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Abstract. The environmental and operational influence is still a challenging problem owing 

because they mask structural damage in civil structures such as bridges. However, advances in 

signal processing and new artificial intelligence and machine learning tools make it possible 

to derive more robust and accurate methodologies for damage detection and location. This 

study proposes a novel bridge damage feature by combining the advantages of variational 

mode decomposition (VMD), Hilbert Transform (HT) and principal component analysis 

(PCA) algorithm in the presence of environmental variability and using the non-stationary 

traffic induced vibration. The proposed methodology considers three steps to analyze the 

dynamic response. The first step is to pre-process the vibration data (accelerations) using 

VMD, so the raw data is decomposed into a number of intrinsic mode functions (IMF). The 

second step is to apply the HT to the decomposed IMFs. Finally, Instantaneous Phase 

Difference (IPD) is obtained and used as damage indicator. PCA is applied to the IPD in order 

to eliminate the environmental influence and define appropriate criteria for damage detection 

avoiding false alarms. This methodology is applied to the case of a numerical model of a 

continuous bridge, showing promising results for damage detection and location under 

varying environmental and operational conditions. 
 

1 INTRODUCTION 

Bridges are an important part of the global road infrastructure, and they are designed to 

withstand the demands and design requirements requested. In addition, the structure can be 

affected due to its lack of maintenance and even due to external loads that were not 

considered during its design. Bridges, during their service period, are subjected to external 

conditions and loads that can cause aging and even sudden collapse [1]. Likewise, the lack of 

maintenance generates its deterioration and as a consequence its initial static and dynamic 
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load capacity is reduced, which generates unplanned responses to any external factor [2]. On 

the other hand, structural health monitoring (SHM) in bridges allows continuous monitoring 

and detection of structural damage to prevent the aforementioned consequences [3]. In this 

sense, it is necessary to address the problem of identifying structural damage in bridges and 

seek innovative solutions that improve the effectiveness and efficiency in the evaluation of 

bridges. Nowadays, artificial intelligence plays a fundamental role by developing algorithms 

and models that can analyze data in a precise and automated way, identifying patterns of 

possible damage [4]. 

The authors [5] details that structural damage detection using big data in structural health 

monitoring in SHM can pose difficulties in terms of computational efficiency and ability to 

detect damage. This limitation is important due to the need for early and accurate damage 

detection to structures to ensure the safety and proper maintenance of infrastructures. [6] 

details that their promising technique has emerged from the combination of the Hilbert-Huang 

Transform (HHT) and the full Mode Empirical Decomposition with Adaptive Noise 

(CEEMDAN) together with Artificial Neural Networks (ANNs), this proposed methodology 

has been applied with success for damage detection in complex structures. [7] used Hilbert-

Huang transform (HHT) and artificial intelligence algorithms to analyze vibration signals and 

obtain characteristics that indicate the presence of damage in real and numerical bridges. In 

[8][9] the vibration-based method (VBM) is proposed to detect structural damage and 

evaluates a steel bridge, in addition the author investigates different signal decomposition 

techniques and finds that the Improved Completed Ensemble Empirical Mode Decomposition 

with Adaptive Noise technique (ICEEMDAN) and the modal decomposition method 

variational analysis (VMD) are the most suitable to obtain dynamic properties and detect 

structural damage in bridges. In addition, the analysis of parameters such as instantaneous 

frequency, instantaneous amplitude and Hilbert spectrum is used to detect and locate damage 

in bridges. Also, [10] propose the use of marginal Hilbert spectrum and instantaneous phase 

difference as damage indicators. Likewise, it offers an innovative methodology to improve the 

detection of damage in bridges and proposes using equivalent damage load measurements of 

various types to obtain a comprehensive evaluation of these. This approach has the advantage 

of considering both the structural responses and the loading characteristics applied to the 

bridge, providing a more complete and accurate view of the structural health of the bridge. 

[11] propose an interesting method that is based on the use of the marginal Hilbert spectrum 

(MHS) and the instantaneous phase difference (IPD) as indicators of total damage in bridges. 

This methodology differs from traditional damage assessment methods by providing a non-

invasive, near real-time assessment of the bridge structure. 

The mentioned techniques and tools play a crucial role in identifying structural damage in 

bridges. These techniques, such as the use of artificial intelligence algorithms and numerical 

modeling with finite elements, offer great precision and effectiveness in detecting damage, 

allowing preventive measures to be taken in a timely manner. Additionally, these tools save 

time and resources by streamlining the detection process and optimizing preventative 

maintenance. They also improve decision-making by providing objective and quantitative 

information on the status of bridges, taking advantage of the advantages of automation and 

data analysis in the management of infrastructures such as bridges. From the above, the 

present research shows an innovative method of damage detection through variational mode 

decomposition (VMD), the Hilbert transform (HT) and the principal component analysis 
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(PCA) algorithm in the presence of environmental variability and uses vibration induced by 

non-stationary traffic. The flowchart used in this research can be seen in Figure 1. 

Figure 1: Flowchart of the proposed method. 

2 MATHEMATICAL FORMULATIONS 

2.1 Variational Mode Decomposition 

The Variational mode decomposition (VMD) method is the latest quasi-orthogonal multi-

scale signal processing tool where the input signal is decomposed into different band-limited 

IMFs. the essence of the VMD uses Hilbert transformation to solve the marginal spectrum as 

no modal aliasing effect and is sensitive to noise [12]. The variational problem can be solved 

by Equation 1 and 2. 
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Where uk is the k-th IMF and ωk = center pulsation around which the k-th IMF is mostly 

compact, δ is the Dirac distribution and f is the original signal. The bandwidth of each mode is 

estimated by the squared H1 Gaussian norm of its shifted signal with only positive 

frequencies. Then, a quadratic penalty and Lagrangian multipliers λ are introduced to 

transformed into an unconstrained optimization problem. 
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2.2 Hilbert-Huang Transform 

The Hilbert–Huang transform (HHT) is another type of signal processing method that is 

applicable for nonstationary and nonlinear signals to decompose intrinsic mode functions 

(IMF) [13]. In the present study, HHT will be used as a combination of two methodologies, 

namely, variational mode decomposition (VMD) and Hilbert transform (HT). Having 

obtained the IMF components from time history x(t), the second step of the HHT method is 

implemented by performing the HT to each IMF component cn(t). The Hilbert transform of a 

real-valued time domain signal c(t) is another real-valued time domain signal, it can be 

denoted by (t)c , such that (t) c(t) i (t)z c= +  is an analytic signal. The subscript in cn(t) is 

dropped for simplicity, so that the following equation 1 can be written: 
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Besides, in this study, the Instantaneous Phase Difference (IPD) will be used for damage 

identification and localization. The authors [14][15] developed the instantaneous phase 

obtained with the HHT called θ(t) in order to represent the phase of travelling structural 

waves of a dynamically measurable quantity, such as the acceleration, strain, or displacement. 

θp(t) denotes the instantaneous phase at a particular location p on the bridge structure. If a 

point o on the bridge is chosen as a reference point, then the phase function relative to this 

reference point o can be expressed by Equation 4, where the instantaneous relative phase φp(t) 

is referred to state of a bridge at the point p. Besides, due the changes in the dynamic 

conditions of the bridge that are caused by potential damages, the θp(t) will reflect this 

behavior as a change on the speed at which energy travels through the bridge. 

 

(t) (t) (t)p p o  = −   

(4) 

2.3 Principal Component Analysis 

PCA is a multivariate statistical data mining method used to reduce multidimensional data 

sets to a lower number of dimensions, and thus, the resultant factors provide a summary of the 

original data [16]. In this paper, PCA is used to extract the differences and similarities in the 

original data set rather than reducing the dimensions of the original data set. In the equation 5, 

Z denotes a nxp data set of n damage sensitivity features collected from p observations with 

n<p, and the instantaneous phase is chosen as the sensitive parameter, this index is 

represented by n and p represents the amount of time the instantaneous phase is collected.  
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(5) 

     In this paper, the instantaneous phase difference (IPD) varies with time, therefore a third 

and fourth dimension is included as k and I within the original PCA matrix that has its 
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original form of 𝑋𝑛,𝑚. Therefore, a four-dimensional data matrix 𝑋𝑛,𝑚,𝑘,𝑙, is obtained having a 

large number of interrelated variables, as depicted in Figure 2. In this sense, several 

temperatures, modes, sensors and time samples can be correlated between them, and firstly 

the multidimensional array should be firstly unfolded to obtain a 2-D data matrix before the 

application of PCA. 

 

Figure 2: Data matrix with n = observations, m = damage parameters, k = time samples, l = sensors. 

3 CASE OF STUDY - NUMERICAL STEEL BRIDGE 

The numerical steel bridge has a total length L = 20m with two-span continuous beam with 

equal span lengths (L1= L2=10m), as can be shown in Figure 3a. This bridge has a rectangular 

cross section with 0.1m and 0.6m respectively, and the steel grade S235 presents a Young’s 

modulus E = 215 GPa, Poisson’s ratio ν = 0.3, ρ = 7850 kg/m3 at ambient temperature of T = 

20ºC. The three supports present 106kN/m and 1015kN/m for the horizontal and vertical 

stiffness respectively. This numerical bridge is reported in detail by [8][9][17].  

On the other hand, the artificial damages imposed to bridge are shown in Figure 3b and it 

consists in reducing Young’s modulus at the Gauss points on particular finite elements. 

Besides, six virtual sensors and damage scenarios grouped in two damage regions are 

considered to provide information about the nodal variables in both x (horizontal) and y 

(vertical) directions (Figure 3b). The location of sensors is presented in Table 1 and Table 2 

shows the types of damage, for example damage 1 and damage 2 represent an area of two and 

four elements respectively, in addition, the damaged elements have a width of 0.05 m and the 

height ranges from 0.1 to 0.3 m. 

 

Figure 3: Numerical steel bridge (a) geometry (b) damage scenarios. 
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Table 1: Location of sensors along the numerical bridge. 

Sensors Description Location along the 

neutral axis of the 

beam (y=0.3m) 

S-01 at ¼L1 left-hand x = 2.5 m- 

S-02 at ½L1 left-hand x = 5.0 m 

S-03 at ¾L1 left-hand  x = 7.5 m 

S-04 at ¾L2 right-hand x = 12.5 m 

S-05 at ½L2 right-hand x = 15.0 m 

S-06 at ¼L2 right-hand x = 17.5 m 

 

Table 2: Description of damage states in numerical bridge. 

Damage scenarios Mesh  

elements 

Damage location 

Undamaged (UND) 0  

Damaged 1 (DMG1) 2 at ½ L1 from the left-hand 

Damaged 2 (DMG2) 4 support, starting from the 

Damaged 3 (DMG3) 6 bottommost edge 

Damaged 4 (DMG4) 2 at ½ L2 from the right-hand 

Damaged 5 (DMG5) 4 support, starting from the 

Damaged 6 (DMG6) 6 uppermost edge 

 

4 DAMAGE DETECTION USING INSTANTANEOUS PHASE DIFERENCE (IPD) 

The vibration signals obtained from the numerical bridge were evaluated and the number 

of modes m represents the IMF into which the original signal has been decomposed. In 

addition, the 10 observations of the extreme cases of environmental variability are obtained 

from the number of observations n=11 and were used to create the baseline. The IMF number 

m was obtained for all sensors, m=6 for sensors S-01, S-03, S-04 and S-06, and m=5 for 

sensors S-02 and S-05. For sampling, all modal parameters were obtained for 2 seconds and 

an output time of ∆tout = 0.0025 sec was selected (equivalent to a sampling frequency of 

400hz). This sampling frequency was used in order to obtain the first three bending mode 

shapes, where k=800. In addition, the VMD method is used to decompose the vertical 

accelerations for any temperature condition using the following parameters 𝜀𝑟=1e-10, �̂� =500, 

𝜏=0.1, 𝜀𝑎=0.1 and O=100000. 

Figure 4 shows the instantaneous phase difference of each IMF for the undamaged state at 

the lowest temperature of -30ºC, these results are obtained by Equation 4. This figure shows 

the IPD for the baseline (red curves and blue) and the other monitored cases (color curves) for 

sensor 01. All damage scenarios shown in section 3 were considered. In addition, it can be 

seen that the monitored cases are within the baseline limits and at the end of the time interval 

shows the problem of boundary effects, for example in high frequency modes such as IMF1 

and IMF2.  
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Figure 4: Instantaneous phase difference as damage indicator for damage scenarios and temperature conditions 

corresponding to each IMF obtained from sensor S-01. 

The Figures 5 to 9 contain the instantaneous phase difference (IPD) for each IMF and for 

sensors 2 to 5 under temperature variations. In each result the same behavior is obtained as for 

sensor 1, with this technique, the IPD for all the sensors will have the similar order of 

magnitudes since their values does not depend from the other sensors, only in the number of 

IMFs considered in a particular sensor which is always the same for the undamaged and 

damaged scenarios. On the other hand, the sifting process is performed as well as the 

elimination of the singular IPD values at the end of the interval caused by the boundary 

effects problem. 

 

Figure 5: Instantaneous phase difference as damage indicator for damage scenarios and temperature conditions 

corresponding to each IMF obtained from sensor S-02. 
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Figure 6: Instantaneous phase difference as damage indicator for damage scenarios and temperature conditions 

corresponding to each IMF obtained from sensor S-03. 

 

Figure 7: Instantaneous phase difference as damage indicator for damage scenarios and temperature conditions 

corresponding to each IMF obtained from sensor S-04. 

 

Figure 8: Instantaneous phase difference as damage indicator for damage scenarios and temperature conditions 

corresponding to each IMF obtained from sensor S-05. 
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Figure 9: Instantaneous phase difference as damage indicator for damage scenarios and temperature conditions 

corresponding to each IMF obtained from sensor S-06. 

On the other hand, the six modes (IMF) were taken into account for the application of the 

PCA algorithm in a time interval of 0.1 to 1.5 seconds, which is equivalent to 560-time 

samples. The Figures 10 to 12 shows the first and second principal components for the 

damaged cases of the GPD1 and GPD2, and an in-depth study was done for every sensor. 

This methodology mainly proposes that there must be a clear separation between the coldest 

and warmest limits and the baseline must meet this condition. Furthermore, the monitored 

case is represented by black dots. The baseline is standardized within 0 and 1, where 0 

represents the limit of the highest temperatures (red dots) and 1, the upper limit of the lowest 

temperatures (blue dots). For all cases, in PC1 can be seen that all the points meet the 

condition for damage detection purposes, and all the monitored cases lie inside the 

temperature limits (100%). The monitored case tends to move to the hottest limit when the 

severity of damage increase, suggesting a rise in temperature when in fact there is not such a 

change. The influence of the highest and lowest-frequency modes in data set when the 

damage is severe make cause part of the damage to be interpreted as an increase in 

temperature. Regarding the damage evolution, it can be observed from the PC2 that increases 

when the severity of damage grows from 35% to 100%, while all the monitored cases lie 

outside the baseline limits (100%) for all cases, giving rise to damage alerts. It should be 

pointed out that, when damage increases, the monitored cases are no longer dispersed and 

become more constant over time. This corresponds to the fact that the three extreme cases 

with close temperatures are very similar.  
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Figure 10: PC1 and PC2 regarding the IPD from sensor S-01 and S-02. 

 

 
 

Figure 11: PC1 and PC2 regarding the IPD from sensor S-03 and S-04. 

 

 
 

Figure 12: PC1 and PC2 regarding the IPD from sensor S-05 and S-06. 

Finally, it can be noticed that as damage increases, more time samples between 0.2 and 0.8 

seconds, approximately, meet the condition for damage detection. Therefore, it may suggest 

that the structural damage is located within this range, equivalent from 2 to 8 meters. 
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6 CONCLUSIONS 

- The time-varying parameters were processed and decomposed by HHT and VMD 

respectively in order to obtain the instantaneous phase difference (IPD) for each IMF 

under different temperature conditions. Furthermore, the PCA algorithm had great 

performance in isolating the effects of environmental conditions, and in this way both 

methods together proved to be robust for the detection of structural damage in 

bridges. 

- In the case of damage detection, only the first principal component (PC1) was 

retained in all undamaged cases, while the first two principal components (PC1 and 

PC2) were retained in all damaged cases since the baseline showed a clear separation 

between the extreme temperature cases at -30ºC and 70ºC, respectively. 

- In all the undamaged cases under varying temperature conditions, the monitored case 

was found always between the baseline indicating that no damage occurs. Moreover, 

the evolution of temperature is observed from the monitored case while moving from 

the coldest limit to the hottest limit with increasing temperature. 

- The instantaneous phase difference (IPD) was investigated for all sensors and it can 

be a good parameter to distinguish the temperature effects from damage effects, as 

well as to detect the severity of damage, but not to locate damage. The main 

drawback of PCA-method is that in some cases it can be difficult to choose the 

accurate extreme temperature for the baseline that guarantees an opposite behavior of 

the investigated variables. 
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