
8th ECCOMAS Thematic Conference on the Mechanical Response of Composites

COMPOSITES 2021

M. Fagerström & C. Catalanotti (Editors)

Recent advances and challenges in interfacial MD-FE coupling for
amorphous polymers

M. Ries1,∗, Y. Jain2, F. Müller-Plathe2, S. Pfaller1

1 Institute of Applied Mechanics, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
2 Department of Chemistry, Technische Universität Darmstadt, Germany

∗
maximilian.ries@fau.de

Keywords: atomistic-continuum coupling, amorphous polymer, concurrent multiscale simu-
lation.

Summary: Polymers are a highly versatile class of materials that can exhibit remarkable
properties, especially in combination with nano-sized filler particles. However, the extremely
small length scales pose major problems for the experimental investigation of the complex
matrix-filler interactions. Instead, numerical methods can be used, of which multiscale ap-
proaches are particularly noteworthy since they, i.a., exploit the accuracy of particle-based
methods while maintaining the efficiency of continuum mechanics. The complexity of these ap-
proaches lies in the design of the scale coupling that has to avoid coupling artifacts that might
distort the results while being computationally efficient. In this contribution, we introduce an
MD-FE coupling via an interface for amorphous polymers. The approach relies on padding
atoms as particle representations of the continuum enabling interactions with the actual par-
ticles. We evaluate the new coupling scheme with a toy system of amorphous polystyrene and
carefully discuss the system’s behavior during an MD-FE equilibration run. We observe con-
siderable oscillations of our sample system, which we attribute to a combination of the rigid
coupling condition and insufficient force correction. Our results indicate that an interfacial
coupling scheme cannot capture the dynamic behavior of amorphous polymers and emphasizes
the need for an interphase-based coupling.
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1. INTRODUCTION

Polymers and their composites are highly versatile materials that are already used in a
plethora of applications. In particular, nano-sized fillers have yielded remarkable improvements
in mechanical [1, 2, 3], electrical [4], thermal [5, 6], and optical [7] properties which is why
many researchers have been addressing this subject [8]. However, the extremely small length
scales pose major challenges to identify the effects of the nanoparticles experimentally; hence,
numerical methods are utilized instead. In many cases, conventional numerical approaches
cannot be used: Particle-based methods are usually computationally too expensive, while con-
tinuum mechanics simply cannot resolve the atomistic scale. To circumvent these problems,
multiscale methods have been developed combining the computational efficiency of continuum
mechanics with the molecular accuracy of particle-based methods and thus facilitate the analy-
sis of polymer nanocomposites [9].

These multiscale methods can be divided into sequential and concurrent techniques [10].
The former determines quantities on the fine scale that are applied in a subsequent analysis on
the coarse scale. As an example, a material characterization based on molecular dynamics (MD)
pseudo-experiments [11, 12] is used to subsequently calibrate a continuum mechanical consti-
tutive law [13] enabling the analysis of significantly larger samples, e.g., with the finite element
method (FE). In contrast, concurrent multiscale approaches apply both resolutions simultane-
ously and are thus suited for the analysis of complex problems. For example, the Capriccio
method [14, 15, 16] couples MD and FE via a handshake region where so-called anchor points
are introduced as information transmitters between the two descriptions. The method has been
successfully applied to identify the property gradients forming around nano-sized filler par-
ticles embedded in an amorphous polymer matrix [17, 18, 19]. Furthermore, the Capriccio
method has recently been extended [20] to study crack propagation in atactic polystyrene [21].
The Capriccio method established the scale transition via a handshake region where both de-
scriptions overlap, which is also referred to as interphase coupling [22]. Other well-known
representatives of this category are the Arlequin method [23, 24], the Bridging Domain method
[25, 26], and the Atomistic-to-Continuum method [27, 28]. In case of an interface coupling, in
contrast, there is no such an overlapping region, but only a boundary layer that separates the two
levels of description. This concept is implemented i.a. in the Quasicontinuum method [29, 30]
and the FE2AT method [31], which are mainly used for crystalline materials. However, even
with interface coupling, a transition region (padding region) may be necessary if a local mate-
rial representation, e.g., classical continuum mechanics, is coupled to a non-local description,
where a material point interacts not only with its immediate surrounding but with all neighbors
within a certain cut-off radius [22, 10].

So far, the Capriccio method requires to cut the polymer chains in order to provide non-
periodic boundary conditions for the particle domain. However, it has already been shown
that modifying the molecular weight has a considerable impact on the mechanical properties
of amorphous thermoplastics and should thus be avoided [32]. Therefore, the question arises
whether an interface coupling approach - where a padding region prevents chain cutting - can
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provide for a physically more sound MD-FE coupling scheme.
In this contribution, we implement such an interface coupling based on [33] and evaluate its

performance with MD-FE equilibration simulations. However, it turns out that this approach
is numerically unstable and cannot cope with the dynamics of an amorphous thermoplastic at
finite temperature.

2. SIMULATION METHOD

In our new coupling approach, we consider the discrete particle domain Ωd and the contin-
uum Ωc as visualized in Figure 1. The bulk of the particle domain Ωmd is treated with classical
MD solving Newton’s equations of motion. In the peripheral zone Ωdpd we introduce additional
dissipative and random forces FD and FR by means of dissipative particle dynamics (DPD)
[34, 35, 36]:

f =
[
FC + FD + FR

]
r̂ij with (1)

FD = −γw2(r) [r̂ij · vij] ,

FR = σw(r)
√
α(∆t), and

w(r) = 1 − r̂ijr
−1
c .

Since the friction coefficient γ and the random noise amplitude σ are linked to the temperature
T via the dissipation-fluctuation theorem [35]

σ2 = 2γkBT, (2)

the DPD region Ωdpd serves as a canonical thermostat for Ωd [37]. Furthermore, the stochastic
nature of DPD minimizes the influence of the coupling interface on the polymer bulk Ωmd.

The continuum Ωc is discretized by FE and contains the padding region Ωp. All polymer
beads that protrude into Ωc are considered as padding atoms, which can be interpreted as a
particle representation of the continuum allowing interaction with the particle domain. They
are embedded into the continuum and follow the deformation field of the FE mesh. Hence the
interactions between the padding atoms are already included in the continuum description, and
thus they must only interact with the actual particles in Ωd. The resulting forces on the padding
atoms are applied as additional external loads to the continuum, affecting its displacement field.
Consequently, the system has to be solved in a staggered way by alternately simulating the
continuum and particle subsystems, similarly to the Capriccio method [14]. The positions of
padding atoms are only updated in the FE step while they remain spatially fixed during the
MD run to confine the actual particles. These MD-FE iterations are repeated until the coupled
system converges to an overall equilibrium.

By applying non-periodic boundary conditions to the particle domain, we create a free sur-
face and thus change the physics of our sample. To compensate for the surface tension effect,
we mimic the continuation of the particle system with the padding atoms. However, these sur-
face effects are not accounted for in conventional continuum mechanical constitutive laws, and

3



First A. Author, Second B. Author, Third C. Author

Ωd Ωc

ΩpΩdpdΩmd

Figure 1. Schematic setup: Particle domain Ωd treated with MD and DPD in Ωmd and Ωdpd,
respectively; continuum Ωc discretized with FE including padding atoms located in Ωp.

thus the forces on the padding atoms (padding forces) calculated in the MD simulation cannot
be transferred directly to the continuum. Instead, we need to split them into two parts

fFE(t) = f p(t) − f surf (3)

where only fFE(t) is applied to the continuum since the static contribution f surf compensates
for the surface tension. A numerical evaluation scheme is required since this force split cannot
be calculated analytically (cf. Section 3.).

The padding forces are then projected onto the FE nodes using the FE shape functions and
are thus handled as external loads by a standard FE implementation. After solving the FE
system, the new padding atom positions are interpolated from the obtained nodal displacements
via inverted shape functions.

3. SAMPLE PREPARATION AND COMPUTATIONAL DETAILS

We use atactic polystyrene at coarse-grained (CG) resolution as a simple model system for
the first evaluation of our approach. The CG scheme substitutes the styrene monomers with so-
called superatoms, and the associated bond, angle, and nonbonded potentials were derived by
Qian et al. [38] via Iterative Boltzmann Inversion [39]. This model is well-established and has
been used to reproduce polymer dynamics [40], study polymer chain growth [41], and analyze
polymer nanocomposites [42, 43, 44].

We equilibrate a large polystyrene sample under periodic boundary conditions (PBC) and
carve out a cubic subsystem with an edge length of 240 Å, comprising around 90 000 atoms,
which is discussed in more detail in [45]. We assign the particles in concentric cubic shells
around the MD domain to the DPD and padding region, as shown in Figure 2. Consequently,
the padding atoms possess the same density as the bulk polymer, which allows us to use the
above-cited CG potentials for the interaction between Ωd and Ωp.

The thickness of the padding region corresponds to the cutoff radius of the nonbonded in-
teractions of 15 Å, and the DPD region has a width of 20 Å [45]. In the DPD region we employ
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DPD (1) to maintain a temperature of 100 K with a friction coefficient of γ = 14.395 kcal fs

molÅ2 (cf.
Table 1). For the conservative forces in (1) we use the same potentials as in the inner MD region
rather than the softer potentials usually related to DPD [37].

This particle setup is embedded into a hollow continuum cube with an edge length of 300 Å
containing all padding atoms (cf. Figure 2). Rigid body motions are suppressed by applying
Dirichlet boundary conditions to surface nodes. For the minimal constraints, only 6 degrees of
freedom distributed over 3 nodes have to be fixed, while all surface nodes are clamped for max-
imum constraints. We employ Hooke’s linear elastic constitutive law [46] for the FE domain
with Young’s modulus E = 827 MPa and Poisson’s ratio ν = 0.3 [45, 15, 43].

Since all particles are extracted from an equilibrium state, we assume the portion of the
padding forces applied to the continuum to vanish: fFE = 0. Therefore, we can identify f surf

as the time average of the padding forces over a long MD run with spatially fixed padding
atoms. We introduce an observation region Ωobs (cf. Figure 2) to directly compare quantities
such as stress or density with a periodic reference solution [45].

All particle-based simulations are carried out in LAMMPS [47] while an in-house code
implemented in Matlab [48] is used to solve the FE problem.
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Figure 2. Coupled 3D simulation setup: the MD region Ωmd surrounded by the DPD region Ωdpd

coupled to the continuum Ωc with the subset Ωp containing the padding atoms; The observation
region Ωobs provides comparison with the PBC reference system [45]; (visualized with VMD

[49]).

4. RESULTS

First, we need to identify the forces f surf responsible for suppressing any surface effects,
and thus we equilibrate the particle region with an MD calculation over 1 000 000 timesteps with

5



First A. Author, Second B. Author, Third C. Author

Table 1. Simulation parameters.

DPD friction coeff. γ 14.393 kcal fs mol−1 Å
−2

time step ∆t 5 fs
temperature T 100 K

FE Young’s modulus E 827 MPa
FE Poisson’s ratio ν 0.3

spatially fixed padding atoms. We average the padding forces over the last 500 000 timesteps
and obtain f surf for each padding atom. The projection of these contributions onto the FE nodes
allows us to computationally efficiently evaluate the force correction (3) at the nodal level. Dur-
ing this initial equilibration, the mass density of the system remains slightly below (≈ 0.3 %)
the PBC reference solution, as shown in Figure 3 (a). Furthermore, the potential energy of the
system (Figure 3 (c)), and in particular the contribution of the interactions with the padding
atoms (Figure 3 (b)), remain constant, which proves that our system is still in equilibrium.
Therefore, the time averaging of f surf in this period is justified. Figure 3 (d) demonstrates that
the DPD-based thermostat can control the temperature despite the introduction of the spatially
fixed padding atoms, for which T = 0 K.

Having obtained f surf we can deploy our staggered MD-FE solution scheme. The applica-
tion of minimum constraints on the FE surface nodes cannot prevent rigid body motions of the
whole system, which are nonphysical. This observation is in contrast to the interphase coupling
of the Capriccio method, where minimal boundary conditions are sufficient [15]. Most likely,
the net forces of the particle region after force correction induce a rotation, which the FE cannot
counteract in this early stage of the MD-FE equilibration. For this reason, we apply maximum
constraints to the system by spatially fixing all FE surface nodes. We perform 60 MD-FE iter-
ations, each comprising niter = 50 000 timesteps. The padding forces f p(t) are averaged over
the last 2

3
of each iteration (33 000 timesteps) and corrected according to (3) with the previously

identified f surf . However, this causes the system to oscillate around the reference density after
less than 10 MD-FE iterations, which is evident from the curves of density and stress in Figure 4
(a) and (c), respectively. It appears that the padding atoms alternate between two stable states
of equilibrium, leading to alternating expansion and compression of the particle region. Af-
ter the initial swing-in, the padding energy in Figure 4 (b) is continuously minimized to about
12 200 kcal mol−1 during the MD time step integration and increases again strongly after up-
dating the padding atom positions in the subsequent FE step. This implies that the continuum
overcompensates the adjustment of the padding atoms and thus causes persistent oscillation.
Consequently, the forces acting on the continuum are too large, which could be due to an in-
sufficient correction using the static forces determined in advance. Additionally, applying the
MD potentials directly to the padding atoms might result in a too rigid coupling, especially
compared to the soft harmonic coupling potentials of the Capriccio method [37]. Ultimately,
the dissipation within the DPD region is not sufficient as inherent damping to dissipate and ul-
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Figure 3. Initial MD equilibration: evolution of (a) density in observation region, (b) padding
energy, (c) potential energy, and (d) temperature; PBC reference from [45].

timately suppress these oscillations. This is clearly illustrated in Figure 4 (d), as the thermostat
can no longer maintain the temperature in the usual range of ±2 K in these conditions. A dou-
bling of the computed timesteps per MD-FE iteration exposes the same trends (cf. Figure 4),
and confirms that the observed problem is systematic.

5. CONCLUSION

In this contribution, we present an interface-based FE-MD coupling for amorphous poly-
mers. We introduce padding atoms for the information transfer and to enable the transition
from the nonlocal particle to the local continuum description. These padding atoms follow the
continuum deformation and interact with the actual particles. Since forces suppressing surface
effects from the particle point of view cannot be imposed on the continuum, we propose a static
force correction. Persistent oscillations occurring during MD-FE equilibrium indicate that the
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Figure 4. MD-FE equilibration: evolution of (a) density in observation region, (b) padding
energy, (c) stress in observation region, and (d) temperature; PBC reference from [45].

interaction of padding atoms via MD potentials is too rigid and that the static force correc-
tion cannot cope with the dynamic behavior of amorphous polymers. This study shows that
interface-based multiscale coupling for amorphous polymers poses severe difficulties. For this
reason, we are currently working on incorporating a padding region into the interphase-based
Capriccio method [45].
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