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Abstract. We perform Large Eddy Simulation on a 3D NACA0012 airfoil using a high order
discontiuous Galerkin spectral element solver at moderate Reynolds numbers, Re = 1.0 · 105.
The aim is to compare the results of classic explicit Sub Grid Scale models, e.g. the WALE and
VREMAN models, with the ones get by using implicit LES, where no explicit SGS is used, but
we use stabilising split-form energy-stable formulations, with two-point Pirozzoli and Kennedy-
Gruber fluxes. We compare general qualitative variables such as the Q-criteria as well as local
quantitative variables, as boundary layer velocity profiles. We show that both methods achive
similar predictions for the integrated global variables, but differences can be appreciated in the
local velocity profiles.

1 INTRODUCTION

High order methods have been extensively used in computational fluid dynamics due to their
accuracy and efficiency in the simulation of fluid flows. This type of discretisation schemes show
lower diffusion and dissipative errors and higher numerical accuracy for the same number of
degrees of freedom when compared to standard low-order schemes [1, 2, 3]. This characteristic
makes them better suited for problems where high accuracy is required.

Since high order methods are able to resolve accurately low to medium wavelenghts, implicit
Large Eddy Simulations (iLES) techniques are a good choice for challenging problems at mod-
erate Reynolds numbers. Energy stable formulations have been used to enhance stability of the
iLES simulations [4], and have been shown to achieve good predictions of global variables such
as lift and drag [5]. This work continues with this idea and explores the prediction capabilities
of modelling more detailed variables.

This study aims to asses the numerical predictions a 3D NACA0012 airfoil at a Reynolds of
1.0 · 105 and angle of attack of 4.0◦, using high order techniques. In particular, we compare the
results of classic Large Eddy Simulation approaches with the of state of the art iLES simulations
using under resolved meshes, namely having a cell size that is coarser than the one need to resolve
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the small scales (i.e. Kolmogorov scales). For this, we use a high order discontinuous Galerkin
spectral element solver called HORSERS3D and developed at the Dept. of Applied Mathematics
of ETSIAE-UPM [6, 7].

2 METHODOLOGY

2.1 High order Discontinuous Galerkin Spectral Element Method

The 3D compressible Navier-Stokes equations can be expressed in the conservative form as

qt +∇ · (Fe − Fv) = 0, (1)

where q is the vector of conservative variables q = [ρ, ρv1, ρv2, ρv3, ρe]
T , Fe and Fv are the

inviscid and viscous fluxes respectively.
To derive a standard Discontinuous Galerkin Spectral Element Method (DGSEM), we con-

sider equation (1) on one mesh element el, one can multiply it by a locally smooth test function
ϕj , typically a polynomial of degree P for 0 ≤ j ≤ P , integrate on el and, apply the Gauss law
on the integral of the flux, obtaining the expresion,∫

el
qtϕj +

∫
∂el

(Fe − Fv) · nϕj −
∫
el
(Fe − Fv) · ∇ϕj = 0, (2)

where n is the normal vector at the element boundaries ∂el. The discontinuous fluxes at inter-
element faces can be replaced by a numerical fluxes, F∗

e and F∗
v, to obtain a weak form for the

equations for each element [8],∫
el
qtϕj +

∫
∂el

(F∗
e − F∗

v) · nϕj −
∫
el
(Fe − Fv) · ∇ϕj = 0, (3)

the non-linear inviscid and viscous numerical fluxes can be chosen appropriately to control
dissipation in the numerical scheme [9, 10]. In this work use the Lax-Friederich flux and the
Bassi-Rebay 1 (BR1) [11] scheme respectively.

2.2 Sub-Grid Scale models

Large Eddy Simulation (LES) models are able to resolve turbulent fluctuation up to specific
length scales. The principal idea behind LES is to reduce the computational cost of a fully
resolved flow (DNS) by modelling the smallest length scales, which are the most computationally
expensive to resolve, via low-pass filtering of the Navier–Stokes equations [12]. The large eddies
are resolved, whereas the smallest ones can be modelled due to their isotropic behaviour. The
effects on the resolved flow due to the smallest eddies are included by means of a so-called
sub-grid scale (SGS) model.

The filtered Navier–Stokes equations are similar to the original set of equations, having an
extra term, τij , which is the SGS stress tensor, and reflects the contribution of the unresolved
smallest eddies. As mentioned before, the SGS contribution to the Navier–Stokes equations need
to be modeled. Most of the models assume a local equilibrium of the sub grid scales, which is
a function of the large scales rate-of-strain tensor (Sij) and a sub grid viscosity (νSGS), added
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to the viscous flux. In that regard, the SGS add dissipation to the Navier–Stokes equations, on
the smallest eddies, which are related to the high wave-numbers in the energy spectrum.

Many models SGS have been proposed, being the most famous, the Smagorinsky [13] one.
In this work, more advance models are used, such as the Wall-Adapting Local Eddy-Viscosity
model (WALE) [14] and the VREMAN model [15].

The complete numerical formulation couples the standard DGSEM with the SGS models,
using the Lax-Friederich flux and BR1 scheme for the inviscid and viscous flows respectively. In
addition, the polynomial discretization is done using Gauss nodes.

2.3 Implicit LES

Another option to solve the Navier–Stokes equations in a under-resolved spatial discretization
is called implicit LES (iLES). The main idea is to rely on the numerical method to add dissipa-
tion, instead of using and explicit SGS model. In this case it is important that the numerical
dissipation acts in a similar way, adding dissipation only at high wave-numbers.

Riemann solvers are the classic option to include numerical dissipation in DG schemes [16,
17], since they naturally arise when discretising the non-linear terms. However, this dissipation
is not enough for high Reynolds number applications, where there could be instability issues,
related to aliasing errors [9]. To overcome these problems, stable and energy conserving formu-
lations, mimicking the continuous equations can be included. In our work, we selected split-form
discretizations, that are energy preserving [4].

The compressible formulation can be modified by rearranging equation (3), starting by split-
ting the volumetric integral of the inviscid and viscous fluxes, and applying the Gauss law to
the former,∫

el
qtϕj +

∫
∂el

(F∗
e − Fe) · nϕj +

∫
el
∇ · Feϕj −

∫
∂el

F∗
v · nϕj +

∫
el
Fv · ∇ϕj = 0. (4)

The required split-form necessitate Gauss–Lobatto points to cancel out boundary terms using
the summation-by-parts simultaneous-approximation-term property (SBP-SAT), together with
a two-point fluxes, to represent the divergence of the inviscid flux in equation( 4). More detail
can be found at [18, 4, 19].

For the iLES approach, we keep the same numerical fluxes, namely Lax-Friederich and BR1,
being the latter equivalent to the interior penalty formulation when using Gauss-Lobatto points
and hexahedral elements [20], as is the case for the present work. In addition, the two-point
fluxes used for the inviscid discretization are chosen to be kinetic energy preserving, being the
Pirozzoli flux [21], and the Kennedy-Gruber one (KG) [22] two options that are compared in this
work. An important remark is the change from Gauss nodes to Gauss-Lobatto nodes (compared
to the explicit LES formulation), specially since the former provide higher accuracy [8, 4].

3 SIMULATIONS

3.1 Computational setup

A NACA0012 airfoil section (of constant thickness and chord) with a sharp trailing edge
is simulated at a low angle of attack, of AoA = 4.0◦, using the HORSES3D compressible
Navier–Stokes solver and a Reynolds Number (Re) of 1.0 · 105, based on the chord of the airfoil
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(C) and the free stream velocity (U∞), and a Mach Number (Ma = 0.2). Periodic boundary
conditions on the spanwise direction are imposed.

The computational domain has dimensions of about 22C×20C×0.1C, with the leading edge
located at [0, 0, 0] (see Figure 1). All the boundary conditions are weakly imposed via Riemann
solver. An adiabatic no-slip wall on the airfoil surface; constant and uniform velocity profile
of [v1, v1, v3] = [U∞cos(AoA), U∞sin(AoA), 0] at the inlet (left and bottom boundaries of the
domain); and a pressure-based boundary condition is imposed at the outlet (right and top of
the domain).

Figure 1: Computational domain and airfoil. Dimensions are defined in terms of chord units
(C).

The high order scheme used in this work, employs two different meshes in the discretization
of the computational domain. An external structured and hexahedral h-mesh, and an internal
p-mesh defining the nodes (based on a Gauss or Gauss-Lobatto nodes) used for the high-order
interpolation (see Figure 2 for illustration). The external h-mesh is created using a C-type
topology and is conforming. It is constructed extruding uniformly a 2D mesh in the spanwise
direction, having this 2D mesh a more refined region near the leading and trailing edge and near
the airfoil surface. The 3D h-mesh consists of 23, 370 elements.

The p-mesh uses isotropic polynomial order equals to 3 (4th order accuracy), obtaining a total
of almost 1.5 millions degrees of freedom (DoF) in all the cases (DoF = Nelem(p+1)3). For the
standard DG discretization using SGS, the internal p-mesh is created using Gauss nodes, as seen
in Figure 2; while for the split-form discretization used in the iLES case, it uses Gauss-Lobatto
nodes (as it is a requirement for the SBP-SAT, see Section 2.3).

The same domain and mesh is used to for the LES with explicit SGS simulation (WALE
and VREMAN), and for the iLES simulations, (Pirozzoli and KG two-point fluxes). In all cases
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Figure 2: h/p mesh: red lines show coarse h-mesh and black lines the polynomial order 3 (4th
order accuracy) mesh using Gauss nodes. left) mesh near the airfoil; right) zoom at the trailing
edge zone.

the simulations are advance in time using an explicit 3th order Runge-Kutta scheme, with a
Courant-Friederichs-Lewy (CFL) of 0.5. The cases are run until the turbulent flow has fully
developed, which typically consists of a convective time units (T ∗ = C/U∞) of 70 (starting from
a uniform flow field). Afterwards, statistics are gathered for 40T ∗.

3.2 Instantaneous Flow

The instantaneous contour of velocity at the mid-span plane is shown in Figure 3 for the case
of iLES using the Pirozzoli flux. The expected behaviour of the flow field can be seen, having
a transition from a laminar flow at the vicinity of the leading edge, to a turbulent flow exiting
at the trailing edge in the suction side of the airfoil, while the pressure side exhibits a laminar
behaviour at the wall of the airfoil.

Figure 3: Velocity contour and velocity vectors and the mid-span plane for the iLES Pirozzoli
case.

The highlighted zone in Figure 3, the region between x/C 0.4 and 0.6 at the suction side is
zoomed in Figure 4, for all the cases. In all but one case (WALE SGS), recirculation flow can
be seen, but at very different positions and extensions. For the LES cases with explicit SGS
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models, the attachment of the flow is clearer, being the WALE model the first one, showing
already no recirculation at this positions. The VREMAN model follows a similar behaviour,
being more attenuated, as there is a smaller bubble at x/C ≈ 0.43. On the other hand, both the
iLES models show similar patterns, where several small recirculation bubbles can be observed
along the cord.

(a) (b)

(c) (d)

Figure 4: Velocity vectors in region x/C from 0.4 to 0.6: (a) LES with WALE SGS model, (b)
LES with VREMAN SGS model, (c) iLES with Pirozzoli flux, and (d) iLES with KG flux.

The differences between each case can also be seen in the 3D flow. Figure 5 shows ,for all
the cases, the instantaneous isocountours of the Q-criterion proposed by Hunt et al. [23]. This
criterion define turbulent structures where there are positive values of the second invariant of
the velocity gradient tensor (Q), which are regions where the rotations are more relevant than
the strain. The WALE model predicted the transition to turbulence before mid-cord position,
with a very small recirculation zone at in the upstream (at x/C ≈ [0.1, 0.3]). In contrast, the
VREMAN model produces clearer laminar recirculation bubbles that are mostly 2D and evolve
into corrugated 3D structures which become later on turbulent structures at the vicinity of the
trailing edge. As for the iLES cases, both show the exact behaviour, with a larger 2D laminar
separation bubble until transition occurs (at x/C ≈ 0.6).

Overall we observe that all these LES technique predict a laminar region, transition to tur-
bulence and turbulence separation.

3.3 Time Averaged Flow

To obtain a better understanding of the flow at the boundary layer, the streamwise velocity
profiles in the normal direction of the time averaged flows are shown in Figure 6 at different
positions along the chord. Averaged and instantaneous flows fields show similar patterns, and
show a laminar separation bubble followed by a turbulent profile. The WALE model generates
the separation bubble closer to the leading edge and also shows the shortest bubble length.
After the mid-chord position, the profile shows a characteristic behaviour of a fully developed
turbulent flow. Again, the VREMAN model predicts a more downstream start of the separation,
with a slightly longer length. By contrast, the results obtained by the iLES configurations are
almost identical, with very small differences, only appreciable at the trailing edge vicinity. The
iLES cases predict a similar start of the separation bubble as the VREMAN model, but with a
further downstream reattachment.
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(a) (b)

(c) (d)

Figure 5: Isocontours of the Q-criterion, coloured by the velocity magnitude. (a) LES with
WALE SGS model, (b) LES with VREMAN SGS model, (c) iLES with Pirozzoli flux, and (d)
iLES with KG flux.
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Figure 6: Streamwise velocity profiles of the mean flow in the normal direction.
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4 CONCLUSIONS

The 3D turbulent flow simulation of a NACA0012 airfoil at a Reynolds number of 1.0 · 105
and an angle of attack of 4.0◦ has been performed using a high order discontinuous Galerkin
compressible Navier-Stokes solver.

Two different strategies to deal with turbulence in Large Eddy Simulation are used and com-
pared: explicit Subgrid Scale models and energy stable formulations. Both are able to capture
the main physics, including the laminar separation bubble and the transition to turbulence.

Differences have been found in the locations of the position of the separation and reattach-
ment, with explicit SGS models providing the smallest length of the bubble, and at a more up-
stream position. While there are appreciable differences between both SGS models, the WALE
and the VREMAN, for the implicit LES, the results of both two-point fluxes, the Pirozzoli and
the Kennedy-Gruber are almost identical.
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