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Abstract. In this paper we develop a family of arbitrarily high-order non-oscillatory hybrid Fi-
nite Volume/Discontinuous Galerkin schemes for turbulent flows on mixed-element unstructured
meshes. The schemes are inherently compact in the sense that the central stencils employed are
as compact as possible, and that the directional stencils are reduced in size, simplifying their
implementation. Their key ingredient is the switch between a DG method and a FV method
based on the CWENOZ scheme when a troubled cell is detected. Therefore, in smooth regions
of the computational domain, the high order of accuracy offered by DG is preserved, while in
regions with sharp gradients, the robustness of FV is utilized. This paper also presents the time
evolution of troubled cells in unsteady test cases and the use of extended bounds for troubled
cell detection. We assess the performance of these schemes in terms of accuracy, robustness and
computational cost through a series of stringent 2D and 3D test problems. The results obtained
demonstrate the accuracy and robustness that the schemes offer and highlight areas of future
improvements that are considered.

1 Introduction

The DG method represents the approximate solution in each element through a piecewise
polynomial expansion, avoiding reconstruction on potentially large stencils. The DG method
uses many features shared by FV methods, such as the explicit Runge-Kutta time stepping
discretization and the use of Riemann solvers at cell interfaces. Similarly, the DG method also
suffers from the unphysical oscillations described by the Gibbs phenomenon in the presence of
discontinuities. A number of techniques originally developed for the FV method were successfully
adapted to the DG method to address this issue, such as the TVB minmod slope limiter [1].
The disadvantage of such limiters is the accuracy degradation in smooth flow regions, where
the limiter is needlessly activated. WENO schemes use a convex combination of reconstructed
polynomials constructed from various directional stencils, such that information is pulled from
smooth regions. However, the non-compactness of stencil creates issues for complexity, compu-
tational cost, parallelization, and robustness due to the lack of guarantee of finding a stencil in
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a smooth region.
In order to alleviate these shortcomings, the Compact WENO (CWENO) scheme, intro-

duced by [2] and extended to mixed-element arbitrary unstructured meshes by [3], uses smaller
directional stencils, enhancing the efficiency and robustness of the scheme. Here the directional
stencils are contained in the central stencil, and in smooth regions the central stencil order is
recovered, whereas in discontinuous regions the chances to have at least a directional stencil
with smooth data variation are increased. The CWENOZ method, also [3], is similar but differs
in its approximation of the non-linear weights.

Due to their compact size, the CWENO/CWENOZ schemes are more suitable to be used in
conjunction with the DG framework. However, in order to preserve the accuracy and compactness
properties of the original DG method, the limiting procedure should still be applied only where
necessary. For this reason, the limiting strategy usually consists of two steps: first, the so-called
troubled cells, where a limiting procedure is required, are determined through a troubled cell
detector; then, the higher modes of the unlimited DG solution are replaced with the WENO
solution, where in order to ensure conservation, the cell average of the new polynomial has to
equal that of the DG polynomial.

All the schemes are developed in the open source UCNS3D solver [4], and we assess their per-
formance in terms of robustness, accuracy and computational efficiency for a series of stringent
2D and 3D test problems.

The paper is organized as follows. In Section 2 we introduce the numerical framework used to
describe the high-order hybrid DG-FV framework. The numerical results obtained for all the test
problems are presented in Section 3 and compared against analytical, reference, or experimental
solutions whenever possible. Finally, the last section describes the conclusions drawn from this
study.

2 Numerical Framework

2.1 Governing Equations

The compressible 3D Euler equations are considered, written in conservative form as:

∂U(x, t)

∂t
+∇ · (F⃗c(U)) = 0, (1)

where U is the vector of the conserved variables, and F⃗c are the inviscid and viscous flux vectors
given as

U =


ρ
ρu
ρv
ρw
E

 , F⃗c =


ρun

ρuun + nxp
ρvun + nyp
ρwun + nzp
un(E + p)

 , (2)

where ρ is the density; u, v, w are the velocity components in x, y and z Cartesian coordinates,
respectively, and un is the velocity normal to the bounded surface area, defined by un = nxu+
nyv + nzw. Ideal gas is assumed where the total energy per unit mass is calculated by E =
p/ (γ − 1) + (1/2)ρ(u2 + v2 + w2), where p is the pressure, γ = 1.4 is the ratio of specific heats
for air at normal atmospheric conditions.

2



Dean Yuan, Panagiotis Tsoutsanis and Karl W. Jenkins

2.2 Discontinuous Galerkin Method

In DG methods, higher orders of accuracy are attained through a high-order polynomial
representation of the local element solution. Consider the unsteady non-linear hyperbolic system
of conservation laws on a 3D domain Ω, written in its conservative form:

∂U

∂t
+∇ · (F(U)) = 0, (3)

where U = U(x, t) is the vector of conserved variables, x = (x, y, z) denotes the coordinates
of a point of the domain Ω, and F(U) = (f(U),g(U),h(U)) is the non-linear flux tensor. The
physical domain Ω consists of a combination of conforming tetrahedrons, hexahedrons, prisms,
or pyramids in 3D; and quadrilaterals or triangles in 2D. All the elements are indexed by a
unique mono-index i.

The weak formulation is considered, obtained by multiplying Eq. 3 by a smooth test function
ϕ(x), integrating over the domain Ω and performing an integration by parts:∫

Ω
ϕ(x)

∂U

∂t
dΩ+

∮
∂Ω
ϕ(x)F (U) · ndS =

∫
Ω
∇ϕ(x) · F̂ (U)dΩ. (4)

where F̂ (U) is the Riemann flux as employed in FV methods to resolve the non-unique solution
at the element boundaries. The solution is discretely approximated by a collection of piecewise
solutions on each element, defined as a linear combination of n local polynomial basis functions
B(x). The discrete solution lies in a finite-element space of discontinuous functions, i.e. a Sobolev
space [5] Vh = {ϕh ∈ L∞ : ϕh|Ω ∈ V k(Ω), k = 0, 1, 2, ..., N}, where V k is the space of polynomials
of degree up to k. The discrete solution Uh, with expansion coefficients denoted by uh, can be
seen as expansions over a finite element basis Bk

j in the aforementioned polynomial space, where
n is the number of degrees of freedom:

Uh(x, t) =

n∑
j=1

uh(t)B
k
j (x). (5)

In this work a modal formulation is used, i.e. the unknowns to be solved are the polynomial
expansion coefficients, with a cell centered Taylor series expansion [6–8]

2.3 Finite Volume

Integrating Eq. (3) over the mesh element i using a high-order explicit finite-volume formu-
lation the following equation is obtained:

Un+1
i = Un

i −∆t
1

|Vi|

Nf∑
j=1

Nqp∑
α=1

Fnij
(
Un

ij,L(xij,α, t),U
n
ij,R(xij,α, t)

)
ωα|Sij |, (6)

where Ui are the volume averaged conserved variables

Ui =
1

|Vi|

∫
Vi

U(x, y, z) dV, (7)
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and Fnij is a numerical flux function in the direction normal to the cell interface between cell
i and the neighbouring cell j, Nf is the number of faces per element, Nqp is the number of
quadrature points used for approximating the surface integrals, |Sij | is the surface area of the
corresponding face, andUn

ij,L(xij,α, t) andUn
ij,R(xij,α, t) are the high-order approximations of the

solutions for cell i and cell j respectively; while α corresponds to different Gaussian integration
points xα and weights ωα over each face. The volume, surface and line integrals are numerically
approximated by suitable quadrature rules, see [9] for details on numerical approximations of
multiple integrals.

2.3.1 Reconstruction

For a cell i a high-order polynomial pi(x, y, z) of order r can be built that provides r + 1
order of accuracy, by requiring it to have the same average as a general quantity Ui. This can
be formulated as:

Ui =
1

|Vi|

∫
Vi

pi(x, y, z) dV. (8)

The reconstruction process adopted in UCNS3D [4] follows the approaches of Tsoutsanis et al.
[3, 10–12], Titarev et al. [13] that have been previously applied to smooth and discontinuous
flow problems [3, 4, 10–30] and the reader is referred to previous work [3] which documents the
particular CWENO/CWENOZ variant used in this study.

The reconstruction is performed by building a central stencil S1 by recursively adding neigh-
bouring elements, consisting ofM+1 cells including the considered cell i. The degrees of freedom
ak for the polynomial for each cell m are obtained by satisfying the condition that the cell aver-
age of the reconstruction polynomial p(ξ, η, ζ) must be equal to the cell average of the solution
Um: ∫

V ′
m

p(ξ, η, ζ) dξdηdζ = |V ′
m|U0 +

K∑
k=1

∫
V ′
m

akϕk dξdηdζ = |V ′
m|Um, m = 1, . . . ,M. (9)

and in the present study ψk are Legendre polynomials basis functions. Denoting the integrals of
the basis function k over the cell m in the stencil, and the vector of right-hand side by Amk and
b respectively as given by

Amk =

∫
V ′
m

ϕk dξdηdζ, bm = |V ′
m|(Um −U0),

the equations for degrees of freedom ak can be rewritten in a matrix form as:

K∑
k=1

Amkak = bm, m = 1, 2, . . .M. (10)

The resulting linear system is solved by a QR decomposition based on Householder transforma-
tion [31] while using a Moore-Penrose pseudo-inverse of Amk which is only computed once at
the beginning of the simulation as detailed in [29].
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2.3.2 CWENOZ Scheme

The CWENOZ scheme follows in principle the CWENO scheme, the main difference being
the approximation of the non-linear weights. As previously a high-order polynomial is combined
with lower-order polynomials arising from the directional stencils also using the Type3 definition
as set in [29]. The definition of the optimal polynomial remains the same as before and the
CWENOZ reconstruction polynomial is given as a non-linear combination of all the polynomials
in the following manner:

p(ξ, η, ζ)cwenoz =

st∑
s=1

ωsps(ξ, η, ζ), (11)

where ωs correspond to the non-linear weights assigned to each polynomial. The characteristic
difference is the approximation of the non-linear weights ωs. We mentioned previously that the
smoothness indicators for the CWENO scheme arise from polynomials of different orders. The
WENOZ component of combining unequal degree polynomials as introduced by Borges et al.
and Castro et al. [32, 33] is employed in this study, but adapted for unequal polynomials, sized
reconstruction stencils and arbitrary elements as has recently been reported by [34, 35] . The
non-linear weights are now defined as:

ωs =
ω̃s

st∑
s=1

ω̃s

where ω̃s = λs

(
1 +

τ

ϵ+ SIs

)
. (12)

With τ being the universal oscillation indicator and taken as the absolute difference between
the smoothness indicators as follows:

τ =


st∑
s=2

|SIs − SI1|

st − 1


b

. (13)

Similarly to the WENO scheme ϵ = 10−6 is used and b = 4. For the present study we employ
r = 1 for the directional polynomials resulting in 2nd-order of accuracy, and any arbitrary
order of accuracy for the polynomial associated with the central stencil. The procedure for the
assignment of the linear weights is similar to the CWENO approach described previously.

All the schemes developed are implemented in the UCNS3D CFD code [4], which is written
in object-oriented Fortran 2003, employing MPI message passing interface (MPI) and the Open
Multi-Processing (OpenMP) application programming interface (API). The reader is referred
to [23,36] for more details on implementation and performance benchmarks. The computational
times reported in each case are obtained for the same hardware (and compilation settings) and
normalised with respect to a reference setup for the same hardware so that the performance of
various algorithms under the same hardware can be appreciated.

The operations performed by the modified version of the UCNS3D code, and used for the
present study, are summarized in the flow chart in Fig. 1. As previously mentioned, the UCNS3D
code is originally a pure FV code, hence the additional implementation of a modal DG scheme
allows the hybridization of the two frameworks, where the unlimited DG solution is checked at
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every RK stage of every time step and the FV reconstruction is enabled and substituted to the
original DG in the cells that are deemed troubled by the solution checking criteria.

START

1a. Read input
parameters
1b. Mesh

partitioning

2a. Coordinate
transformation
2b. Element
decomposition

3. Compute and
prestore

quadrature
points

4a. Compute
mass matrix
4b. Compute
inverse mass

matrix

5a. Assemble stencils
5b. Communicate

requirements

6. Initialise
solution

7. Compute unlimited
DG solution

8. check for troubled cells:
-Option a: extended bounds
-Option b: limited bounds

8.1. Invalid
cell

detected?

9. Compute
WENO weights

10. Reconstruct
higher DOFs

13. Extrapolate and
communicate
variables and

gradients at cell
interfaces

14a. Compute fluxes
14b. Compute DG

RHS (surface integral
+ volume integral)

16. End of
RK

stepping?

17.
Convergence?
Time end?

11. Check reconstructed
polynomial:

If invalid reduce order

15. Update
current stage

solution

12. Replace DG
polynomial with
reconstructed
polynomial

No, criteria 2

No, criteria 1

YES

NO

If invalid recompute with reduced order

18. I/O END

YES

NO

YES

Figure 1: Procedure followed by the hybrid DG-FV scheme

2.4 Troubled Cell Indicators

Following the introduction of WENO type limiting for DG schemes [1, 37], great effort in
the recent years was dedicated to the study of troubled cell indicators in order to provide a
reliable and efficient system to enable high-order accuracy in smooth regions and non-oscillatory
behaviour near discontinuities. These efforts demonstrate that a universal troubled cell detector
has still not been achieved. A thorough comparison of the most popular indicators is performed
in [38], showing that the best performances were obtained with the KXRCF and Harten’s subcell
resolution detectors. In this work our main focus is not to compare different detectors, but to
demonstrate the viability of utilizing both the FV and DG methods. The detectors used in this
work and a brief discussion of their principles follows:

In this work we will adopt the two criteria often used within the MOOD paradigm, namely the
Physical Admissible Detector (PAD) and the Numerical Admissible Criteria (NAD), but apply
them in an a priori fashion. The PAD checks for negative or NaN solutions for the density and
pressure variables that of course are not admissible, while the NAD checks that the solution is
monotonic and new extrema are not created. The difference when using these kind of indicators
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in the context of a priori detection is that the neighbouring solutions are compared with the
target cell solution at the same time level. The NAD criteria used in this work refers to the
DMP-relaxed margins proposed in:

min
y∈Vi

(Un(y))− δ ≤ U(x) ≤ max
y∈Vi

(Un(y)) + δ, (14)

where the margin δ is defined as:

δ = max(10−4,par2 · [max
y∈Vi

(Un(y))−min
y∈Vi

(Un(y))]), (15)

and the parameter par2 will be taken as 10−3.

2.5 Bounds Definition

An investigation on stencil selection algorithm was conducted in [29], and in [25] the impact
of different bounds definitions on the accuracy of MUSCL type scheme demonstrated that con-
sidering the direct side neighbouring cells only, is often the reason for reduced order of accuracy.
This is due to the activation of the limiter in smooth flow regions which can happen because the
bounds imposed by the direct side neighbors provide an extremely narrow range of admissible
solutions. This issue is exacerbated by poor quality cells, as the limiter can be activated by the
condition number of the resulting reconstruction system. By extending the bounds to the entire
stencil, higher orders of accuracy can be maintained.

3 Applications

3.1 Linear Advection Equation

The scheme is first tested for the 2D linear advection of a smooth function U(x, y, 0) =
sin(2πx) ·sin(2πy) on a computational domain defined by [0, 10]× [0, 10] with periodic boundary
conditions applied on all sides. Three types of meshes are tested, including a uniform quadri-
lateral, a triangular, and a hybrid unstructured mesh composed of mixed elements with four
different resolutions corresponding to 16, 32, 64 and 128 edges per side. The computations are
run for one period t = 1 where the eL2 error is computed as follows:

eL2 =

√∑
i

∫
Ωi

(Ue (x, tf )− Uc (x, tf ))
2 dV∑

i |Ωi|
, (16)

where Uc (x, tf ) and Ue (x, tf ) are the computed and exact solutions at the end of the simula-
tion t = 1. The exact solution Ue (x, tf ) being given by the initial condition itself at t = 0. The
purpose of this test is to assess the accuracy of the solution obtained with the FV scheme with
CWENOZ reconstruction and DG scheme, to be then used as benchmark for the performance
of the hybrid FV/DG scheme.

The results are presented in Table 2. Ideally, for this kind of smooth problem the trouble
indicator should not detect any troubled cells and the FV should not be activated at all. However,
it is typical of trouble indicators to erroneously mark smooth extrema as invalid cells. Indeed this
is the case with both the indicators investigated in this test case, i.e. the PAD/NAD detectors
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Table 1: Values for eL∞ and eL2 error and convergence rates for smooth profile advection test
on a uniform quadrilateral mesh with a hybrid DG-FV scheme when all the cells are artificially
rendered troubled, demonstrating that the order of accuracy does not drop due to switching
from DG to FV.

DG/CWENOZ all cells troubled P2 P3 P4

Number of Edges eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2

16 2.12E-01 - 1.07E-01 - 1.61E-02 - 8.40E-03 - 3.00E-02 - 1.51E-02 -
32 3.12E-02 2.77 1.56E-02 2.78 7.85E-04 4.36 4.28E-04 4.30 1.04E-03 4.85 5.21E-04 4.86
64 4.02E-03 2.96 2.02E-03 2.95 4.21E-05 4.22 2.48E-05 4.11 3.34E-05 4.97 1.66E-05 4.97
128 5.02E-04 3.00 2.51E-04 3.01 2.48E-06 4.08 1.51E-06 4.04 1.05E-06 4.99 5.25E-07 4.99

Table 2: Values for eL2 error and convergence rates for pure FV and DG framework, and hybrid
FV/DG with the MOOD O and Fu troubled cell indicators, for smooth profile advection test.
For the hybrid schemes the average percentage of troubled cells are averaged on the total number
of time steps and the additional costs for the reconstruction in the troubled cells is quantified
though the CPU coefficient normalised with the pure DG computational time on the same mesh
and polynomial order.

Order/Number of Edges FV DG DG/MOOD DG/SD

Triangular Mesh eL2 OL2 eL2 OL2 eL2 OL2 % troub. cells CPU eL2 OL2 % troub. cells CPU

P2/16 2.14E-02 - 3.38E-05 - 5.96E-04 - 2.61 1.12 9.01E-03 - 20.6 1.19
P2/32 2.92E-03 2.86 2.57E-06 3.72 2.65E-05 4.49 0.70 1.10 1.18E-03 2.94 11.8 1.13
P2/64 3.77E-04 2.95 2.27E-07 3.51 1.09E-06 4.59 0.16 1.08 1.40E-04 3.07 6.48 1.11
P2/128 4.72E-05 2.99 2.83E-08 3.00 1.61E-07 2.77 0.03 1.03 1.55E-05 3.17 3.41 1.07

P3/16 1.39E-03 - 2.26E-06 - 3.50E-04 - 2.66 1.03 1.21E-03 - 74.9 1.29
P3/32 9.60E-05 3.85 8.92E-08 4.67 1.53E-05 4.51 0.70 1.02 6.17E-05 4.30 44.6 1.15
P3/64 6.71E-06 3.84 5.71E-09 3.96 5.44E-07 4.81 0.16 1.03 3.21E-06 4.26 24.0 1.11
P3/128 5.15E-07 3.70 2.92E-10 4.29 1.78E-08 4.93 0.02 1.01 2.73E-07 3.56 12.4 1.09

P4/8 2.85E-02 - 9.78E-07 - 2.49E-03 - 10.6 - 3.84E-02 - 100 1.46
P4/16 1.27E-03 4.49 2.20E-08 5.47 2.86E-05 6.45 2.66 1.04 1.67E-03 4.52 100 1.58
P4/32 4.59E-05 4.79 4.20E-10 5.71 2.79E-07 6.68 0.70 1.03 6.62E-05 4.66 87.8 1.39
P4/64 1.64E-06 4.81 1.74E-11 4.60 2.36E-09 6.89 0.17 1.02 2.97E-06 4.48 65.0 1.26

Hybrid Mesh eL2 OL2 eL2 OL2 eL2 OL2 % troub. cells CPU eL2 OL2 % troub. cells CPU

P2/16 4.52E-02 - 1.58E-04 - 4.18E-03 - 3.31 1.13 1.56E-02 - 22.7 1.20
P2/32 6.08E-03 2.88 2.25E-05 2.81 8.69E-04 2.27 0.87 1.10 1.90E-03 3.04 12.6 1.13
P2/64 7.61E-04 3.01 2.67E-06 3.07 5.03E-05 4.11 0.22 1.02 2.29E-04 3.05 7.06 1.04
P2/128 9.55E-05 2.99 4.30E-07 2.63 1.75E-06 4.85 0.06 1.01 2.64E-05 3.12 3.74 1.03

P3/16 3.49E-03 - 4.22E-06 - 5.15E-04 - 3.42 1.04 3.55E-03 - 85.4 1.27
P3/32 1.62E-04 4.43 4.36E-07 3.28 5.22E-05 3.30 0.85 1.03 1.63E-04 4.45 52.3 1.16
P3/64 1.04E-05 3.96 2.97E-08 3.87 5.06E-07 6.69 0.20 1.07 8.89E-06 4.20 28.4 1.15
P3/128 7.50E-07 3.80 2.04E-09 3.86 3.21E-08 3.98 0.04 1.00 5.90E-07 3.91 14.7 1.05

P4/8 6.39E-02 - 5.13E-06 - 6.66E-03 - 13.9 1.03 9.01E-02 - 100 1.47
P4/16 3.13E-03 4.35 1.61E-07 4.99 1.04E-04 6.00 3.47 1.04 4.76E-03 4.24 100 1.56
P4/32 1.07E-04 4.88 6.06E-09 4.73 1.16E-06 6.49 0.86 1.02 1.69E-04 4.82 91.9 1.36
P4/64 3.37E-06 4.98 2.80E-10 4.44 2.53E-08 5.52 0.20 1.02 6.81E-06 4.63 70.6 1.28

defined in the MOOD paradigm and here simply labelled as MOOD detector, and the shock
detector defined as in [39]. We observe a higher rate of convergence in the hybrid scheme due
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to the decrease in the percentage of troubled cells due to mesh refinement and the impact on
the computational time, compared to the pure DG scheme with the same polynomial order and
mesh resolution, here expressed through the CPU coefficient.

3.2 Advection of Discontinuous Profile

The non-oscillatory performances of the hybrid scheme are then assessed against the advection
of a discontinuous profile test case. The function is advected for one period t = 1 and is in form
of a square profile in two dimensions and defined by the following initial conditions:

f(x, y) =

{
1, if (x, y) ∈ [0.2, 0.8],

0, if otherwise.
(17)

The computational domain is again given by [0, 10]× [0, 10] with periodic boundary conditions
applied on all sides, and the computations are performed on the uniform and unstructured
meshes with a resolution corresponding to 64 edges per side. The results obtained with the pure
FV and DG, and with the hybrid FV/DG scheme with the MOOD type indicators with two
different threshold values, for the 3rd order of accuracy, are presented in Fig. 2. The trade-off
between diffusivity and oscillatory nature can be observed. The pure DG better preserves the
initial profile after one period, compared to the pure FV which has a more diffused profile.
However, the edges are clearly more oscillatory with the pure DG. In order to dampen the
oscillations, the hybrid scheme is tested with two threshold values, i.e. taking a value of par2 =
10−3 from the MOOD implementation of [40] and the relaxed value par2 = 10−1 from [24]. The
indicators will be referred asMOOD O andMOOD R, respectively. In addition, the two bounds
definitions discussed in section 2.5 will be used with said indicators, and therefore MOOD O1
and MOOD R1 will refer to the extended bounds setting, while MOOD O2 and MOOD R2
refers to the version with bounds limited to target cell’s direct side neighbours. TheMOOD O1,
i.e. lower threshold with extended bounds, seems to be in this case the best compromise to
preserve the original accuracy provided by the DG scheme, without producing any oscillation.

The history of the total percentage of troubled cells is plotted in Fig. 3. The configuration with
limited bounds results in a higher number of cells marked as troubled, regardless of the selected
threshold value. Extending the bounds to the entire stencil and decreasing the threshold value
as for the MOOD R1, results in a smaller amount of invalid cells detected, which is beneficial
for the final accuracy but is not sufficient to avoid some oscillations at the edges of the profile.

3.3 Inviscid Taylor-Green Vortex

The ILES of the 3D inviscid Taylor-Green vortex test problem at is employed, for assessing
the performance of all the schemes. It is a widely used test problem for the validation of nu-
merical methods, and in particularly at relative coarse-“under-resolved” meshes within the LES
context [11, 26, 41–47] due to the pronounced dissipation and dispersion characteristics of non-
linear methods. The computational domain is defined as Ω = [0, 2π]3 with periodic boundary
conditions. This formulation of the Taylor-Green vortex problem is initialized with the following
velocity, density and pressure fields:

u(x, y, z, 0) = sin(kx) cos(ky) cos(kz), (18)
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(a) Pure FV hybrid mesh (b) MOOD O1 hybrid mesh (c) MOOD R1 hybrid mesh

(d) Pure DG hybrid mesh (e) MOOD O2 hybrid mesh (f) MOOD R2 hybrid mesh

Figure 2: Computed results for the advection of step profile on a hybrid quad/tri mesh. The
performance of the pure FV and DG schemes are compared with the hybrid DG-FV schemes
using different troubled cell indicators

(a) Quadrilateral mesh (b) Triangular mesh (c) Hybrid mesh

Figure 3: Troubled cell history for a advected step profile on various meshes comparing troubled
cell indicators

v(x, y, z, 0) = − cos(kx) sin(ky) cos(kz), (19)

w(x, y, z, 0) = 0, (20)

10
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ρ(x, y, z, 0) = 1, (21)

p(x, y, z, 0) = 100 +
ρ

16
[cos(2z) + 2] · [cos(2x) + cos(2y)]. (22)

The initial condition corresponds to an initial Mach number M ≈ 0.08, with wavenumber
k = 2π/λ = 1. Simulations were carried out on a hexahedral mesh of 643 with four schemes. Two
pure FV methods using a 3rd-order and 5th-order spatial CWENOZ schemes, and two hybrid
DG-FV of 3rd-order and 4th-order of accuracy. The Shock Detector type indicator is used with
the threshold value Ck = 0.4. A CFL number of 0.3 is used for the explicit Runge-Kutta 3rd-
order scheme, up to t = 14 for obtaining the dissipation statistics. The DNS results of Brachet
et. al [48] are used for comparisons against the computed solutions.

From the obtained results as shown in Fig. 4 it can be seen from the kinetic energy evolution
with time that the hybrid DG-FV method is outperforming the pure FV methods at the same
grid resolution, as expected. However, it is clear from the kinetic energy dissipation rate plot
that the subject DG implementation is not free from aliasing errors requires either a modal
exponential filter, split-form flux approximation, or an overintegration technique, as previously
reported by Winters et al [49]. Examining the kinetic energy spectra at time t = 10.0, the hybrid
DG-FV variant has a substantially better agreement with the theoretical Kolmogorov energy
cascade, which is indicative of the low-dissipation properties of the present framework, that can
lead to significant improvements in the context of iLES simulations.
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Figure 4: Kinetic energy evolution with time (left), kinetic energy dissipation rate (middle),
and kinetic energy spectra (right) at t = 10.0 for the subsonic, inviscid Taylor-Green Vortex
obtained with various schemes on a 643 hexahedral mesh, and comparison with the DNS results
of Brachet et al. [48]. DG-FV is superior at the same resolution for kinetic energy evolution
and kinetic energy spectra, but the aliasing errors present at the kinetic energy spectra point to
improvements required either in the form of modal filter, split-flux, or overintergration.

4 Conclusions

The hybrid DG-FV scheme developed in this paper is able to achieve a high order of accuracy
by utilizing the properties of the DG scheme while maintaining robustness and non-oscillatory
behavior by transitioning to a FV method. The CWENOZ reconstruction used by the FV method

11
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Figure 5: solution of the Taylor-Green vortex flow computed with the DG-P3-CWENOZ4 on a
hexahedral mesh of 643. The isosurfaces of the Q-criterion Q=2.5, coloured by the kinetic energy
are plotted at times t = 2, 4, 5, 6, 8 and 10 from top left to bottom right respectively.

is more compact and cost efficient than traditional WENO schemes. The smooth linear advection
case shows that the theoretical order of accuracy is attained, discontinuous linear advection case
shows the trade-off between diffusivity and oscillations due to choice of bounds and trouble
indicator parameter values, and the Taylor-Green vortex case shows the lower dissipation for
iLES application. Future work includes development of parameter-free trouble indicators that
do not erroneously mark smooth extrema, extension to viscous flows, and application of a modal
exponential filter/split flux formulation/overintegration to fix aliasing errors.
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