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Abstract. An innovative 2D axisymmetric fluid-structure interaction model of wire drawing is de-
veloped to numerically investigate the interaction between the thin lubricant film and the plastically
deforming steel wire. The deformation of the wire is obtained from the linear momentum balance
and the lubricant film has been calculated by the Navier-Stokes equations. Moreover, the coupling
between wire and lubricant is performed by the IQN-ILS technique and a no-slip condition is im-
posed on the sliding fluid-structure interaction interface. In order to reduce the computational cost,
a layering technique is implemented in the axially moving structure domain. This results on the one
hand in monitoring the stresses and displacements of the structure and on the other hand in an obser-
vation of the hydrodynamic pressure build-up and wall shear stresses in the lubricant. Additionally,
the evolution of the fluid film thickness is presented.

1 INTRODUCTION

Dry wire drawing is a cold work hardening process employed to progressively reduce the cross-
section of a wire by pulling it through a series of dies. The use of a sodium or calcium-based soap
lubricant in dry wire drawing is essential to reduce the drawing forces and the corresponding power.
Moreover, the thin lubricant film separates the surfaces of the wire and the die, which enlarges the
service life of the die.

Optimization of a metal forming process, such as wire drawing, often involves a costly and time-
consuming trial-and-error based experimental methodology. However, by using a numerical model
of the metal forming process, the number of experiments can be reduced. When modeling the dry
wire drawing process the elastoplastic deformation of the metal wire needs to be considered, while
the die is approximated as a rigid body [1, 2]. The thin lubricant film is typically determined using
the Reynolds equation [1], which has been generalized to incorporate variable density and viscosity.
Moreover, this equation is able to adequately capture the mechanics of a piezo-viscous lubricant if
τα > 1 [3]. However, in a wire drawing process, this condition is not satisfied as the shear stress τ can
exceed values of 108Pa, whereas 10−8Pa−1 is a conservative value of pressure-viscosity coefficient
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α. Hence the Navier-Stokes equations are used to more accurately capture the piezo-viscous behavior
of the soap in the future [3, 4]. However, in this ongoing study a high constant value of the viscosity
is assumed to avoid die-wire contact during the simulation. The piezo-viscous and shear-thinning
behavior of the lubricant as well as the temperature effects will be implemented and investigated in a
later phase.

A first attempt to simulate the dry wire drawing process with strongly coupled partitioned fluid-
structure interaction (FSI) and sliding interface was presented in [4]. The lubricant film was calculated
by the Navier-Stokes equations and the wire deformation was obtained from the linear momentum
balance [6]. To restrict a high computational cost of the simulation, the length of the wire was limited
in this attempt. Consequently, it prevented this model from achieving steady-state results. Moreover
a constant velocity was imposed at the interface of the lubricant contacting the wire, which ignores
the reduction in cross-section.

To achieve a steady-state result and a decrease in computational cost, current work presents the im-
plementation of a layering technique on the axially moving structure [7]. Furthermore, the imple-
mentation of a no-slip condition on the sliding interface is outlined by coupling the axial velocity of
the wire with that of the lubricant [8]. Combining the layering technique with the no-slip condition
initially caused oscillations of the radial displacement of the moving structure and consequently of
the velocity along the wire, which prevented convergence of the FSI method. The origin of these
oscillations is discussed and a solution is provided.

2 METHODOLOGY

This section presents the geometry, boundary conditions and settings of the wire drawing case,
including a brief description of the implementation of the layering technique on the structural side.
Additionally, the applied FSI, fluid and structure solver are outlined. Moreover, the FSI subsection
discusses the implementation of the no-slip condition on the interface of this model.

2.1 Geometry, boundary conditions and settings

During a dry wire drawing process the metal wire passes through a stationary reservoir for soap
granules, from which soap is entrained and squeezed between the moving wire and the stationary
die (Figure 1). In the presented axisymmetric model, the stationary soap reservoir is not taken into
account and the lubricant is approximated as a fluid from the onset. Atmospheric pressure is imposed
at the inlet and outlet of the lubricant domain. Figure 1 illustrates the starting position of the wire
drawing simulation. It consists of an originally undeformed wire, which passes through a die with an
initially enlarged diameter. As shown in Figure 1 the space between the wire and the die is represented
by the lubricant having a predefined film thickness. During the simulation, the die diameter decreases
gradually until it reaches its real diameter, while the wire passes through the die and deforms until
a new wire radius is reached. Figure 2 represents a steady-state model, with correct die diameter.
Consequently, the die is approximated as a body with prescribed deformation, while the elastoplastic
deformation of the wire is calculated.

In comparison with [4], the wire is significantly shorter, due to the used layering technique for the
structure. The deformations are thus only calculated in the area of interest, ensuring a lower compu-
tational cost. As presented in Figure 2, this layering technique involves the removal of the deformed
layer of cells on the right side of the structural domain, whereas a new layer of cells is added to the
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Figure 1: Axisymmetric wire-die configuration at initial condition, close up is 5 times scaled in radial direction

undeformed wire on the left side of the structural domain.

A constant axial drawing velocity of 1 m/s is applied on the right end of the wire. The axial velocity
of the lubricant is coupled with the axial top surface velocity of the wire (Figure 1), which preserves
the no-slip condition between the wire and the boundary of the lubricant contacting the wire. Further-
more, a back force of 100 N is applied.

Table 1: Mechanical properties of the wire

Young’s modulus E 177GPa
Density ρ 7833 kg/m³
Poisson coefficient υ 0.3
Initial yield stress σy 1.25GPa
Hardening coefficient 0.3

The mechanical properties of the wire are specified in Table 1. Following [4], the wire diameter is
1.5 mm and the die angle is 6°. Additionally, a constant lubricant viscosity of 350 Pas is applied.
Table 2 gives the settings concerning the numerical calculations. The case is solved for time t = [0s,
0.051s]. During the first 20 time steps the die has the artificially enlarged diameter to avoid numerical

Table 2: Numerical settings

Number of cells wire 1952
Number of cells lubricant 500
Number of faces wire on FSI interface 76
Number of faces lubricant on FSI interface 100
Absolute tolerance FSI coupling 0.005 µm
Time step (∆t) 0.00005 s
Total number of time steps 1015
Time steps before shrinking die diameter 20
Time steps during shrinking die diameter 900
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Figure 2: Axisymmetric wire-die configuration at steady state, close up is 5 times scaled in radial direction

instabilities, caused by the acceleration of the wire from 0 to 1 m/s. After these 20 time steps the die
diameter starts to shrink each time step until reaching the actual die diameter at time step 920, where
a maximum cross-section reduction of 9% of the wire is achieved.

2.2 Solvers

Following [4], a cell-centered finite volume discretization using pimpleFoam [5] has been adopted
to model the fluid. A Lagrangian solver in OpenFOAM-extend executes the structural calculations
[6]. The in-house FSI coupling code CoCoNuT performs the coupling of the flow solver and structural
solver by using the quasi-Newton IQN-ILS technique [8, 9].

2.2.1 FSI solver

In general, an FSI problem exists of a structural domain Ωs and a fluid domain Ω f . The boundaries
of both domains are indicated as Γs and Γ f , respectively. Figure 1 and 2 present the FSI interface of
the model, which is the intersection of the structure and fluid boundaries and is denoted as Γi = Γs

⋂
Γ f . In order to obtain an FSI solution, the kinematic and the dynamic condition have to be fulfilled
[9]. The kinematic condition is defined as

v⃗ f =
Du⃗s

Dt
(1)

for all points on the interface, with the fluid velocity v⃗ f and the structural displacement given by u⃗s.
Furthermore, the dynamic condition is the equality of the traction at the interface, but opposite in sign

σ f · n⃗ f =−σs · n⃗s, (2)

with σ is the stress tensor and n⃗ is the unit normal vector pointed outwards from the domain. The flow
and structure solver are briefly written by F(x) and S(y), respectively. The displacements of the grid
points on the interface are represented by x, while y gives the loads on the fluid-structure interface.
The output of a solver is denoted with a tilde.

ỹk+1 = F(xk+1) (3)
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x̃k+1 = S(yk+1) (4)

The coupling iteration is represented by k+1. To obtain sufficient quality of the FSI interface, map-
ping is required. The mapping blocks MFS and MSF execute the required transfer of data from the
fluid domain to the structure domain and the other way around, respectively. The mapping blocks
contain a bidirectional linear interpolation between the structural and fluid grid. Algorithm 1 presents
the solution procedure of modeling wire drawing with FSI.

Algorithm 1 Solution procedure FSI calculation wire drawing
1: for all time steps do
2: k = 0
3: ỹ0 = F(x0)
4: y0 = MFS(ỹ0)
5: x̃0 = S(y0) ▷ See algorithm 2
6: r0 = x̃0 − x0
7: while ∥rk∥2 > εx do
8: xk+1 = xk +∆xIQN

k
9: ỹk+1 = F(xk+1)

10: yk+1 = MFS(ỹk+1)
11: x̃k+1 = S(yk+1) ▷ See algorithm 2
12: rk+1 = MSF(x̃k+1)− xk+1
13: k++
14: end while
15: Update yield stress structure ▷ [6]
16: Update mesh structure ▷ [6]
17: end for

Line 8 in Algorithm 1 states that the quasi-Newton IQN-ILS is used as FSI-solver. Furthermore,
the residual r of the FSI-loop is calculated as

rk+1 = x̃k+1 − xk+1 (5)

Convergence is reached when ∥r∥2 ≤ εx, with εx the absolute convergence tolerance, which is equiv-
alent to an accuracy of 0.005 µm on the radial displacement of the wire (Table 2).

During the simulation, the lubricant domain Ω f stays fixed in axial direction, while the wire domain
Ωs moves along the axis (Figure 1 and 2). This creates a large translation of the structural mesh with
respect to the fluid grid in axial direction. Consequently, a sliding FSI interface approach is applied
[4]. This means only the grid velocity normal to the interface has to be the same on both sides of the
interfaces [8]. However, to capture the physics of this case a no-slip condition has been implemented
on the sliding interface, which means the normal and the tangential material velocity have to be iden-
tical in the lubricant and wire at the interface. The implementation of the no-slip condition consists of
a transfer of the wire’s axial velocity to the fluid boundary contacting the wire. As the axial velocity is
5 orders of magnitude higher than the radial displacement of the wire, it will influence the calculation
of the residual significantly. To limit this effect, the axial velocity of the wire has to be divided by
105 before transferring the data to the fluid side. Obviously, before imposing the axial velocity on the
lubricant boundary contacting the structure, the axial velocity has to be multiplied by 105.

5



Mathieu Vervaecke, Dieter Fauconnier and Joris Degroote

2.2.2 CFD

During the simulations the mesh of the fluid film will deform and hence the Arbitrary-Euler-
Lagrange (ALE) formulation is used. The conservation of mass and the momentum equations are
given by

∂

∂t

∫
V f

ρ f dVf +
∮

S f

ρ f (v⃗ f − v⃗ f g) · n⃗ f dS f = 0 (6)

∂

∂t

∫
V f

ρ f v⃗ f dVf +
∮

S f

(ρ f v⃗ f ⊗ (v⃗ f − v⃗ f g)) · n⃗ f dS f =
∮

S f

σ f · n⃗ f dS f (7)

where Vf is the volume and S f the surface of the cell. The flow velocity is represented by v⃗ f , v⃗ f g is
the grid velocity, ρ f the fluid density and t the time.

A detailed description of the applied discretization schemes of the fluid solver is presented in [4].

To couple the axial velocity of the wire and the fluid boundary contacting the wire, a new boundary
condition has been developed in the fluid software. It imposes the axial velocity of the wire on the
correct position of the fluid boundary contacting the moving structure.

2.2.3 CSM

Originally, the structural solver was created for simulation of metal forming processes without
fluid interaction [6]. During the wire drawing process, work hardening occurs. Consequently, to
calculate a correct true stress, the yield stress and the mesh deformation have to be updated each
time step. During an FSI calculation, the yield stress field and structural mesh are updated after the
coupling iteration have reached the convergence criterion (Algorithm 1, line 18 and 19). A complete
explanation of the discretization schemes of the structural solver is presented in [4, 6]. Algorithm 2
presents the structural solver solution procedure for each coupling iteration. The residual rs of the
structural solver is calculated by

rs =
∥∆u⃗s

e −∆u⃗s
e−1∥∞

∥∆u⃗s
e∥∞

(8)

where e and e−1 are the current and previous structural solver iterations, respectively. Convergence
is reached when rs ≤ ζ. As the tolerance of the FSI calculation is equal to 0.005 µm, the convergence
criterion of the structural solver has to be more strict. Consequently, the convergence tolerance ζ is
set to 0.0001 µm.

Algorithm 2 Solution procedure structural solver
1: for each FSI-coupling iteration do
2: while ζ is not reached do
3: Momentum equation: assemble and solve in terms of ∆u⃗s [6]
4: Calculate kinematics and stress [6]
5: Calculate rs
6: end while
7: Update density and equivalent Cauchy stress
8: Interpolate cell-centre displacements to the vertices
9: end for
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2.3 Oscillating behavior caused by coupling the axial velocity

Considering the wire drawing model presented in Figure 2, the structural continuity equation at
steady-state is given by

ρ1r2
1⃗v1 = ρ2r2

2⃗v2 (9)

where ρ represent the wire density, v⃗ the speed of the wire and r the radius of the wire. The left side of
Equation 9 is represented by the values of position 1 in Figure 2, while position 2 of Figure 2 displays
the values of the right side of Equation 9. According to Table 1 and Figure 2, ρ1, v⃗2 and r1 have
constant values during the simulation. As deformation of the metal structure occurs during the wire
drawing process, v⃗1 ̸= v⃗2 (Equation 9). Rearranging the terms of Equation 9 with velocity v⃗1, which
represents the wire speed before deformation, to be solved in the left term results in

v⃗1 =
ρ2

ρ1

r2
2

r2
1

v⃗2 (10)

According to Equation 10 the inlet velocity v⃗1 depends on the ratio between the densities and the
square of the radii multiplied by v⃗2. Moreover, Figure 3 outlines the radial displacement of two con-
secutive time steps n and n+ 1, exposed to a constant pressure distribution. It illustrates that few
data points across the width of the lubrication pressure peak are available to impose the load on the
moving wire mesh. Consequently, small undesirable differences in radial direction and density occur
between two consecutive time steps. This influences the velocity v⃗1 (Equation 10) and causes small
oscillations of the velocity profile at the inlet of the wire during the simulation (Figure 2). Addition-
ally, these oscillations are detrimental for the convergence of the FSI algorithm.

DU (t)
y

Pressure distribution

time step n+1

DU (t + t)y time step n

Pressure(Pa)

Axial position (m)

Figure 3: Radial displacement of consecutive time steps subject to a constant load in a discretized system

The most obvious solution is to refine the mesh. However, the computational cost increases signif-
icantly by this approach. Moreover, the amplitude of the oscillations is reduced, but they do not
disappear. The chosen solution is adding a layer of cells at the left side of the structural domain each
time step. This means the location of the cell in current time step is the same as the position of the
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preceding cell in previous time step of the axially moving structure. Consequently, each cell experi-
ences an identical load as the preceding cells on that position (Figure 3). This gives an identical radial
displacement and density for each time step, which stabilizes the velocity v⃗1 (Equation 10). More-
over, the oscillating behavior of the radial displacement disappears and a converged FSI solution can
be achieved.

3 RESULTS

The results section first describes the physical effect of the no-slip condition of the model com-
pared with the slip behavior at the steady-state condition. Additionally, the numerical performance
is outlined. Figure 4 presents the speed at the top surface of the wire and the velocity imposed on
the boundary of the lubricant contacting the wire. It demonstrates a different velocity profile of the
lubricant between the slip and no-slip condition. As the slip condition imposes a constant velocity
of 1 m/s on the lubricant boundary contacting the wire, a difference is noticed between the structural
velocity and the corresponding lubricant speed. As opposed to slip, the no-slip condition presents a
perfect fit of the wire velocity and the lubricant velocity. Moreover, the conservation of mass effect
on the wire velocity, as stated in Equation 10, is clearly illustrated in Figure 4. It demonstrates the
acceleration of the wire speed during the deformation of the wire.

Figure 4: Velocity profile of the wire and corresponding speed imposed on the lubricant boundary contacting the wire,
slip vs. no-slip

Another important consequence of applying no-slip is the resulting drawing force of the model at
steady-state. The model calculates a force of 201 N when slip is applied, while 220 N is achieved
after the implementation of no-slip. This presents a significant difference of 8% and indicates the
importance of applying no-slip. Consequently, only the results obtained by the no-slip condition will
be discussed in the remainder of this section.

Figure 5 presents the equivalent Cauchy stress evolution at the top surface of the wire and the cor-
responding yield stress during the steady wire drawing modeling. The equivalent Cauchy stress is
basically a scalar quantity representing the magnitude of stress. Additionally, Figure 5 illustrates the
plastic deformation of the wire, while it is pulled through the die. The steep increase of the equivalent
Cauchy stress is limited by the yield stress, which is the point where the wire starts to deform plas-
tically. Moreover, the yield stress and equivalent Cauchy stress increase slightly and work hardening
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on the wire occurs. When the wire leaves the die, the equivalent Cauchy stress relaxes and the yield
stress stays constant.

Figure 5: Equivalent Cauchy stress and yield stress of structure

Figure 6 demonstrates the radial displacement of the wire and the lubricant film thickness after reach-
ing steady-state. The highest radial displacement is situated just before the narrow gap between wire
and die. When the wire leaves the die, the wire is exposed to a limited elastic recovery as expected.
Consequently, the minimum film thickness is situated at the outlet of the die.

Figure 6: Radial displacement wire and lubricant film thickness

Figure 7 illustrates the pressure and shear-rate distribution of the lubricant on the interface at steady-
state. The pressure distribution demonstrates a similar shape as the expected pressure distribution
under a tapered land bearing [11]. The highest value is situated before the narrow gap. Furthermore,
the minimum value of the shear stress distribution is situated nearby the pressure peak. The shear
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stress increases significantly at the narrow gap and stays constant until the right end of the die.

Figure 7: Pressure and shear stress distribution lubricant

Figure 8 displays the residuals of 6 time steps after reaching the steady-state condition. Each blue dot
represents an FSI coupling iteration, with the calculated residual. For each time step, the FSI toler-
ance of 0.005 µm has been reached. The average number of FSI iterations per time step at steady-state
is 4.5, which indicates a good performance of the IQN-ILS solver [9]. Moreover, 97.9% of the time is
reserved for the structural calculation, while the fluid solver was 1.8% active and the FSI solver needs
0.3% calculation time.

Figure 8: Residuals at steady-state
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4 CONCLUSION

This paper presents a 2D axisymmetric FSI simulation of the dry wire drawing process with a
no-slip condition on the sliding interface. Additionally, the implementation of the layering technique
provides a reduction of the computational cost. However, combining layering and no-slip initially
causes an oscillating behavior in the tangential velocity component at the interface, which is detri-
mental for the convergence of the FSI algorithm. To avoid these oscillations, a layer of cells is added
each time step at the inlet of the structural domain. Additionally, the drawing force differs 8% com-
pared with the slip condition at a maximum wire cross-section reduction of 9%. Consequently, the
physical application of no-slip better predicts the energy consumption and the behavior of the draw-
ing parameters. Furthermore, this case shows a converged solution with a good performance of the
IQN-ILS solver. Remarkable is the large time consumption of the structural solver with respect to
that of the fluid and FSI solvers, which requires further investigation.

The logical next step is focussed on the introduction of the piezo-viscous, thermal and shear thinning
model of the lubricant.
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tion using a partitioned semi-implicit predictor-corrector coupling scheme for the application of
large-eddy simulation, J. Fluids Struct. (2011), 29: 107-130.

[11] van Beek, A., Advanced Engineering Design, Lifetime performance and reliability, TU Delft,
ISBN-10: 90-810406-1-8

12


