & Communications (IJCNC), vol. 
6, no. 3, pp. 197–206, 2014.

[17] � S. Lei, “A feature selection method based on information gain 
and genetic algorithm,” in Proceedings of 2012 International 
Conference on Computer Science and Electronics Engineering 
(ICCSEE), pp. 355–358, IEEE, China, 2012.

[18] � A. Arora, S. Garg, and S. K. Peddoju, “Malware detection using 
network traffic analysis in android based mobile devices,” in 
Proceedings of 2014 Eighth International Conference on Next 
Generation Mobile Applications, Services and Technologies 
(NGMAST 2014), pp. 66–71, IEEE, United Kingdom, 2014.

[19] � S. Iqbal, A. Haque, and M. Zulkernine, “Towards a security 
architecture for protecting connected vehicles from malware,” in 
Proceedings of 2019 IEEE 89th Vehicular Technology Conference 
(VTC2019-Srping), pp. 1–5, IEEE, Malaysia, 2019.

malicious behaviors in the embedded environment of vehicles, 
where responses must be processed in real time. �is study, 
therefore, analyzed security threats from adware and malware 
in the Android OS within a self-driving vehicle. Network traf-
fic was analyzed to detect malicious behaviors at the network 
in the module. In addition, a machine learning-based intru-
sion detection module for malware detection was proposed. 
Finally, we proposed a machine learning algorithm that can 
detect Android malware for vehicles with high accuracy and 
in a short time. We compared the algorithm’s detection accu-
racy and speed with proposed optimal hyperparameters to six 
machine learning algorithms. In addition, we also found that 
we can significantly reduce the elapsed time by using the novel 
score-function model for real-time detection. Our simulation 
we demonstrated that our algorithm is highly accurate (92.9%) 
and fast (0.049 s), making it suitable for real-time malware 
detection in a self-driving vehicle environment.

Data Availability

�e CIC AW&GM dataset can be found in the official webpage 
of the institute https://www.unb.ca/cic/datasets/android-ad-
ware.html.
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