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Abstract 

The introduction and spread of emerging infectious diseases is increasing in both prevalence and scale. 

Whether naturally, accidentally or maliciously introduced, the substantial uncertainty surrounding the 

emergence of novel viruses, specifically where they may come from and how they will spread, demands 

robust and quantifiably validated outbreak control policies that can be implemented in real time. This 

work presents a novel mathematical modeling framework that integrates both outbreak dynamics and 

outbreak control into a decision support tool for mitigating infectious disease pandemics that spread 

through passenger air travel. An ensemble of border control strategies that exploit properties of the air 

traffic network structure and expected outbreak behavior are proposed. A stochastic metapopulation 

epidemic model is developed to evaluate and rank the control strategies based on their effectiveness in 

reducing the spread of outbreaks. Sensitivity analyses are conducted to illustrate the robustness of the 

proposed control strategies across a range of outbreak scenarios, and a case study is presented for the 

2009 H1N1 influenza pandemic. This study highlights the importance of strategically allocating outbreak 

control resources, and the results can be used to identify the most robust border control policy that can be 

implemented in the early stages of an outbreak.   
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Introduction 
The potential harm posed by the introduction and spread of emerging infectious diseases has been 

recently illustrated by the 2009 H1N1 
1
, SARS 

2
, and Zika 

3
 epidemics. There is considerable evidence 

that such pandemics are likely to become more frequent unless action is taken to mitigate their spread at a 

global scale 
4-7

. For this reason, resilience management for outbreaks has attracted a growing body of 

literature, both from epidemic modelers and the optimization and control community. One of the most 

critical aspects of resilience management is the need to combine accurate epidemic growth models with 

detailed outbreak control strategies 
8
,  representing a gap in the literature which this study aims to fill.  

 

The availability of large scale data and growing computational capabilities has significantly advanced 

infectious disease spread models in recent years 
9-11

. The community has notably explored the impact of 

network topology, epidemic thresholds and diffusion models on outbreak spread patterns 
12-15

. A range of 

epidemic models have been developed, which increase in complexity from single-population, 

deterministic models to metapopulation, stochastic models 
6,16,17

. Deterministic models provide efficient 

mathematical representation but lack the realism of stochastic simulation models 
17-20

. On the other hand, 

detailed computational and visualization tools such as GLEaM 
21

 and STEM 
22

, among others 
23-26

, have 

emerged as powerful solutions to model the spread of infectious diseases with a high level of accuracy 

and even measure the impact of control strategies 
27

, albeit at a high computational cost. As an alternative 

to simulation-based models, analytical global epidemic models have also been developed to characterize 

the stochastic spread of infectious diseases in metapopulation networks 
5,28,29

. 

 

As highlighted by 
4
, the intensive restriction of human activities in metapopulation networks may 

undermine the system’s functionality and lead to significant societal costs. Hence, in efforts to mitigate 

large-scale pandemics, it is critical to cautiously deploy control strategies to minimize disruptions and 

maximize the reactiveness of the system 
30-32

. At a global scale, passenger air travel is known to play a 

critical role in the spread of infectious disease 
15,23,33-35

. Additionally, border control has been shown to 

play a pivotal role in mitigating epidemics, especially during the emerging stage of outbreaks 
5,36-39

. 

Border control is typically deployed at airports in an attempt to prevent the spread of an infectious disease 

between cities, states and countries through passenger air travel 
40

. However, identifying the optimal set 

of airports for deploying border control is challenging, especially when only limited control resources are 

available, e.g., budget constraints.  

 

In this work we present a novel mathematical modeling framework that integrates both outbreak 

dynamics and outbreak control into a decision-support tool for mitigating infectious disease pandemics at 

the onset of an outbreak through border control. The border control mechanism considered in this work is 

passenger screening upon arrival at airports (entry screening), which is used to identify infected or at-risk 

individuals and provide immediate treatment and isolation to reduce the risk of further transmission 
41

. 

The uncertainty of exit screening effectiveness in other countries combined with the possible 

development of symptoms during a flight 
42

 has prompted several governments to deem entry screening as 

crucial to the protection of their countries 
43

, and further motivates its use in this study. The proposed 

model seeks to determine the optimal set of airports that should be allocated screening resources 

(technology and personnel), and the corresponding amount (thus dictating the proportion of arriving 

passengers that can be screened) such that the outbreak risk is minimized. We propose an ensemble of 

control strategies that exploit the heterogeneity of the air traffic network structure and outputs from an 
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outbreak simulation model in the allocation of control resources. We evaluate each control strategy using 

a stochastic metapopulation epidemic model, and compare the strategies based on their effectiveness in 

reducing and the spread of outbreaks. Note that we are not proposing or evaluating air travel restrictions, 

which have substantial economic costs as well as recognized limitations in their ability to prevent or 

reduce the scale of pandemics 
20,29,44-48

. The goal of the proposed decision-support framework is to 

optimize the use of airport screening as a method of border control to delay the introduction of a new 

disease into susceptible cities, thus providing local public health authorities more time to plan, prepare 

and distribute local control strategies, e.g., anti-virals, vaccines, source exit screening etc., which must be 

rapidly administered if/when infection is introduced. 

 

This study builds upon previous work 
49,50

 that presented a mathematical modeling framework to integrate 

control and outbreak dynamics. We extend this line of work through the following substantial 

contributions: 1) we model outbreak dynamics using a stochastic metapopulation framework as opposed 

to a deterministic model, 2) we propose and evaluate a novel set of control strategies, 3) the control 

strategies are embedded within a resource constrained decision-support framework, 4) the model is 

calibrated using historical outbreak data, and 5) a case study is presented for the 2009 H1N1 outbreak. 

Additionally, a range sensitivity analysis is conducted to illustrate the robustness of the model with 

regards to variability across outbreak scenarios, disease parameters, policy considerations, and modelling 

assumptions. The analysis elucidates key trade-offs in terms of budget availability and outbreak 

mitigation which can be leveraged to inform on public health policy for global epidemic preparedness and 

control.  

Materials and Methods 

Mathematical Model  

In this section, we present both the stochastic metapopulation epidemic model used to simulate outbreak 

dynamics, and its integration within the proposed decision-support framework. Our metapopulation 

model is based on a global air travel network which connects local, city-level, populations. Formally, the 

proposed metapopulation network can be represented by a graph 𝐺 =  (𝑉, 𝐸) where 𝑉 is the set of nodes 

and 𝐸 is the set of directed edges in the network. Nodes represent cities and edges represent passenger 

travel routes, possibly including stopovers, among cities. At each node of the network, we locally model 

outbreak dynamics using a discrete-time Susceptible-Exposed-Infected-Recovered (SEIR) compartmental 

model 
51

. The time steps are set to be 𝑡 ∈  𝑇 = {1, 2, … , 𝑡𝑜𝑏𝑠} where 𝑡𝑜𝑏𝑠 is the time step where the state 

of the outbreak is being evaluated. Local and global outbreak dynamics models are coupled by indexing 

compartmental states by network nodes 𝑖 ∈  𝑉 and time steps 𝑡. Specifically, we denote 𝑆𝑖,𝑡, 𝐸𝑖,𝑡, 𝐼𝑖,𝑡 and 

𝑅𝑖,𝑡 the susceptible, exposed, infectious and recovered compartments at node 𝑖 at time 𝑡. Because our 

objective is to prevent spread in the early stages of an outbreak (e.g., weeks or months), we assume that 

nodes have time-independent populations and we denote 𝑁𝑖 the population at node 𝑖 ∈ 𝑉. We aim to use 

this metapopulation model to capture day-to-day global travel dynamics, hence time steps are assumed to 

be of the order of magnitude of a day in length.  
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We use a multi-commodity network flow model with time-dependent edge flows to model passenger 

movements from their origin node to their destination node. Let Π𝑖𝑗 be the set of paths from 𝑖 ∈ 𝑉 to 

𝑗 ∈ 𝑉. We denote 𝑓𝑖𝑗,𝑡
𝑘  the average passenger flow on the route from 𝑖 ∈ 𝑉 to 𝑗 ∈ 𝑉 using path 𝑘 ∈ Π𝑖𝑗 at 

time step 𝑡 and we assume symmetric passenger flows for all pairs of origins and destinations, i.e. 

𝑓𝑖𝑗,𝑡
𝑘 = 𝑓𝑗𝑖,𝑡

𝑘 . We denote Γ𝑖
− = {𝑗 ∈ 𝑉 ∶ ∃ 𝑘 ∈ Π𝑖𝑗 , 𝑡 ∈ 𝑇, 𝑓𝑗𝑖,𝑡

𝑘 > 0} and Γ𝑖
+ = {𝑗 ∈ 𝑉 ∶ ∃ 𝑘 ∈ Π𝑖𝑗, 𝑡 ∈

𝑇, 𝑓𝑖𝑗,𝑡
𝑘 > 0} the sets of nodes connected to and from node 𝑖 ∈ 𝑉, respectively. Each path 𝑘 ∈ Π𝑖𝑗 is an 

ordered sequence of nodes starting at 𝑖 and ending at 𝑗, i.e. 𝑘 = 〈𝑖, 𝑛1, 𝑛2, … , 𝑗〉 and we denote 𝑛1 ≺ 𝑛2 

the precedence relationship among nodes in the path.  

 

The governing infection dynamics of the SEIR model 
51

 are used to model local outbreak dynamics in 

each city. For the purposes of this work the contact rate is assumed to be constant across populations. We 

denote 𝛽𝑖 the (local) contact rate at node 𝑖, 𝛾 the transition or recovery rate and 𝛼 the exposed parameter. 

In addition, we define 𝜆 ∈ [0,1] the likelihood to travel when infectious, with 𝜆 = 1 representing the case 

where infected and healthy individuals are equally likely to travel. This parameter aims to represent the 

impact of reduced travel demand when infectious individuals are unable to travel due to severe symptoms. 

Finally, we assume that compartmental edge flows are proportional to tail node states, i.e. the number of 

travelers in a state is proportional to the number of individuals in this state at the origin node. Discrete-

time stochastic metapopulation outbreak dynamics are summarized in Equation (1) below. 

 

 

The symbols 𝑆𝑖𝑗,𝑡
𝑘 , 𝐸𝑖𝑗,𝑡

𝑘 , 𝐼𝑖𝑗,𝑡
𝑘  and 𝑅𝑖𝑗,𝑡

𝑘  represent compartmental edge flows on (𝑖, 𝑗) with destination 𝑘 at 

time step 𝑡. For compartments 𝑆 and 𝑅, compartmental edge flows are assumed deterministic and equal to 

their expected values, i.e.: 𝑆𝑖𝑗,𝑡
𝑘 = 𝑓𝑖𝑗,𝑡

𝑘 𝑆𝑖,𝑡

𝑁𝑖
 and 𝑅𝑖𝑗,𝑡

𝑘 = 𝑓𝑖𝑗,𝑡
𝑘 𝑅𝑖,𝑡

𝑁𝑖
. However, since the compartmental edge 

flows of exposed and infectious passengers may be considerably smaller than that of other compartments, 

we model 𝐸𝑖𝑗,𝑡
𝑘  and 𝐼𝑖𝑗,𝑡

𝑘  as discrete random variables, as the stochastic allocation of infected individuals to 

destinations is critical when modeling the early stages of an outbreak. Specifically, we define these 

compartmental edge flows as follows: 

 

 𝑆𝑖,𝑡+1 = 𝑆𝑖,𝑡 −
𝛽𝑖 𝐼𝑖,𝑡 𝑆𝑖,𝑡

𝑁𝑖
+ ∑ ∑ 𝑆𝑗𝑖,𝑡

𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− ∑ ∑ 𝑆𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 (1a) 

 𝐸𝑖,𝑡+1 = 𝐸𝑖,𝑡 +
𝛽𝑖 𝐼𝑖,𝑡 𝑆𝑖,𝑡

𝑁𝑖
− α𝐸𝑖,𝑡 + ∑ ∑ 𝐸𝑗𝑖,𝑡

𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− ∑ ∑ 𝐸𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 (1b) 

 
𝐼𝑖,𝑡+1 = 𝐼𝑖,𝑡 − 𝛾𝐼𝑖,𝑡 + α𝐸𝑖,𝑡 + ∑ ∑ 𝐼𝑗𝑖,𝑡

𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− 𝜆 ∑ ∑ 𝐼𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 
(1c) 

 
𝑅𝑖,𝑡+1 = 𝑅𝑖,𝑡 + 𝛾𝐼𝑖,𝑡 + ∑ ∑ 𝑅𝑗𝑖,𝑡

𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− ∑ ∑ 𝑅𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 
(1d) 

 𝐸𝑖𝑗,𝑡
𝑘 = ⌊𝑓𝑖𝑗,𝑡

𝑘 𝐸𝑖,𝑡

𝑁𝑖
⌋ + 𝐸̃𝑖𝑗,𝑡

𝑘  

 

(2a) 
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where 𝐸̃𝑖𝑗,𝑡
𝑘  and 𝐼𝑖𝑗,𝑡

𝑘  are discrete random variables representing the number of exposed and infectious 

passengers, respectively, beyond the integer-part of their respective compartmental edge flows. Further, 

let 𝑚 = |Γ𝑖
+| be the number of destination nodes from node 𝑖 ∈ 𝑉, the vector 𝑬̃𝑖,𝑡

𝑘 = (𝐸̃𝑖1,𝑡
𝑘 , … , 𝐸̃𝑖𝑚,𝑡

𝑘 )  

(resp. 𝑰̃𝑖,𝑡
𝑘 = (𝐼𝑖1,𝑡

𝑘 , … , 𝐼𝑖𝑚,𝑡
𝑘 )) follows a multinomial distribution with a number of trials  𝑛𝑖,𝑡

𝑘,𝐸 =

[𝑓𝑖𝑗,𝑡
𝑘 𝐸𝑖,𝑡

𝑁𝑖
− ⌊𝑓𝑖𝑗,𝑡

𝑘 𝐸𝑖,𝑡

𝑁𝑖
⌋] (resp. 𝑛𝑖,𝑡

𝑘,𝐼 = [𝑓𝑖𝑗,𝑡
𝑘 𝐼𝑖,𝑡

𝑁𝑖
− ⌊𝑓𝑖𝑗,𝑡

𝑘 𝐼𝑖,𝑡

𝑁𝑖
⌋] ) and probability vector 

𝒑𝑖,𝑡
𝑘 = (

𝑓𝑖1,𝑡
𝑘

∑ 𝑓𝑖𝑗,𝑡
𝑘

𝑗∈Γ𝑖
+

, … ,
𝑓𝑖𝑚,𝑡

𝑘

∑ 𝑓𝑖𝑗,𝑡
𝑘

𝑗∈Γ𝑖
+

). 

 

This stochastic formulation aims to model integer, compartmental edge flows and prevent the movement 

of fractional exposed or infectious individuals which may result in unrealistic epidemic behavior at a 

global scale 
52

. Consequently, the compartmental states 𝑆𝑖,𝑡, 𝐸𝑖,𝑡, 𝐼𝑖,𝑡 and 𝑅𝑖,𝑡  are also random variables 

representative of the evolution of the outbreak over time and space.   

 

To integrate control decisions within the above stochastic metapopulation network we model passenger 

screening upon arrival at airports as a control variable. Passenger screening can be done through visual 

inspections of passengers, health declaration cards and/or infrared thermal image scanners 
53

. In this work 

the specific type of screening is not the focus; as the framework is applicable to multiple control 

mechanisms. We propose to use airport screening rates as the main control variables, which are 

representative of the proportion of arriving passengers successfully screened at a given airport. We denote 

𝑥𝑖,𝑡 ∈ [0,1] the control rate at node 𝑖 at time step 𝑡. Control variables can be incorporated in the proposed 

metapopulation epidemic model by re-defining Equations (1c) and (1d) as follows: 

 

 

This formulation is able to capture the combined effects of screening passengers at multiple nodes along 

their travel route. The combination of Equations (1a), (1b), (3c) and (3d), hereby to as (3), can be viewed 

as a control-driven stochastic metapopulation epidemic model wherein variables 𝑥𝑖,𝑡 represent the level of 

control over time space in the network. A control rate of less than one can be interpreted as shortcomings 

of the methods or technology involved with screening. We assume that passengers coming into a 

controlled airport who are successfully identified as infected individuals are isolated for treatment, and 

hence are no longer able to spread infection. In terms of the model, infected individuals screened at a 

controlled node are assumed to transition to the recovered state 𝑅. The main objective function is to 

minimize the expected cumulative number of infected individuals at the observation time 
27

. This can be 

stated as follows: 

 𝐼𝑖𝑗,𝑡
𝑘 = ⌊𝑓𝑖𝑗,𝑡

𝑘 𝐼𝑖,𝑡

𝑁𝑖
⌋ + 𝐼𝑖𝑗,𝑡

𝑘  

 

(2b) 

𝐼𝑖,𝑡+1 = 𝐼𝑖,𝑡 − 𝛾𝐼𝑖,𝑡 + α𝐸𝑖,𝑡 + ∑ ∑ 𝐼𝑗𝑖,𝑡
𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

( ∑ ∏ (1 − 𝑥𝑝,𝑡)

𝑝∈𝑘∖{𝑗}∶𝑝≺𝑞𝑞∈𝑘∖{𝑗}

) − 𝜆 ∑ ∑ 𝐼𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 (3c) 

𝑅𝑖,𝑡+1 = 𝑅𝑖,𝑡 + 𝛾𝐼𝑖,𝑡 + ∑ ∑ (𝑅𝑗𝑖,𝑡
𝑘 + 𝐼𝑗𝑖,𝑡

𝑘 ( ∑ ∏ 𝑥𝑝,𝑡

𝑝∈𝑘∖{𝑗}∶𝑝≺𝑞𝑞∈𝑘∖{𝑗}

))

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− ∑ ∑ 𝑅𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 (3d) 
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min 𝔼 [∑ 𝐸𝑖,𝑡𝑜𝑏𝑠

+ 𝐼𝑖,𝑡𝑜𝑏𝑠
+ 𝑅𝑖,𝑡𝑜𝑏𝑠

𝑖∈𝑉

] (4) 

 

The challenge in policy decision making results because of a constraint on available resources. To address 

this challenge we introduce a budget and cost for control. The cost of using outbreak control resources is 

modeled using a generic cost function 𝑐𝑖 which maps control variables to monetary costs. We assume that 

setup costs 𝑠𝑖 are associated with the deployment of control resources at a node 𝑖 ∈ 𝑉, e.g., installation of 

new screening technologies and training of personnel. To model the activation of control at a node, we 

introduce binary variables 𝑦𝑖 ∈ {0,1} which take value 1 if node 𝑖 is allocated a non-zero amount of 

control resources. We assume that the cost of deploying control resources at 𝑖 over the control period 𝑇 is 

a function of the total incoming edge flow to 𝑖 at each time step 𝑡, i.e. ∑ ∑ 𝑓𝑗𝑖,𝑡
𝑘

𝑘∈Π𝑗𝑖
 𝑗∈Γ𝑖

−  and we denote 

𝑔(𝒙𝑖): ℝ|𝑉| → ℝ  the variable part of the cost function, where 𝒙𝑖 ∈ [0,1]|𝑇|  is the local control vector at 

node 𝑖 ∈ 𝑉. The variable portion of the cost function is representative of a per passenger screening cost 

each day. A generic form of the cost function 𝑐𝑖 is then: 

 

 𝑐𝑖(𝑦𝑖 , 𝒙𝑖) = 𝑦𝑖𝑠𝑖 + 𝑔(𝒙𝑖) 
(5) 

 

In addition, control and setup variables are linked through the inequalities 𝑥𝑖,𝑡 ≤ 𝑦𝑖 indicating that setup 

costs are incurred if control resources are deployed at any time during the control period. Finally, we 

assume that a budget 𝐵 is available to for deploying control resources which translates into the budget 

constraint: 

 ∑ 𝑐𝑖(𝑦𝑖 , 𝒙𝑖)

𝑖∈𝑉

≤ 𝐵 (6) 

   

Our objective is to optimize the control vector 𝒙 ∈ [0,1]|𝑉||𝑇| such that the impact of the outbreak at 𝑡𝑜𝑏𝑠 

as represented by (4) is minimized subject to control resources constraints and outbreak dynamics as 

governed by the stochastic metapopulation epidemic model (3) wherein compartmental edge flows 𝐸𝑖𝑗,𝑡 

and 𝐼𝑖𝑗,𝑡, as well as compartmental states 𝑆𝑖,𝑡, 𝐸𝑖,𝑡, 𝐼𝑖,𝑡 and 𝑅𝑖,𝑡 are discrete random variables. This 

optimization formulation is summarized in Eq (7) below.  
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Proposed Control Strategies 

The final outbreak dynamics model with control decisions incorporated can be used as a tool to solve the 

resource allocation problem, and evaluate various control strategies. We propose a set of control strategies 

to optimize the control vector 𝒙 subject to resource constraints. In this work, each proposed control 

strategy relies on a different metric to rank airports, and this ranking is then used to allocate control 

resources to a select set of airports. The objective of all strategies is to minimize the impact of the 

outbreak at a pre-selected future date we call the observation time, 𝑡𝑜𝑏𝑠, at which impact is measured both 

in terms of total cumulative cases and number of infected cities.  

 

Although the proposed model can accommodate dynamic control strategies, for the purposes of this work 

we focus on static control strategies, wherein nodes are controlled at the same level throughout the period 

of observation. Hence, we define and use the following static-equivalent cost function 𝑔𝑠(𝑥𝑖): ℝ → ℝ 

which we assume to be invertible over its domain. Our approach is based on a greedy resource allocation 

algorithm which iterates over a sorted set of nodes 𝑉̅, until the outbreak control budget is depleted. The 

pseudo-code of this resource allocation procedure is summarized in Algorithm 1. 

 

min 𝔼 [∑ 𝐸𝑖,𝑡𝑜𝑏𝑠
+ 𝐼𝑖,𝑡𝑜𝑏𝑠

+ 𝑅𝑖,𝑡𝑜𝑏𝑠

𝑖∈𝑉

]  (7a) 

Subject to:   

∑ 𝑦𝑖𝑠𝑖 + 𝑔(𝒙𝑖)

𝑖∈𝑉

≤ 𝐵 

 

 (7b) 

𝑥𝑖,𝑡 ≤ 𝑦𝑖 ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 (7c) 

𝑆𝑖,𝑡+1 = 𝑆𝑖,𝑡 −
𝛽𝑖 𝐼𝑖,𝑡 𝑆𝑖,𝑡

𝑁𝑖
+ ∑ ∑ 𝑆𝑗𝑖,𝑡

𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− ∑ ∑ 𝑆𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 (7d) 

𝐸𝑖,𝑡+1 = 𝐸𝑖,𝑡 +
𝛽𝑖 𝐼𝑖,𝑡 𝑆𝑖,𝑡

𝑁𝑖
− α𝐸𝑖,𝑡 + ∑ ∑ 𝐸𝑗𝑖,𝑡

𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− ∑ ∑ 𝐸𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 (7e) 

𝐼𝑖,𝑡+1 = 𝐼𝑖,𝑡 − 𝛾𝐼𝑖,𝑡 + α𝐸𝑖,𝑡 + ∑ ∑ 𝐼𝑗𝑖,𝑡
𝑘

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

( ∑ ∏ (1 − 𝑥𝑝,𝑡)

𝑝∈𝑘∖{𝑗}∶𝑝≺𝑞𝑞∈𝑘∖{𝑗}

) − 𝜆 ∑ ∑ 𝐼𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 (7f) 

𝑅𝑖,𝑡+1 = 𝑅𝑖,𝑡 + 𝛾𝐼𝑖,𝑡 + ∑ ∑ (𝑅𝑗𝑖,𝑡
𝑘 + 𝐼𝑗𝑖,𝑡

𝑘 ( ∑ ∏ 𝑥𝑝,𝑡

𝑝∈𝑘∖{𝑗}∶𝑝≺𝑞𝑞∈𝑘∖{𝑗}

))

𝑘∈Π𝑗𝑖

 

𝑗∈Γ𝑖
−

− ∑ ∑ 𝑅𝑖𝑗,𝑡
𝑘

𝑘∈Π𝑖𝑗𝑗∈Γ𝑖
+

 ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 (7g) 

𝑥𝑖,𝑡 ∈ [0,1] ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇 (7h) 

𝑦𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑉 (7i) 
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Algorithm 1: Greedy outbreak control resource allocation 

1       Input: Sorted node set 𝑉̅, budget 𝐵  

2       Output: Control vector 𝒙  

3       𝒙 ← 𝟎 

4       𝑈 ← 0 

5       for 𝑖 in 𝑉̅: 

6              if 𝑈 + 𝑠𝑖 + 𝑔𝑠(1) < 𝐵 then: 

7                   𝑥𝑖 ← 1  

8                   𝑈 ← 𝑈 + 𝑠𝑖 + 𝑔𝑠(1)   

9              else if 𝑈 + 𝑠𝑖 < 𝐵 then 

10                 𝑥𝑖 ← 𝑔𝑠
−1(𝐵 − 𝑈 − 𝑠𝑖) 

11                 𝑈 ← 0 

12                break 

 

We consider multiple ranking strategies to determine 𝑉̅. Each control strategy tested is presented in Table 

1, as well as the Baseline (B), in which no control is implemented. The first control strategy, Largest 

Population (LP) simply targets control at airports in the largest cities. The next three strategies exploit 

known properties of the air traffic network, specifically its hub and spoke structure. The Most Travelled 

(MT) strategy seeks to target control at airports that are highly trafficked based on total incoming and 

outgoing volumes, while the Most Connected (MC) and Effective Path (EP) strategies seek to target 

control at airports that are highly connected to the outbreak source based on travel volumes. The last two 

strategies utilize learned outcomes from a stochastic epidemic simulation model to inform outbreak 

control. The First Case (1C) strategy aims to control the set of airports most likely to see the first infected 

passenger (for a given outbreak scenario), while the First Order Uniform (1OU) targets control at the 

airports where it is likely to have the largest relative marginal impact. The four strategies, MC, EP, 1C 

and 1OU utilize knowledge of initial outbreak conditions, while MT and LP airport sets are selected 

independent of the outbreak state.  

 

Table 1. List of control strategies and their description.  

Strategy (Abbreviation)                             Method of ranking airports 

Baseline (B) No control 

Largest Population (LP) Airports are ranked in descending order based on the population of the city 

they serve. When one city is serviced by multiple airports, those airports are 

further ranked in descending order based on travel volume. 

Most Travelled (MT) Airports are ranked in descending order based on travel volume. Travel 

volume is defined as the sum of daily incoming and outgoing flows.  

Most Connected (MC) Airports are ranked in descending order based on total incoming flow from 

source node(s). 

 

Effective Path (EP) Airports are ranked in ascending order based on their minimum effective 

path distance from the source(s). For a given outbreak scenario, the effective 

path distance for each airport is defined as the length of the shortest path 

from the source, where the length of a path is the sum of the effective 

distance of each link included in the path. The effective distance of link 
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(𝑖, 𝑗) is defined as 𝑑𝑖𝑗 = 1 − log (
∑ 𝑓𝑗𝑖

𝑘(𝑡)𝑘∈𝑉

∑ ∑ 𝑓𝑚𝑖
𝑘 (𝑡)𝑚∈𝛤𝑖

−𝑘∈𝑉
) 

15
. When there is more 

than one source, the minimum effective path distance over all sources is 

assigned to each airport.  

First Case (1C) For a given outbreak scenario the baseline case is simulated a fixed number 

of times (i.e., 200), and for each run we record the time at which the first 

infected individual reached each airport, i.e., the initial infection time. 

Airports are then ranked in ascending order based on their most frequently 

observed initial infection time. Ties are broken based on the MT criterion. 

First Order Uniform (1OU) For a given outbreak scenario the effect of fully controlling each airport 

independently, i.e. 𝑥𝑖 = 1 for a selected node 𝑖 ∈ 𝑉 and 𝑥𝑖 = 0 otherwise, is 

simulated, and the reduction in cumulative number of infected individuals at 

the observation time 𝑡𝑜𝑏𝑠 is compared to the baseline case (no control). 

Airports are then ranked in descending order based on the relative reduction 

in cases, i.e., first-order effects. 

Data 

The metapopulation network is constructed using global passenger air travel data from 2015 provided by 

the International Air Transport Association (IATA)
54

. The data provided from IATA includes monthly 

passenger travel volumes for all travel routes connecting airport pairs (including stopovers), representing 

nearly 83% of global traffic volumes. The final network used in this study contains the top 99% of the 

travelled routes provided, resulting in a network with approximately 500,000 routes, 2,908 cities, and 

3,267 airports. The city populations served by each airport are based on the population densities provided 

by Oak Ridge National Laboratory’s LandScan
55

. The population size for each city was based on a 50km 

radius centered on each airport, and computed using open source Geographic Information Systems 

software QGIS (https://qgis.org/). In some cases, multiple cities are serviced by more than one airport, for 

which the all assigned airport flows are mapped to the same population.  

Results 

We demonstrate the performance of the proposed control strategies to mitigate global outbreak spread, 

and present results from a cost-benefit analysis, which characterizes the marginal gains in outbreak 

reduction with respect to increases in available resources, i.e., budget. Further, all strategies are applied to 

a case study representative of the 2009 H1N1 Pandemic Influenza to illustrate the hypothetical impact of 

each in a similar outbreak setting. Extensive sensitivity analysis was conducted to assess how the different 

control strategies respond to differing disease characteristics, model assumptions and policy decisions. 

Specifically, we explored how changes in the contact rate, planning horizon, control start time, control 

effectiveness, and source screening impact the performance of each strategy. Results for all sensitivity 

analysis are provided in the supplementary material (Section A).  

 

In this study, only U.S. cities are considered for control. The two metrics used to compare the 

performance of each strategy are i) the total cumulative number of infected individuals in the U.S. at 

observation time, 𝑡𝑜𝑏𝑠, and ii) the number of infected cities in the U.S. at observation time, 𝑡𝑜𝑏𝑠, where an 

infected city has at least one infected individual.  
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Base Case Analysis   
For the base case analysis, all of the proposed control strategies are implemented and compared for three 

independent hypothetical outbreak scenarios that vary by the outbreak source location. Three source cities 

are selected 1) Orlando, Florida, 2) Portland, Oregon and 3) Honolulu, Hawaii, and each is initialized 

with 100 infected individuals at 𝑡 =  0. These cities were chosen because they represent a range of 

geographic and travel profiles. In the remainder of this work these three cities are denoted by their 

assigned airport IATA codes, MCO, PDX and HNL, respectively. 

 

To model the cost of control at airports, we consider linear cost functions. Setup costs 𝑠𝑖 represent 

screening equipment costs based on the total incoming flow at each airport 𝑖 ∈ 𝑉. Let 𝑀 be the cost of a 

passenger screening machine and 𝐶 its capacity, we set 𝑠𝑖 =
𝑀

𝐶
∑ ∑ 𝑓𝑗𝑖,𝑡

𝑘
𝑘∈Π𝑗𝑖

 𝑗∈Γ𝑖
− . For the variable cost, 

we assume that the cost of screening a passenger is represented by 𝑃 and set 

𝑔𝑠(𝑥𝒊) = 𝑥𝑖𝑡𝑜𝑏𝑠𝑃 ∑ ∑ 𝑓𝑗𝑖,𝑡
𝑘

𝑘∈Π𝑗𝑖
 𝑗∈Γ𝑖

−  to model the impact of deploying control resources over a varying 

time period and at a varying level of control. For the base case analysis, we set the available budget 𝐵 to 

$500 million. The parameter values are 𝑀 = $500,000, 𝐶 = 10,000 and 𝑃 = $10, and based on the 

existing literature 
56

. Under this configuration, the available budget is enough to fully control the 13 most 

travelled airports in the U.S. for 𝑡𝑜𝑏𝑠=50. 

 

For all scenarios the simulation is set to begin on June 1 and 𝑡𝑜𝑏𝑠 is set to 50 days. This timeframe aims to 

model the emerging stage of the outbreak. For the base case analysis, the hypothetical virus has values of 

𝛼 = 0, 𝛽 = 0.25, 𝛾 = 0.143 and 𝜆 =  1. The chosen baseline parameters correspond to a disease with a 

reproductive ratio 𝑅0  =  1.75. All evaluations of the stochastic metapopulation epidemic model are based 

on 1,000 simulations. 

 

Figure 1 provides the cumulative number of cases in the U.S. at 𝑡𝑜𝑏𝑠 for scenarios MCO, PDX and HNL. 

The boxplots capture the results for all 1,000 simulations conducted, illustrating the robustness of the 

results and rankings. In each plot the six proposed strategies to allocate screening resources are compared 

against the baseline (corresponding to no control) for the respective scenario. Similar trends are evident 

for all scenarios, with the more simplistic strategies of controlling at the airports in the largest cities or 

most travelled airports performing poorest, and EP and MC performing best. 

 

For the MCO scenario, the cumulative number of infected is on average 33,200 for the baseline 

configuration (no control). Using control strategy LP leads to a reduction of 25.2% in the number of 

cases, compared with a reduction of 31.2% using EP or MC. For the PDX scenario, the amount of 

infected individuals is on average 36,000 in the baseline case and using EP or MC results in a reduction of 

20.6%. For the HNL scenario, we report a reduction of 47.7% from the baseline to the best control 

strategy as well as substantially less variability across outbreak simulations.  
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Figure 1. Control strategy performance for the base case scenarios MCO, PDX and HNL in terms 

of number of infected individuals. The figure reports the cumulative number of infected individuals in 

the U.S. at the observation time 𝒕𝒐𝒃𝒔 = 𝟓𝟎 days for each control strategy. Each boxplot represents the 

distribution of the criterion measured over 1,000 simulations of the stochastic metapopulation epidemic 

model under the corresponding control strategy. 

Figure 2 provides the number of infected cities in the U.S. at 𝑡𝑜𝑏𝑠 for the three scenarios. This metric is 

critical to assess the success of the control strategy with regards to preventing spread into new cities. A 

similar trend is observed across all scenarios, with strategies EP, MC, 1C and 1OU proving superior to 

MT and LP. For the MCO scenario, the number of cities affected is on average 137 for the baseline case. 

Using control strategy MT leads to a reduction of 24% in the number of cities affected, compared with a 

reduction of 31% for EP/MC. For the PDX scenario, the amount of infected is on average 107 in the 

baseline case and 40 for the EP/MC cases resulting in a reduction of 63%. For the HNL scenario, we 

observe a more substantial reduction of 90% in the number of cities affected from the baseline to the best 

control strategy.  

 

 
Figure 2. Control strategy performance for the base case scenarios MCO, PDX and HNL in terms 

of number of infected cities. The figure reports the number of infected cities in the U.S. at the 

observation time 𝒕𝒐𝒃𝒔 = 𝟓𝟎 days for each control strategy, where a city is categorized as infected if it 

contains at least one infected individual. Each boxplot represents the distribution of the criterion 

measured over 1,000 simulations of the stochastic metapopulation epidemic model under the 

corresponding control strategy. 
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To help visualize the decisions and impact of the proposed border control strategies, we contrast the 

outcome of all control strategies with the baseline behavior in Figure 3.  The maps display the set of 

airports selected for control (blue crosses), and the expected size of local outbreaks in each affected city at 

the observation date (red circles) for each of the five strategies as well as the no-control scenario. The 

panels correspond to the following strategies: A) No-control, B) MC/EP, C) 1C, D) 1OU, E) MT and F) 

LP, and the results are illustrated for the PDX scenario. All maps were generated using open source shape 

files from Natural Earth (http://www.naturalearthdata.com/). Note: EP and MC have the same airport 

control set in the PDX scenario. The red circles are sized proportional to the outbreak size at each 

location. The small grey circles represent the set of airports that can be selected for control, further 

highlighting the scale and the complexity of the problem. Details on the sets of airports selected for each 

base case scenario and control strategy are provided in the supplementary material (Section C). 

 

The results indicate both the large spatial variability in the airport sets selected for control across 

strategies, and the respective impact on outbreak location and outbreak size for each strategy.  For 

example, EP and MC are shown to reduce both the outbreak size and number of affected cities the most at 

the observation date. The poorest performing strategy is LP, which controls more airports than other 

strategies, however many of which are far-removed from the outbreak source in terms of traffic volumes, 

and are therefore less likely to play a major role in furthering spread early in the outbreak. The second 

worst performing strategy, MT, often spends large portions of its budget on controlling heavily travelled 

airports, thus resulting in fewer airports controlled, which may also not be critical for outbreak mitigation. 

It is important to note that both LP and MT airport control sets are fixed for a given budget, and 

independent of the outbreak scenario, unlike the proposed network- and simulation-driven control 

strategies.  

Cost-Benefit Analysis 

To explore the impact of bresource availability on epidemic spread, we conduct a cost-benefit analysis by 

varying the budget available for control. Specifically, we explore a range of budgets from $0.25 bil to 

$1.25 bil, in $0.25 bil increments. Note that given the cost functions used in this study, a budget of $1.35 

bil is enough to fully control all airports within the U.S. for a 50-day period. The results are summarized 

in Figure 4, which illustrates the impact of budget on the effectiveness of each strategy for all three source 

scenarios. At $0 bil and $1.25 bil the strategies perform nearly the same, which represent the cases of no 

control and close to full control at all airports, respectively. For budgets in between these values, the 

impact of all strategies decreases with budget as expected, with control strategy EP consistently 

outperforming other strategies. The weaker strategies, MT and LP, decrease in a more linear fashion 

compared to the other four, MC, EP, 1C and 1OU, which show evidence of decreasing marginal returns, 

e.g., there is negligible improvements after the budget reaches $0.75 bil. These results have valuable 

implications for policy makers, and indicate the potentially cost-effective nature of resource allocation if 

assigned strategically.  
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Figure 3. Visualization of outbreak control strategies and impact in the U.S. The results are 

illustrated for the PDX scenario, with an asterisk marking the source of infection. The maps therein 

display the set of airports selected for control (blue crosses) for each strategy, and the expected size of 

outbreak in each city at the observation date 𝑡𝑜𝑏𝑠 = 50 days (red circles) measured over 1,000 

simulations of the stochastic metapopulation epidemic model . The panels correspond to the following 

strategies: A) No-control, B) MC/EP, C) 1C, D) 1OU, E) MT and F) LP. The red circles are sized 

proportional to the outbreak size. The grey circles represent the complete set of airports that can be 

feasibly selected for control. The maps were generated using open source shape files from Natural Earth 

(http://www.naturalearthdata.com/). 
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Figure 4. Cost-benefit analysis for the base case scenarios MCO, PDX and HNL in terms of number 

of infected individuals. The figure depicts the average cumulative number of infected individuals in the 

U.S. at the observation time 𝒕𝒐𝒃𝒔 = 𝟓𝟎 days based on a varying border control budget 𝑩 expressed in 

billions of dollars. The data points converge at 𝑩 = 𝟎 which corresponds to the baseline (no control) case. 
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Case Study: 2009 H1N1 Influenza Pandemic  

To illustrate the ability of the simulation model to replicate a realistic pandemic, we consider the 2009 

H1N1 influenza pandemic as a case study, and quantify the performance of the proposed strategies under 

similar outbreak conditions. The simulation model was calibrated to the 2009 H1N1 outbreak data at both 

the U.S. and global scales. The calibration methodology and results are included in the supplementary 

material (Section B). The final calibrated disease parameters are 𝛼 = 1, 𝛽 = 0.475, 𝛾 = 0.25 and 𝜆 =  1. 

For all simulations the starting date of the outbreak is set as the 5
th
 of February 2009 with 1 infected 

individual placed into the city of Veracruz, Mexico
1
. Each control strategy is deployed four weeks (28 

days) after the first case appeared in Mexico, at which time there were about 100 local cases in Mexico 

(based on the simulation). The cost function, budget and screening costs are the same as those used in the 

base case analysis. The results are based on 1,000 simulations of the stochastic model, and the 

observation time is set to 𝑡𝑜𝑏𝑠 = 100 days after the first case. 

 

 
Figure 5. Control Strategy performance for the 2009 H1N1 influenza pandemic case study in terms 

of number of infected individuals (left) and number of infected cities (right) in the U.S. The figure 

depicts the performance of each control strategies for an observation time 𝒕𝒐𝒃𝒔 = 𝟏𝟎𝟎 days, and assuming 

border control is deployed at 𝟐𝟖 days after the first infected individual was reported in Mexico. Each 

boxplot represents the distribution of the criterion measured over 1,000 simulations of the stochastic 

metapopulation epidemic model under the corresponding control strategy. 

 

The case study illustrates the hypothetical impact of implementing the proposed strategies for an outbreak 

similar in characteristics to the 2009 H1N1 influenza pandemic. The performance of each strategy based 

on the two metrics used for evaluation, i.e., the cumulative number of cases and number of infected cites 

in the U.S. at the time of observation, under each of the proposed strategies are illustrated in Figure 5. The 

results highlight the EP strategy to once again dominate, and LP and MT to perform the poorest. 

Specifically, the EP strategy can reduce the final outbreak size by 37.1% relative to the baseline, with the 

number of infected cities dropping from 115 to 86, representing a 25.2% decrease..  
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Discussion 

This work addresses the challenge of pandemic mitigation planning through border control, specifically 

using entry screening at airports to minimize the potential harm posed by an outbreak. We present an 

ensemble of control strategies that are evaluated based on their ability to reduce the cumulative number of 

cases and the number of cities infected at a target observation time. The decision-support framework 

provided can be implemented in real-time at the early stages of a confirmed or suspected outbreak. An in-

depth analysis is presented for multiple hypothetical outbreak scenarios, and a case study is conducted to 

illustrate the performance of the control strategies for an outbreak similar to the 2009 H1N1 influenza 

pandemic. Further, extensive sensitivity analysis illustrates the robustness of the control strategies to 

various modelling parameters and assumptions.  

 

The best performing control strategies are the network-driven strategies, e.g., EP and MC, which are 

shown to be robust across a range of outbreak scenarios and model assumptions. In contrast, the more 

simplistic strategies, e.g., controlling the most travelled airports (MT) or the airports in the largest cities 

(LP), perform the poorest. The superiority of the network-driven strategies highlights the significance of 

the heterogeneity of the world air traffic network in outbreak spreading
5,15

, which can be exploited by 

policy makers for the purposes out pandemic planning and mitigation.  The two control strategies 

informed by simulation, 1OU and 1C, rank in the middle in terms of performance in most scenarios 

considered in this work, however the relative performance of the strategies is sensitive to the outbreak 

initial conditions, as highlighted by the case study. While the results from the analysis presented indicate 

the EP strategy to be reliably superior, the larger contribution of this work is the modeling framework, 

which can be implemented in real-time for any outbreak scenario given reported case counts and 

locations.  Additionally, the integrated framework is flexible, and can be easily extended to incorporate 

and compare the performance of additional strategies if desired.  

 

The cost-benefit analysis highlights two critical issues. Firstly, a given budget can be used more 

effectively if the control decisions are made strategically. e.g., EP/MC can achieve the same effectiveness 

as MT/LP for nearly half the budget. Second, there is evidence of decreasing marginal returns for the 

superior strategies, indicating minimal benefits may be gained by spending more on border control 

beyond a certain threshold. This cost-effectiveness threshold is critical for policy makers, who can choose 

to redirect available control resources towards alternative control strategies for outbreak mitigation which 

may be more effective.  

 

The case study illustrates the expected performance of each control strategy for an outbreak similar in 

behavior to the 2009 H1N1 influenza pandemic. This analysis critically introduces an asymptomatic 

exposed state, which poses an additional challenge for control, because even with perfect screening not all 

infected travelers can be identified. Even so, results from the case study reveal the reliably superior 

performance of EP as an outbreak control strategy, and once again, the value gained by strategically 

allocating control resources. 

 

The sensitivity analysis on the infection contact rate (see Section A.1) illustrates that the ranking and 

effectiveness of the control strategies are robust with regards to the rate of spread. Furthermore, the 

control strategies are observed to be more effective (relative to the no control scenario) and more robust 
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for faster spreading viruses. The more reliable performance for higher contact rates can be attributed to 

the highly stochastic nature of outbreaks in their early stages, which is heavily dependent on where the 

first few infected cases spread to, whereas a faster spreading virus will result in a larger number of 

infected people travelling, reducing the variability across outbreak scenarios.  

 

Sensitivity to observation time and control start date was conducted to illustrate the impact of these two 

implementation options available to policy makers.  The model appears to be highly sensitive to 

observation time (see Section A.2), which is due to the exponential nature of outbreak growth; there is a 

small number of cases and affected cities in the early stages of the outbreaks (e.g. 25 days) compared to 

considerably higher infection rates at later time epochs (e.g. 100 days). This sensitivity analysis highlights 

the critical (short) timeline during which border control has the potential to play a substantial role, after 

which local control will be most impactful. The impact of delaying border control was also evaluated 

(Section A.3), and the results again highlight the robustness of the strategy rankings. The results also 

demonstrate the importance of implementing control in a timely fashion, with the best performing 

strategies revealed to be the most sensitive to delayed start times.  

 

To address the assumption of perfect control, we evaluated the effectiveness of the proposed strategies 

under imperfect control conditions (Section A.4), limiting the maximum control rate to 80% and 90%, 

respectively. While the impact of control decreases with the control level, the relative performance and 

ranking across strategies remains constant, suggesting the best performing strategies remain effective and 

reliable under imperfect control. Similar results are observed in the case study, which utilizes an SEIR 

model, i.e., asymptotic infected travelers are able to evade control and introduce infection into new cities.  

 

The final sensitivity analysis evaluated the impact of outgoing passenger screening at the source of 

infection. This work assumes that outgoing screening at the source is an obvious decision; therefore the 

model addresses the more challenging problem of selecting which locations other than the source(s) 

should be prioritized for incoming passenger screening. The sensitivity analysis results reveal that when 

outgoing screening is implemented at the source (Section A.5) the proposed control strategies behave 

predictably, i.e., the outbreak spreads faster but the strategy rankings remain consistent. Critically, the 

best performing strategies perform well even at low levels of outgoing screening, i.e., ineffective 

screening, while the poorest performing strategies are more sensitive to the effectiveness of outgoing 

source screening.  

 

Lastly, there are modeling assumptions and limitations of this study. First, the model only accounts for 

passenger air travel, and excludes mobility within and between cities via other modes of transport. 

Second, local disease spread (within a city) is modeled deterministically, and a uniform contact rate is 

used across all populations. Third, the model is currently limited to global control decisions through 

passenger screening, and does not evaluate local control mechanisms (prophylaxtics, vaccines, school 

closures, etc), with the exception of source exit screening. Fourth, airport (rather than route) screening 

rates are the control variable, and therefore assume passenger screening to be uniformly applied across all 

incoming routes at a given airport. Planned extensions of this work will address these limitations through 

i) integrating alternative modes of transport into the model, ii) adding additional decision variables to 

optimize local control decisions, iii) the development of a link-based modelling formulation to allow 

specific travel routes to be identified for screening (as opposed to airports), and iv) introducing a dynamic 
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resource allocation formulation which relaxes the assumption of constant control across the entire 

planning period. These extensions would provide more degrees of freedom to improve the impact of 

control resources and further help in minimizing the risk posed by global outbreaks. The set of limitations 

and extensions listed currently lie outside the scope of this study, and provide the basis for future 

research. 

Data Availability 

The air traffic data used in this study is available for purchase from IATA Passenger Intelligence Services 

(PaxIS), https://www.iata.org/services/statistics/intelligence/paxis. The population data is publically 

available from ORNL’s LandScan, https://landscan.ornl.gov/. H1N1 case data used for model calibration 

is publically available from CDC and WHO, and referenced in the supplementary materials. 
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Supplementary Material 

 

A.  Sensitivity Analysis 

To investigate how the strategies respond to the various parameters and model assumptions, we 

conduct a range of sensitivity analysis. We explore how changes in the contact rate, the target 

observation time, i.e. 𝑡𝑜𝑏𝑠, control start time (delayed control), imperfect compliance, and 

screening outgoing travelers at the source of infection impact the performance of each control 

strategy. For this sensitivity analysis the set of source cities and base case conditions remain the 

same as those described in the main document (see Base Case Analysis) 

A.1.  Impact of the Contact Rate, β 

A significant source of uncertainty in a novel infectious disease is its level of infectiousness, i.e., 

how fast it will spread. To explore the robustness of our proposed control strategies to the 

infectivity of a disease, we conduct sensitivity for a range of contact rates. The results for  𝛽 = 

0.2, 0.25 and 0.3 are shown for all scenarios MCO, PDX and HNL, in Figures S1a, S1b and S1c, 

respectively. These three contact rates (CR in the figures) correspond to a disease with a 

reproductive ratio 𝑅0 = 1.4, 1.75 and 2.1, respectively. 

 

As expected, the number of cases increases with the contact rate for all control strategies. The 

relative performance of the control strategies compared with the baseline case (corresponding to 

no control being deployed) increases as the contact rate increases, indicating that the control 

strategies are more effective for more aggressive outbreaks. Specifically, for the PDX scenario, 

the EP and MC strategies provide a 16% decrease in cases for 𝛽 = 0.2 compared with a 24.9% 

for 𝛽 = 0.3, relative to the baseline. The gap between the poorest performing strategy, MT, and 

the best performing strategy also increases with 𝛽. Across the range of 𝛽, EP and MC 

consistently perform best. These trends are reflected in scenarios MCO and HNL, with the latter 

exhibiting a significantly lower volatility in terms of performance compared to the other source 

city scenarios. 
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Figure S1a. Impact of the contact rate on the control strategies for the MCO scenario. The 

figure reports the cumulative number of infected individuals in the U.S. at the observation time 

𝒕𝒐𝒃𝒔 = 𝟓𝟎 days for each control strategy evaluated based on the contact rate (CR), denoted 𝜷 in 

the formulation. Each boxplot represents the distribution of the criterion measured over 1,000 

simulations of the stochastic metapopulation epidemic model under the corresponding control 

strategy. 

 

 
Figure S1b. Impact of the contact rate on the control strategies for the PDX scenario. The 

figure reports the cumulative number of infected individuals in the U.S. at the observation time 

𝒕𝒐𝒃𝒔 = 𝟓𝟎 days for each control strategy evaluated based on the contact rate (CR), denoted 𝜷 in 

the formulation. Each boxplot represents the distribution of the criterion measured over 1,000 

simulations of the stochastic metapopulation epidemic model under the corresponding control 

strategy. 
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Figure S1c. Impact of the contact rate on the control strategies for the HNL scenario. The 

figure reports the cumulative number of infected individuals in the U.S. at the observation time 

𝒕𝒐𝒃𝒔 = 𝟓𝟎 days for each control strategy evaluated based on the contact rate (CR), denoted 𝜷 in 

the formulation. Each boxplot represents the distribution of the criterion measured over 1,000 

simulations of the stochastic metapopulation epidemic model under the corresponding control 

strategy. 
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A.2. Impact of varying the observation time 

 

The proposed decision-support framework is based on the chosen time of observation, 𝑡𝑜𝑏𝑠. As 

previously discussed, the focus of this work is to help guide control decision at the early stages 

of an outbreak, with the intention of preventing introductions into new cities and regions. Thus, 

the planning horizon focuses on the first weeks and months after a new disease has been 

identified. However, the impact of the chosen planning horizon is critical to quantify, as it 

directly relates to the budget, e.g., a longer planning horizon requires more days of screening, 

and therefore less airports can be controlled for the same budget. A sensitivity analysis is 

conducted to measure the impact of 𝑡𝑜𝑏𝑠 when this parameter is varied between 25 and 100 days 

and its impact on the control strategy performance is assessed. Figures S2a, S2b and S2c provide 

the results of the sensitivity analysis for scenarios MCO, PDX and HNL, respectively. As 𝑡𝑜𝑏𝑠 

increases, the number of cumulatively infected individual grows quickly, highlighting the non-

linear growth of outbreaks. The relative impact of the best control strategies, MC and EP, 

continues to increase with 𝑡𝑜𝑏𝑠, and critically, they consistently dominate in terms of 

performance across planning horizons, indicating the strategies are robust. For the MCO 

scenario, we find that the control strategies perform increasingly similarly when the observation 

time increases. This is not the case for the PDX scenario wherein increasing 𝑡𝑜𝑏𝑠 magnifies the 

differences of the control strategies in terms of performance. Finally, the HNL scenario is found 

to be the most robust to the variation of the observation time and this trend is also reflected more 

generally for this source city scenario. 
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Figure S2a. Impact of changing 𝒕𝒐𝒃𝒔 on the control strategies for the MCO scenario. The 

figure reports the cumulative number of infected individuals in the U.S. at the observation time 

𝒕𝒐𝒃𝒔 = 𝟓𝟎 days for each control strategy evaluated based on the time of observation 𝒕𝒐𝒃𝒔. Each 

boxplot represents the distribution of the criterion measured over 1,000 simulations of the 

stochastic metapopulation epidemic model under the corresponding control strategy. 
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Figure S2b. Impact of changing 𝒕𝒐𝒃𝒔 on the control strategies for the PDX scenario. The 

figure reports the cumulative number of infected individuals in the U.S. at the observation time 

𝑡𝑜𝑏𝑠 = 50 days for each control strategy evaluated based on the time of observation 𝑡𝑜𝑏𝑠. Each 

boxplot represents the distribution of the criterion measured over 1,000 simulations of the 

stochastic metapopulation epidemic model under the corresponding control strategy. 
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Figure S2c. Impact of changing 𝒕𝒐𝒃𝒔 on the control strategies for the HNL scenario. The 

figure reports the cumulative number of infected individuals in the U.S. at the observation time 

𝒕𝒐𝒃𝒔 = 𝟓𝟎 days for each control strategy evaluated based on the time of observation 𝒕𝒐𝒃𝒔. Each 

boxplot represents the distribution of the criterion measured over 1,000 simulations of the 

stochastic metapopulation epidemic model under the corresponding control strategy. 
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A.3. Impact of Delaying Control  

As this work focuses on the early stages of an outbreak, the impact of delaying the deployment 

of control resources can provide key insights on policy implementation and practice. To this 

effect, we conduct a sensitivity analysis time at which control, i.e., passenger screening is 

deployed. Specifically, a delay of 0, 7, 14, 21 and 28 days is evaluated – we note that in the base 

case analysis, control is assumed to start at 𝑡 = 0 whereas in the case study control is assumed to 

start at 𝑡 = 28 days. In these scenarios the airports control sets for each strategy remain the same 

as in the base case, with the only difference being the start date of screening. The results of the 

scenarios are presented in Figure S3. Note: EP performs closely to MC, and is therefore not 

clearly visible in the figure. 

 

In all base case scenarios MCO, PDX and HNL, delaying the deployment of passenger screening 

results in more cases. Further, we observe that all control strategies are similarly impacted and 

their ranking, in terms of their capacity to reduce the number of infected individuals, remain 

almost always the same (except in scenario HNL, wherein MC/EP and 1OU crossover). The 

results also highlight that the smarter control strategies (i.e., EP, MC, 1OU and 1C) are more 

sensitive to delayed implementation, indicating a critical need to implement control as soon as a 

risk is identified.  
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Figure S3. Impact of delayed control the control strategies for base case scenarios MCO, 

PDX and HNL. The figure reports the average cumulative number of infected individuals in the 

U.S. for each control strategy evaluated for a varying control start time, i.e., delayed control. 

Each data point represents the average of the criterion measured over 1,000 simulations of the 

stochastic metapopulation epidemic model under the corresponding control strategy. 
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A.4. Impact of Imperfect Compliance 

A sensitivity analysis is also conducted to address the modelling assumption of fully successful 

passenger screening. Indeed, if airport 𝑖 ∈ 𝑉 is fully controlled, i.e. 𝑥𝑖 = 1, our model assumes 

that all infected individuals are successfully detected in the screening process. In reality, this may 

not be the case. For example, Auckland International Airport’s screening procedure for the 2009 

influenza pandemic found that only 6% of infected passengers were detected
1
. This was partially 

due to the inability of the airport staff to screen all incoming passengers, as well as the 

limitations of the thermal scanning technology that was used. It is therefore necessary to evaluate 

the effectiveness of the proposed strategies under imperfect control conditions. To explore the 

impact of imperfect control, we set upper bounds lower than 1 on the control rate at airports and 

measure performance in the base case scenarios. The outcome is reported Figure S4. The 

performance of each control strategy is presented for the cases where the control rate is limited to 

0.9 and 0.8. The results are compared with the perfect control scenario. We assume that the same 

set of airports is controlled (obtained from the base case outcomes) in all simulations. 

  

The results once again highlight the robustness of the control strategies. The increase in infected 

cases increases as the perfect control assumption is relaxed, however the relative performance 

and ranking across strategies remains robust to this relaxation. We also report a more apparent 

increase in cases between full control and 90% control, compared with the difference in 80% and 

90% control effectiveness.  

Figure S4. Impact of imperfect compliance on the control strategies for base case scenarios 

MCO, PDX and HNL. The figure reports the cumulative number of infected individuals in the 

U.S. for each control strategy evaluated for a varying control start time, i.e., delayed control. 

Each boxplot represents the distribution of the criterion measured over 1,000 simulations of the 

stochastic metapopulation epidemic model under the corresponding control strategy. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/414185doi: bioRxiv preprint 

https://doi.org/10.1101/414185


20 
 

A.5. Impact of Screening Outgoing Travelers at the Source of Infection 

A final sensitivity analysis addresses the issue of outgoing passenger screening at the source of 

the outbreak. In this work we assumed that screening outgoing passengers at the source city of 

the outbreak is a trivial decision. Thus, the proposed control strategies focus on which ‘other’ 

locations should be prioritized for incoming passenger screening. Furthermore, if outgoing 

passenger screening is conducted at the outbreak source city, assuming a uniform effectiveness 

across all intended destinations, the relative performance proposed strategies still applies. This is 

illustrated in Figure S5, which provides the different control strategy performances and ranking 

for source screening rates of 0%, 25%, 50%, 75%, 100%. At a 100% outgoing screening rate, no 

cases will ever leave the source city, thus all strategies perform equally, while the 0% outgoing 

screening rate corresponds to the base case results. A linear response to source screening is 

observed for all strategies as the level of source screening is varied. Once again, the strategy 

rankings remain consistent across scenarios. In all cases, the cost of screening outgoing 

passengers is excluded from the budget. 
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Figure S5. Impact of screening outgoing travelers at the source of infection on the control 

strategies for base case scenarios MCO, PDX and HNL. The figure reports the cumulative 

number of infected individuals in the U.S. for each control strategy evaluated for a varying 

proportion of outgoing infected travelers successfully screened at the source city. Each data point 

represents the average of the criterion measured over 1,000 simulations of the stochastic 

metapopulation epidemic model under the corresponding control strategy. 
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B.  H1N1 Case Study Model Calibration 

 

In this section, we provide additional details on the calibration of the proposed stochastic 

metapopulation epidemic model. The focus of the calibration process was on matching the 

simulated and reported arrival dates of the first case in a new location, at both the U.S. and 

global scales. The parameters of the model were set such that the average difference between the 

reported date of first case
2,3

 and the simulated date (when averaged over 1,000 simulations) was 

minimized. For all simulations the starting date of the outbreak is set as the 5
th

 of February 2009 

with 1 infected individual placed into the city of Veracruz, Mexico
4
. Based on the analysis, the 

best fit disease parameters were found to be 𝛼 = 1, 𝛽 = 0.475, 𝛾 = 0.25 and 𝜆 =  1.  

 

Figure S6 compares the observed and simulated date of H1N1 introduction into each of the states 

in the U.S. for the calibrated model. The model is illustrated to closely capture the trend of first 

case introductions; critically capturing the gap between the start of the outbreak in Mexico and 

the time of introduction into California and Texas, after which the outbreak quickly spread to the 

rest of the country. For the chosen parameters, the average difference between the simulated and 

observed date of arrival averaged across all 50 states is 7.28 days. The CDC reported dates are 

later than the dates of initial infection and hence slightly earlier prediction dates by the model are 

preferable.  

 

 
Figure S6. Observed

2
 and simulated date of H1N1 introduction into each State in the U.S. 

The figure shows the observed and simulated date of the introduction of H1N1 in each of the 50 

U.S. states sorted by increasing observed dates. The simulated dates are the average over 1,000 

simulations of the stochastic metapopulation epidemic model.  
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A similar analysis was conducted at the global level, to compare the cumulative number of 

infected countries over time between the simulation and reported data, and illustrated in Figure 

S7. The difference between the observed
3
 and simulated results is minimal; the difference 

between the cumulative number of infected countries at each date, averaged over the first 100 

days, is less than one. The maximum discrepancy during the first 100 days occurs 90 days after 

the start of the outbreak, at which time the simulation predicts six less countries to be infected.  

 
Figure S7. Observed and simulated cumulative number of countries infected over time. The 

observed curve is based on the date of arrival in country of first confirmed case
3
 and the 

simulated curve is based on the expected date of first arrival averaged over 1,000 simulations of 

the stochastic metapopulation epidemic model.  

 

To further validate the simulation model at a global level, explicit dates of first case arrivals for 

10 countries known to be infected directly from Mexico are compared against the expected date 

of introduction from the simulation. Table S1
3,5

 highlights how closely the simulation captures 

the observed behavior of the outbreak, with an average difference of 5.4 days across the 10 

countries. The observed and simulated arrival dates for all countries except Columbia fall within 

8 days.  
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Table S1. Observed and simulated country infection dates 
3,5

. The simulated dates are the 

average of 1,000 simulations of the stochastic metapopulation epidemic model and rounded to 

the nearest date. 

Country 

Observed 

Arrival Date 

Simulated 

Arrival Date 

United States 28/3/2009 30/3/2009 

United Kingdom 21/4/2009 23/4/2009 

Australia 9/5/2009 9/5/2009 

China 2/5/2009 8/5/2009 

Canada 8/4/2009 15/4/2009 

Spain 22/4/2009 21/4/2009 

Germany 28/4/2009 26/4/2009 

France 1/5/2009 23/4/2009 

Colombia 3/5/2009 15/4/2009 

Cuba 25/4/2009 17/4/2009 
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C. Airport control lists and frequency of control 
 

To provide more details on the behavior of the proposed control strategies we analyse the sets of 

airports selected for control. For each control strategy, we report the list and the control level of 

all airports controlled in the base case scenarios MCO, PDX and HNL (note, airports are ordered 

by decreasing travel volume). We also report the frequency of choosing an airport among the 6 

control strategies considered (all airports not listed in the tables are never selected for control and 

have thus a null frequency). We find that few airports are selected in all 6 control strategies. 

Even though the strategies have different metrics for ranking airports, EP and MC identify the 

same lists of airports for control, which explains their similar performance. The two lowest 

performing control strategies in terms of case numbers, LP and MT, have the most and least 

number of airports controlled, respectively. For LP, many controlled airports appear to not help 

in mitigating the spread of the disease, and for MT, the largest airports are always selected for 

control, which are also the most expensive, and therefore quickly deplete the budget available. 
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Table S2a. Airport control lists and frequency of airport control across control strategies in 

the MCO scenario.  

EP 

 
MC 

 
1C 

 
1OU 

 
LP 

 
MT 

  
List Control List Control List Control List Control List Control MT Control Frequency 

ATL 1.00 ATL 1.00 ATL 1.00 ATL 1.00 LAX 1.00 ATL 1.00 6 

ORD 1.00 ORD 1.00 LAX 0.38 LAX 1.00 ORD 1.00 LAX 1.00 5 

DFW 1.00 DFW 1.00 ORD 1.00 ORD 1.00 DFW 1.00 ORD 1.00 4 

JFK 1.00 JFK 1.00 DFW 1.00 DFW 1.00 JFK 1.00 DFW 1.00 3 

DEN 1.00 DEN 1.00 JFK 1.00 JFK 1.00 SFO 1.00 JFK 1.00 2 

CLT 1.00 CLT 1.00 DEN 1.00 DEN 1.00 IAH 1.00 DEN 1.00 1 

IAH 1.00 IAH 1.00 CLT 1.00 CLT 1.00 MIA 0.86 SFO 1.00 

 
MIA 0.06 MIA 0.06 SEA 1.00 IAH 1.00 EWR 1.00 LAS 1.00 

 
EWR 1.00 EWR 1.00 EWR 1.00 EWR 1.00 BOS 1.00 PHX 1.00 

 
MSP 1.00 MSP 1.00 MSP 1.00 BOS 1.00 PHL 1.00 CLT 1.00 

 
BOS 1.00 BOS 1.00 BOS 1.00 DTW 1.00 LGA 1.00 IAH 1.00 

 
DTW 1.00 DTW 1.00 PHL 1.00 PHL 1.00 BWI 1.00 MIA 1.00 

 
PHL 1.00 PHL 1.00 LGA 1.00 LGA 1.00 MDW 1.00 SEA 0.77 

 
LGA 1.00 LGA 1.00 BWI 1.00 BWI 1.00 DCA 1.00 

   
BWI 1.00 BWI 1.00 MDW 1.00 MDW 0.46 IAD 1.00 

   
MDW 1.00 MDW 1.00 STL 1.00 SJU 1.00 SAN 1.00 

   
DCA 1.00 DCA 1.00 SJU 1.00 

  
DAL 1.00 

   
SJU 1.00 SJU 1.00 IND 1.00 

  
HOU 1.00 

   

    
BDL 1.00 

  
OAK 1.00 

   

    
RHI 1.00 

  
SNA 1.00 

   

    
PAH 1.00 

  
SJC 1.00 

   

    
HIB 1.00 

  
ONT 1.00 

   

    
PKB 1.00 

  
BUR 1.00 

   

        
LGB 1.00 

   

        
HPN 1.00 

   

        
TTN 1.00 

   

        
ILG 1.00 

   

        
CLD 1.00 
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Table S2b. Airport control lists and frequency of airport control across control strategies in 

the PDX scenario. 

EP 

 
MC 

 
1C 

 
1OU 

 
LP 

 
MT 

  
List Control List Control List Control List Control List Control MT Control Frequency 

ATL 1.00 ATL 1.00 ATL 1.00 ATL 1.00 LAX 1.00 ATL 1.00 6 

LAX 1.00 LAX 1.00 LAX 1.00 LAX 1.00 ORD 1.00 LAX 1.00 5 

ORD 1.00 ORD 1.00 ORD 1.00 ORD 1.00 DFW 1.00 ORD 1.00 4 

DFW 1.00 DFW 1.00 DFW 1.00 DFW 1.00 JFK 1.00 DFW 1.00 3 

JFK 0.45 JFK 0.45 JFK 1.00 JFK 0.77 SFO 1.00 JFK 1.00 2 

DEN 1.00 DEN 1.00 DEN 1.00 DEN 1.00 IAH 1.00 DEN 1.00 1 

SFO 1.00 SFO 1.00 SFO 1.00 SFO 1.00 MIA 0.86 SFO 1.00 

 
LAS 1.00 LAS 1.00 LAS 1.00 LAS 1.00 EWR 1.00 LAS 1.00 

 
PHX 1.00 PHX 1.00 PHX 1.00 PHX 1.00 BOS 1.00 PHX 1.00 

 
SEA 1.00 SEA 1.00 SEA 1.00 SEA 1.00 PHL 1.00 CLT 1.00 

 
MSP 1.00 MSP 1.00 MSP 1.00 MSP 1.00 LGA 1.00 IAH 1.00 

 
SLC 1.00 SLC 1.00 SLC 1.00 SLC 1.00 BWI 1.00 MIA 1.00 

 
SAN 1.00 SAN 1.00 HNL 1.00 SAN 1.00 MDW 1.00 SEA 0.77 

 
HNL 1.00 HNL 1.00 OAK 1.00 HNL 1.00 DCA 1.00 

   
OAK 1.00 OAK 1.00 SJC 1.00 OAK 1.00 IAD 1.00 

   
SNA 1.00 SNA 1.00 SMF 1.00 SJC 1.00 SAN 1.00 

   
SJC 1.00 SJC 1.00 GEG 1.00 SMF 1.00 DAL 1.00 

   
SMF 1.00 SMF 1.00 DBQ 1.00 

  
HOU 1.00 

   
GEG 1.00 GEG 1.00 JLN 1.00 

  
OAK 1.00 

   
BOI 1.00 BOI 1.00 PAH 1.00 

  
SNA 1.00 

   

    
EKO 1.00 

  
SJC 1.00 

   

    
BRD 1.00 

  
ONT 1.00 

   

    
HYS 1.00 

  
BUR 1.00 

   

        
LGB 1.00 

   

        
HPN 1.00 

   

        
TTN 1.00 

   

        
ILG 1.00 

   

        
CLD 1.00 
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Table S2c. Airport control lists and frequency of airport control across control strategies in 

the HNL scenario. 

EP 

 
MC 

 
1C 

 
1OU 

 
LP 

 
MT 

  List Control List Control List Control List Control List Control MT Control Frequency 

ATL 1.00 ATL 1.00 ATL 1.00 ATL 1.00 LAX 1.00 ATL 1.00 6 

LAX 1.00 LAX 1.00 LAX 1.00 LAX 1.00 ORD 1.00 LAX 1.00 5 

ORD 1.00 ORD 1.00 ORD 1.00 ORD 1.00 DFW 1.00 ORD 1.00 4 

DFW 1.00 DFW 1.00 DFW 1.00 DFW 1.00 JFK 1.00 DFW 1.00 3 

JFK 0.35 JFK 0.35 JFK 0.73 JFK 0.36 SFO 1.00 JFK 1.00 2 

DEN 1.00 DEN 1.00 DEN 1.00 DEN 1.00 IAH 1.00 DEN 1.00 1 

SFO 1.00 SFO 1.00 SFO 1.00 SFO 1.00 MIA 0.86 SFO 1.00 

 
LAS 1.00 LAS 1.00 LAS 1.00 LAS 1.00 EWR 1.00 LAS 1.00 

 
PHX 1.00 PHX 1.00 PHX 1.00 PHX 1.00 BOS 1.00 PHX 1.00 

 
IAH 1.00 IAH 1.00 IAH 1.00 SEA 1.00 PHL 1.00 CLT 1.00 

 
SEA 1.00 SEA 1.00 SEA 1.00 MSP 1.00 LGA 1.00 IAH 1.00 

 
SLC 1.00 SLC 1.00 IAD 1.00 SLC 1.00 BWI 1.00 MIA 1.00 

 
SAN 1.00 SAN 1.00 SAN 1.00 SAN 1.00 MDW 1.00 SEA 0.77 

 
PDX 1.00 PDX 1.00 PDX 1.00 HNL 1.00 DCA 1.00 

   
OAK 1.00 OAK 1.00 SJC 1.00 PDX 1.00 IAD 1.00 

   
SJC 1.00 SJC 1.00 OGG 1.00 OAK 1.00 SAN 1.00 

   
SMF 1.00 SMF 1.00 KOA 1.00 SJC 1.00 DAL 1.00 

   
OGG 1.00 OGG 1.00 LIH 1.00 OGG 1.00 HOU 1.00 

   
GUM 1.00 GUM 1.00 ITO 1.00 KOA 1.00 OAK 1.00 

   
KOA 1.00 KOA 1.00 ABE 1.00 LIH 1.00 SNA 1.00 

   
LIH 1.00 LIH 1.00 LAN 1.00 ITO 1.00 SJC 1.00 

   
ITO 1.00 ITO 1.00 SCE 1.00 

  
ONT 1.00 

   

    
LAW 1.00 

  
BUR 1.00 

   

    
ROW 1.00 

  
LGB 1.00 

   

        
HPN 1.00 

   

        
TTN 1.00 

   

        
ILG 1.00 

   

        
CLD 1.00 
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