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Summary

In this paper we describe several finite element methods for solving
the diffusion-convection-reaction equation. None of them is new,
although the presentation is non-standard in an effort to empha-
size the similarities and differences between them. In particular,
it is shown that the classical SUPG method is very similar to an
explicit version of the Characteristic-Galerkin method, whereas the
Taylor-Galerkin method has a stabilization effect similar to a sub-
grid scale model, which is in turn related to the introduction of
bubble functions.

1 Introduction

The objective of this paper is to compare several finite element methods for solving the
linear diffusion-convection-reaction equation from the point of view of the formulation of
the methods, describing the motivations that lead to them. Some of these methods have
the transient problem as starting point, whereas the others are developed by considering
first the stationary equations. Although none of them takes into account whether there is
a reaction term in the equations or not, this will lead to an important difference between
the methods, as we shall see. This ‘reaction’ term will be simply a term proportional to
the unknown, thus having in fact the physical meaning of absorption for scalar equations.

The methods that will be described and the acronyms that will be used to refer to
them are the following:

SUPG: Streamline-upwind /Petrov-Galerkin method [1].
ST-GLS: Space-time Galerkin/least-squares method {2].
SGS: Subgrid scale method [3-5].

CG: Characteristic Galerkin method [6-9].

TG: Taylor-Galerkin method {10].

Essentially, all these methods consist in the addition of a stabilizing term to the original



Although most of the methods to be described in this paper start from the scalar
equation (1), we will be also interested in its vector counterpart, that we write as

ou ¢ g ou .
‘5{4‘%(1‘11[])—6—%(1{335“5) +8SU=F in 2, te (0,7, (4)
where now U and F are vectors of nyq, unknowns and A;, K;; and S are ngy, X nyyi
matrices (z,5 = 1,...,ngq). The usual summation convention is implied in Eq. (4).

To simplify the discussion, we assume that the diffusion matrices K;; verify K;; = K jti
and the bilinear form X;K;;Y}, with X; and Y; vectors of ny,, components, is positive
definite. Matrices A; and S are not necessarily symmetric, but it is assumed that there is a
matrix T associated to a linear change of variables such that fii =TA;T"! are symmetric

and if § = TST ! then %—‘%" +8+8tis positive semi-definite. As in the scalar case, we

consider only homogeneous Dirichlet conditions. Under all these conditions, the problein
is well posed.

It will be useful in what follows to introduce the following notation:

: 0
ﬁconv,c(U) = 3—31:% (A,;U), | (5)
0 ou
Lys(U) = oz (Kijb?J +5U, | (6)
L(U) = Leonv,e(U) + Lgs(U). (7)
Equation (4) can now be written as

oU

¥ + L(U)="F. (8)

Instead of writing Eq. (4) in the conservative or divergence form, we will be also
interested in what we call the non conservative version, in which the convective operator
Leony,c(U) is replaced by

ou
L U)=A,—. 9
conv,nc( ) i Bz; (9)

For the linear equation that we consider, both operators in Eqgs. (5) and (9) give the same
equation if using the latter matrix 8 is redefined as

0A;
Oz;

However, in the applications the expressions (5) or (9) for the convective term come from
different forms of the differential equations to be solved (in other words, matrices A;
in (5) and (9) are different). These may be equivalent at the differential level (i.e., for
smooth solutions), but in the case of nonlinear problems they may have different weak
solutions, a point of special relevance when the numerical solution of these equations is
considered. The importance of using the conservative form of the equations is well known
in the literature (see e.g. Ref. [11]). We shall comment on the conservation properties of
the different schemes to be considered. Unless otherwise stated, we shall always consider
that the equation is written using the conservative operator (5). Nevertheless, the operator
in Eq. (9) will be useful for presenting the different methods.

S S+ (10)
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"(Un Vi) = 3 f PE(V3) 'r°RE(U},) dO2 (17)

where T is a nyny X 1y matrix of algorithmic parameters with dimensions of time, P(V},)
is a certain operator applied to the test function and R(Uy,) is a residual of the differential
equation to be solved. All these terms will be specified later on for each particular method.
The superscript e in Eq. (17) has been used to indicate that the terms are evaluated
elementwise (when space-time finite elements are used, these elements have to be considered
also in the space-time domain). This superscript will be omitted in the description of the
different methods. We shall write also

gl

/ﬂf Z/e (18)

2.4 Conservation properties

Let us consider the case in which F' = 0 (and thus {(V) = 0) and § = 0. Suppose also

that no boundary conditions are prescribed on Q. If we define the advective and diffusive
fluxes of the unknown U as

Y= A, RO - —Kij%, (19)
J

the bilinear form that should appear in Eq. (12) is

0

(U, V) = / Vta

FAdv 4o — ] - Fd*ff an + f Vi FEE A, (20)
i

where n; is the i-th component of the external unit normal n. If we take V constant in €
and use the divergence theorem for the first integral in Eq. (20), this reduces to

WU, V)=V fa o i (FPY + FAT) ar, (21)

and the integral statement of Eq. (4) reads now

v ot an

fﬂ U] n (FpYY + FAE) df‘] =0, (22)

for all constant vectors V. This implies that the bracketed term must be zero, which is a
global conservation statement for the unknown U, its fluxes being Fad" and F‘hff

Obviously, the discrete problem will inherit this property pr0v1ded that the 'stabihzmg
term defined in Eq. (17) verifies

r(Up, Vi) = 0, (23)



The stabilizing term introduced by the SUPG method has the form given by Eq. (17).
where now P(vp,) is the non conservation form of the convective operator applied to the
test function and R(uy) is the residual of Eq. (26}, that is,

PSUPG('Uh) = [fconv nc('Uh,) =a- V'Uh: (283')
Rsupa(up) = At by £( n+9) f
= A;th + V- (aun"HSJ kVu”"'g) + sug"'e - f. (28b)

The SUPG method is consistent, in the sense that the stabilizing term given by Eq. (17)
with R(uy,) defined in Eq. (28b) is zero if up, is the solution of the continuous (in space)
equation (26).

It remains to define the algorithmic parameter 7, which is often called ‘intrinsic time’.
The way in which it was originally computed goes back to the original idea of the SUPG
method, that is, to add numerical diffusion. For that, let us consider the simple one-
dimensional model equation:

with u(0) and u(1) given. If the partition of [0, 1] is uniform, 4 being the element size, and

linear elements are employed, it can be shown that the numerical solution is nodally exact
if

ah
= — 30
r=2t (30)
where 1 B
a
a(Pe) = coth(Pe) — P’ Pe := 2% (31)

In Eq. (31), Pe is the so called (cell) Péclet number and ¢ is the upwind function (a
different expression for « is obtained when quadratic elements are used [16]).

In the general case, the strategy usually adopted is to compute 7 in Eq. (17) using the
straightforward extension from the 1D case, perhaps with slight ‘ad hoc’ modifications to
improve the accuracy in time [1]. More recently, other ways of computing 7 have been
proposed on the basis of the convergence analysis of the method, although this has been
done mainly for the method to be described in the next section.

The extension of the SUPG method to the vector equation (4) is obvious, except for

the definition of T, that now is a matrix of algorithmic parameters. The expressions of P
and R are

oV
’PSUPG(Vh) = Econv,nc(vh) = iamff',
AU
Rsupa(Un) = — 1 + LURH) - F (32)
AU 3 9 U+t
_ 2% ntfy _ 9 | g OY n+o _
At 3 (A U ) dx; (K%J 6:Uj U




4 The space-time Galerkin/least-squares method

In the previous section we have described the SUPG method as a finite element formu-
lation to discretize in space a partial differential equation, assuming that the temporal
discretization has been already carried out. In particular, we have considered that this
discretization has been done using the generalized trapezoidal rule.

Although the approach described above is very common in practical computations,
Johnson et al. proposed to use the SUPG method together with a finite element dis-
cretization also in space [18], based on the use of the discontinuous Galerkin method in
time introduced by Lesaint & Raviart for the space discretization of transport equations
[19]. The idea behind this was to be able to treat the temporal derivative like the first
spatial derivatives.

On the other hand, Hughes et al. found [20] that if in the classical Stokes problem for
an incompressible fluid the pressure gradient is viewed as a ‘convective term’ and a SUPG-
like strategy is employed for it, it is possible to avoid the need for using different finite
element interpolations for the velocity and the pressure satisfying the so called Babugka-
Brezzi stability condition (see, e.g., Ref. [21]), which is needed if the standard Galerkin
approach is employed. The method proposed first was based on perturbing the original
velocity test function of the Galerkin method with a term proportional to the gradient of
the pressure test function. The next step was to consider all the Stokes operator applied
to the test functions as perturbing term [22, 23]. Going back to the convection-diffusion
equation, this idea led to the so called Galerkin/least-squares (GLS) method [2], which
is naturally used together with the space-time approach described earlier [24]. In what
follows, we consider this space-time method as the natural extension of the GLS method for
the steady-state problem, and we refer to them as the space-time Galerkin/least-squares
(ST-GLS) formulation.

Betfore writing down the equations for the ST-GLS method, let us apply the discontinu-
ous Galerkin (DG) method to Eq. (1). To simplify the notation, we consider first the scalar
equation, although the following ideas can be directly applied to systems of equations.

Let " = nAt and I™ = [¢",¢"1]. The idea of the DG method is to discretize an
integral form of the problem to be solved in the space time slab Q* = § x I, enforcing
weakly the continuity of the unknown function at time #*. Both this unknown function
and the test functions are allowed to be discontinuous between different space time slabs.
Moreover, these can be discretized using completely independent finite element partitions.
The simplest way to construct the element domains is to discretize Q) and to take the
elements of Q™ of the form Qf x I™, where Q€ is an element of the partition of £2. However,
there is no need at all to consider elements prismatic in time.

Let us denote by v} the upper limit as ¢ — ™ of a function v of time and by v™ the
lower limit. The weak form of Eq. (1) in the space time slab Q™ enforcing weakly the
continuity condition u%} = u” for the finite element approximation up, leads to

ar
+ [ oh (o — ) dQ:anvhf dQdt.

d
/ . [v Yh vV - (aup) + kVop, - Vuy, + svhuh] dQdt
(37)

This equation must hold for all the test functions vy, defined in the time slab Q™. If we use
the definition of the bilinear form a given in Eq. (14) (now for the scalar case), Eq. (37)



6’V
Psrcrs{Vh) = — + E(V )
avy
- 3;?1 5y (AiVR) - 38 (1{,,J o h) + SV,
8U (42)
Rer-aus(Up) = 5t +£(Uh)
_au, | 9 aU,
-7 +8—%(A1Uh) i (KEJ . ) + 8U, -~

Remarks

1.

2'

3.

Observe that the ST-GLS method does not satisfy condition (24) unless 84;/0z; = 0
and therefore the global conservation property (22) will not hold in general.

For comparison purposes, it is interesting to obtain the equations for the ST-GLS
method in the particular case of constant-in-time interpolation. In this case, let us
write

(43)

and similarly for the test functions, for which we omit the superscript since they will be
the same for all time intervals. The discontinuous Galerkin method given by Eq. (38)
now reduces to

At alup, vp) + (v2,+,u21+ — u?;’w) = In(vh,f)dt. (44)

The left-hand side of this equation may be written as
f onf dQdt = At f " (~1— f f dt) d (45)

Qr 0 At S

If we consider f time dependent and continuous in time, in Eq. (27) we have that

I(vp) = fﬂ u S0 d, (46)

from where it is seen that Eq. (44) is the same as Eq. (27) for § = 1 but taking an
average of f in the time interval I™ instead of the value at time ¢**1,

Again in the case of constant-in-time interpolation, the terms P and R given in Eq. (39)
now reduce to

Psr-ars(vp) =
Rsr-cLs (uh) =

L{vp),
L{up) —
Since the time derivative of u;, does not appear in R, the ST-GLS method will not

modify the mass matrix resulting from the DG method given by BEq. (44). This is
an important difference between this method and the SUPG method as presented in

(47a)
(47Db)

11



convergence analysis of the method with P given in Eq. (51) and V - a = 0 can be found
in Ref. [28].

The 5GS methods presented in Refs. [3, 4] are a generalization of the above stabiliza-
tion procedure, which, as we shall see, can be recovered as a particular case. Also particular
cases are the stabilization methods based on the introduction of bubble functions to the
finite element space. They first attracted interest since it was recognized that the GLS
method for the Stokes problem using linear elements is equivalent (up to the choice of the
algorithmic parameters) to the use of the Galerkin method with linear elements enriched
with bubble functions {29, 30], which are known to be stable [31]. This connection was later
on exploited by several authors (see, e.g., Ref. [32]), who proposed different stabilization
procedures based on the use of different bubble functions. However, these techniques are
related with the use of the term P given in Eq. (51), and not with the GLS method, as it
was pointed out in Ref. [5].

Let us describe now the idea of the SGS methods presented by Hughes in Refs. [3, 4.
Suppose that the unknown u is split as u = @ + v/, where @ is the part of u which can be
represented by the finite element mesh, whereas v’ accounts for the unresolvable scales of
u, that is, for the variations of u that can not be reproduced because of the mesh size. For
example, % may be defined as the component of u in the finite element space and ' its
component in the orthogonal complement (with respect to a certain inner product) in W.

The strong assumption of what follows is that we assume that u’ vanishes on the
boundaries of the elements, that is, u' = 0 on 9Q€ for e = 1, 2, .y Mol In this case, v/ is
the solution of the problem

L{u")

’U.’

F-L@ in Q°
0 on ON°,

(52)

which can be solved for + in terms of the resolvable scale @ and the Green’s function g for
the operator £, This leads to

W) = - [ 9(e,v) (@) ~ ) (@) 4% = M (L@) - §) ) (53)

where M is an integral operator and the integral is defined in Eq. (18).
Let us split also the test function v as v = ¥+ v/, The problem for the resolvable scale

i is
a{@, B) + a(u', ) = I(7). (54)
Since v/ is assumed to vanish on the boundaries of the elements, we have that

a(v,7) = (L(v), ) = (L*(5),v), (85)

where the integral in the L? product is again that defined in Eq. (18). Inserting the
expression for u' in Eq. (53) into Eq. (55) and using this in Eq. (54) we find that

a(i, 7) + (L(9), M (L(3) - ) = (7). (56)

Observe that up to this point we haven’t considered any numerical approximation, that is,
Eq. (56) is exact up to the assumption that u’ = 0 on 9QE.

13
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3333'
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(

ouy,
Kij—é:c—j

) - Sty

)‘i‘SUh—F

(63)

Matrix 7 can be defined again as in Eq. (62), now with g being a matrix.
This is the version of the SGS method that we consider in our comparisons, although
it is only a particular SGS model. Another possibility is described below.

Remark

If in the original equation (4) the conservative form of the convective term given by
Eq. (5) is replaced by the non conservative one in Eq. (9), the perturbation P for the
GLS and the SGS methods become

_ OV, L OV, 8 (. OV

From this we see that the GLS method satisfies the conservation property (24) when
the non conservation form of the equation is used, whereas the SGS is ‘consistent’, in
the sense that condition (24) is fulfilled when the equations are written in conservation
form and it is not when the non conservation form is used.

5.3 Approximation to M through bubble functions
In this case, instead of constructing M, p through an approximation to the Green’s function

g, we consider directly the finite element approximation to the unresolvable scales w'. The
continuous problem of which this function is solution is

a(i,v") + a(e, ') = 1(v), (65)
which is nothing but the variational formulation of problem (52).
The function «’ can now be approximated by using bubble functions as
Thub
(66)

o (@) M (@) = Y py(@)f, ),
j=1

where ny,p, is the number of bubble functions ¥ and “;;,j are the nodal values of uj,

Observe that this function satisfies the original assumption of being zero on the clement
boundaries.

i5



is understood that X depends also on ¢ and @ f through the initial condition (70h).
We have that

O Dt = (G5 0 70) ()

L=Lpeft=Lref

If we write the convective term in Eq. (1) as @ - Vu+ (V- a)u and use the redefinition (10)
(now for the scalar case), Eq. (1) may be rewritten as

Su(X(0),1) + Las(w)(X (1), ) = (X (1)), (72)

where we have stressed the fact that all the terms are evaluated at @ = X (#). The idea
now is to discretize the derivative d/dt using a finite difference scheme, that is, to discretize
the total derivative in Eq. (1) along the characteristics.

Suppose now that we have the solution at time " and we want to compute it at time
t"*1 using the generalized trapezoidal rule, as in section 3 for the SUPG method. Let Eref
be a reference time in [t*,t"*!]. The time discretization of Eq. (72) that we consider is:

0 [, 674 — (X (), )] + 6L () (X (E), £

(73)
+ (1= 0)Las(u)(X (™7™ = 0F(X () + (1 - 0) F(X (™)),

where ¢ € [0,1]. Once arrived at this equation there are two possibilities, yielding two
different versions of the CG method:

6.2 Interpolation of the unknown along the characteristics

This was the method proposed in Refs. {6, 7]. Suppose that 8 = 1 and that £ = t"t!,
and write simply = for @..f. Equation (73) in this case reduces to

o [, 74) = (X (), 0] + Las(uda, 1) = Fla). (74)

We may think of @, as the configuration at time "1, Therefore, the problem is how to
evaluate the term u(X (t"},t"). For this, it is necessary first to integrate the equation of
the characteristics in order to express X (¢") in terms of the current configuration. This
may be done by using either Egs. (75} or (77) below, depending on the order of accuracy
desired. In general, the result will not coincide with any node of the finite element mesh,

that is, X (") will lie within an element. This element must be identified and after this
the unknown u(X ("), ") must be interpolated.

6.3 Local expansion of the unknown along the characteristics

We derive now an explicit expression for u(X (%), ") and w(X (t"), ") using a Taylor
expansion in the neighborhood of @,¢¢. This will allow us to obtain a semi-discrete system
of equations where all the terms will be evaluated at the same point of the same spatial

domain, thus avoiding the need of finding X (") as described above. This idea can be
found in Refs. {8, 9].

17



Using Eq. (79) in the discretization of the temporal derivative in Eq. (73) (with # = 1/2)
and Eq. (80) to approximate the rest of the terms evaluated at = X (") and t = " we
finally obtain

1 At

~ [un+l _ un] + a2yt 4 £ds(un+1/2) —f- 70’71 LV [C(u") fl=0. (81)
Once this semidiscrete problem has been obtained, we may further approximate values

at the time level n + 1/2 by values at n, thus obtaining a fully explicit scheme. This

involves only an approximation of the temporal argument of the functions.

If last term in Eq. (81) is multiplied by a test function v and the result is integrated
by parts it is found that

—% Q’uan VI[LW™) —~ " dQ = %ffﬂv Aa™) [L(u™) — 7] AR, (82)
where we have made use of the fact that v = 0 on 8. For other boundary conditions
constant in time it can be also assumed that L{u") — f™ = 0 on 540,

If now the weak form of Eq. (81) is discretized, it is seen that the contribution due
to the use of the Characteristic Galerkin method with respect to the standard Galerkin
approach has the general form (17), with

PCG(vh) - "E:onv,nc(vh) =V (th), (83a)
Roc(up) = L(ug) — f, (83b)

where all the terms are evaluated at time step n. Observe that the integral of the RHS
of Eq. (82) has to be understood as the sum of the integrals over the element interiors for
the discrete problem, that is, in the sense of Eq. (18).

According to the previous derivation, the numerical parameter r in this case is At/2,
the same for all the elements. However, it is shown in Ref. [33] that if instead of taking
tref = t"T! we take tyop = ¥ 4 (1 — )", then 7 = yAt/2. The parameter - is
free: it represents the position on the characteristic at which the total time derivative is
discretized. This justifies the use of variable 7’s.

From the previous derivation of the CG method it is readily seen that there are other
schemes with the same accuracy. Our motivation has been to express as many terms as
possible evaluated at time step n, although some terms could be equally evaluated at time
step n 4 1, leading to implicit versions of the CG method.

Once the final equations discretized in time have been obtained, it is possible to change
the time step at which some terms are evaluated. This will modify the accuracy of the

scheme (and perhaps also its stability), but only in the time variable, not along the char-
acteristics.

Remarks

1. It is interesting to note that if the fully explicit version of the CG method is considered
and linear finite elements are used, the critical time step above which the scheme
becomes unstable turns out to give a value of At /2 very close to the intrinsic time of
the SUPG method given in Eqs. (30) and (31) (see Ref. [34]). Also, if a is divergence
free it is seen from Eqgs. (28a) and (83a) that Peg(vy) = Psupc{vp)

19



matrices A; in Eq. (4) must be replaced by A; = TA; 771, and diag(A;) # Tdiag(A;)T ™"
(except, of course, if A; = a;I, where I is the nyp X nyy, identity matrix).

Concerning matrix 7, in principle it is simply 71, with 7 = At/2. However, as it was
mentioned for the scalar case, the use of variable 7’s is justified. Moreover, one can also
think of using different 7’s for the different equations, thus leading to an expression of 7
similar to that given by Eq. (35). This approach is very common in practice and often
justified by the use of local time stepping techniques when the transient evolution is not
important [34].

7 The Taylor Galerkin method

‘The Taylor Galerkin method was first introduced by Donea in Ref. [10] as the finite element
counterpart of the Lax-Wendroff scheme for finite difference methods. Here we derive a
general version of the explicit form of this formulation for Eq. (8). There are also implicit
versions of this method, although they have to be motivated using other reasoning.

Let us consider the following Taylor expansion of the unknown U at time step n:

sur 192"
n+l _ g 4 Y
v =U"+ En At + = 292

where 0 < # < 1. For the moment, let us take § = 0 (see remark 3 below). If U satisfies
Eq. (8) then

At? + O(AEY), (87)

Fn
UM = Ut 4+ [F" — L(U™)) At + > [% ; % (LN A2 +O(ALY).  (88)
As before, we assume that F is time independent. Otherwise, the term 8F /Ot should be
kept in what follows. If the solution U of Eq. (8) is sufficiently smooth and the coefficient

matrices A;, K;; and § are time independent, we have that

%(E(U))ﬂc(aalj) L(F - L(U)). (89)

Using this in Eq. (88) and neglecting the term O(A#?) we find the following time discretiza-
tion of Eq. (8):

9.M1T;Qﬁ _ P LU - ﬁz:(F Ly, (90)

If this equation is now multiplied by a test function V and integrated over {2 the last term
in the RHS of Eq. (90) leads to

At 5 Ve - cw) _ At 5 E - L) a. (91)

From this we see that when the weak form of Eq. (90) is discretized the contribution due

to the use of the TG method with respect to the standard Galerkin approach has again
the general form (17), now with
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8 On the discrete maximum principle for scalar equations

8.1 Background

In this section we shall consider the steady version of the scalar equation (1). To simplify
further the discussion we take all the coefficients of the equation constant. Thus, the
problem we consider is to find u such that

—kViu-ta-Vu+tsu=f inf, (94a)
u=20 on 9. (94b)

For the continuous problem (94) it is well known that the maximum principle holds,
that is, the solution attains its maximum at the boundary when f is non-positive. The
boundary condition (94b) can be generalized to u = uy, with the given function 4 non-
negative. The question is whether this property is inherited by the discrete problem or
not. :

For problem (94) the SUPG and the CG methods in one hand and the SGS and the
- TG methods in the other coincide, except in the definition of the algorithmic parameter 7.
This is why we shall only compare the SUPG, the GLS and the SGS methods here. The
study of the discrete maximum principle (DMP) will show an important difference in the
behavior of these three methods.

Let n¢p be the total number of nodes of the finite element mesh and ng, the number
of interior nodes. The finite element discretization of the problem will lead to an algebraic
system of the form

Ag =b, (95)

where & stands for the vector containing the nodal unknowns z;, i =1, ..., ntp. Lhe values
Zi, © = ngp+1, ..., ngp are known from the Dirichlet boundary conditions. Matrix A, whose
components wﬂl be denoted a;;, will have dimensions nfy X ngp and the vector b coming
from the source term will have components b;, i =1,. o Pp-
As shown in Ref. {35] for linear elements, the satlsfaction of the DMP, viz.,
max {z;} =zm, with ngp + 1 < m < ngp, {(96)
i=1,...ntp

leads to uniform convergence of the finite element solution. Therefore, no spurious oscil-
lations will appear, not even in the vicinity of sharp layers. On the other hand, the DMP
follows (see, e.g. Ref. [36]) if b; <0, i=1, ..., nfp, and matrix A in (95) is of non-negative
type, that is,

a;; <0 for i#j, i= Ly g, J= 1y, g, (97a)
ntp
Z aij 20, i=1,..ng,. (97b)

Since the assembly operator is nothing but the adequate sum of the element contributions,
it suffices to check conditions (97a) and (97b) for the element matrices, hereafter denoted

by A, Let us split them into their diffusive, convective and reactive contributions as

A€ = A 4 A0 4 A4 (98)
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It is easy to see that the application of the SUPG, the GLS or the SGS methods to
problem (102) is equivalent to the use of the Galerkin method with modified values of the
parameters &, a and s. These values are

k=k-+7a?, (105a)
a=a—(£+ 1)ras, (105b)
§=s—£{rs, (105¢)

where £ = 0 for the SUPG method, £ = ~1 for the GLS method and ¢ = 1 for the SGS
method.

Using these effective values for the coefficients of Eq. (102a), condition (104) reads

2 2
1 h

< 0. 106
h 2 6 h 2 ” (106)

This condition is impossible to fulfill for all values of k, a and s, although it provides
information about the behavior of the different methods.
First, let us remark that when s = 0 condition (106) reduces to

T>—h~(1—-1—), (107)

which is the condition that prevents node to node oscillations.

In the limit case a = 0 the situation is different. The SUPG method (¢ = 0) does
not introduce any modification to the Galerkin method, and therefore it is impossible in
general to satisfy condition (106) for a = 0. For the GLS method (¢ = —1) it is easy
to see that (106) implies 7 < 0, which is incompatible with the case @ > 0 that leads to
condition (107).

Only the SGS method (£ = 1) behaves well in the case a = 0. If we define the

dimensionless number )
Ab:= — 1
b T (108)

which is a measure of the relative importance of the absorption and diffusion terms, con-
dition (106) yields

ST)

Although the SGS method allows to satisfy condition (106) when a = 0, in the general
case this is impossible. To see this, observe that the bracketed term in this inequality
can be zero for values that lead to a positive left-hand-side. Nevertheless, the limit cases
analyzed above provide useful design criteria for 7. First, it is easy to see that for linear
elements and in the case s = 0 the parameter 7 verifies condition (107) if it computed as
indicated in Eq. (41) with C; = 1/3 and C, = 1, but also if we take

for s = 0. {(110)



Figure 1. Case |a| = 1, s = 0.0001, SUPG method.

Results for the first case are shown in Fig. 1. Only those corresponding to the SUPG
method have been shown, since for small values of s the GLS and the SGS methods give
also the same results. The solution shows some oscillations near the boundary layer created
due to the smallness of k.

Results for case b) are shown in Fig. 2. The difference betweeen the three methods is
there obvious. Only the SGS method doesn’t present any oscillation. The overshoot for
the GLS method is stronger that that obtained with the SUPG formulation.

In case c) the effects of convection and reaction are both present, and thus there are
oscillations for the three methods due to the presence of convection. Results are shown
in Fig. 3. It can be noticed that, even though the convective and reactive terms have a
similar influence in the solution for the values of the parameters taken, Ab is much smaller
than Pe, that is to say, the oscillations are dominated by those due to convection.

In Fig. 4 we have plotted the results obtained using the SUPG method on a much finer
mesh of 52 x 52 bilinear elements refined near the boundaries. There is only an overshoot
at (1,1) in the cases with convection.
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Figure 3. Case |a| = 0.5, s = 1. From the top to the bottom: SUPG, GLS and SGS
methods.

29



(8] R. Lohner, K. Morgan and O.C. Zienkiewicz, ‘The Solution of Non-linear hyperbolic Equation
Systems by the Finite Element Method’, Int. J. Num. Meih. Fluids, 4, 1043-1063 (1984).

[9] O.C. Zienkiewicz and R. Codina, ‘A general algorithm for compressible and incompressible
flow. Part I: the split, characteristic based scheme’, Int. J. Num. Meth. Fluids, 20, 869-885
(1995).

[10] J. Donea, ‘A Taylor-Galerkin Method for Convection Transport Problems’, Int.J. Num.
Meth. Engrg, 20, 101-119 (1984).

[11] R.J. LeVeque, Numerical methods for conservation laws, Birkhiuser, 1990.

(12] J. von Neumann and R.D. Richtmyer, ‘A method for the numerical calculation of hydrody-
namical shocks’, J. Appl. Phys., 21, 232 (1950).

[13] D.W. Kelly, S. Nakazawa, O.C. Zienkiewicz and J.C. Heinrich, ‘A note on upwinding and
anisotropic balancing dissipation in finite element approximations to convective diffusion
problems’, Int. J. Numer. Meth. Engrg., 15, 1705-1711 (1980).

[14] T.J.R. Hughes and A. Brooks, ‘A multi-dimensional upwind scheme with no crosswind dif-
fusion’, in: FEM for convection dominated flows, T.J.R. Hughes (ed.) ASME, New York
{1979).

[15] T.J.R. Hughes and A.N. Brooks, ‘A theoretical framework for Petrov-Galerkin methods,
with discontinuous weighting functions: applications to the streamline upwind procedure’,
in: Finite Element in fluids, R.H. Gallagher, D.M. Norrie, J.T. Oden and O.C. Zienkiewicz
(eds.), vol. IV, (Wiley, London, 1982) 46-65.

[16] R. Codina, E. Ofiate and M. Cervera, “The intrinsic time for the SUPG formulation using
quadratic elements’, Comput. Meths. Appl. Mech. Engrg., 94, 239-262 (1992).

(17] T.J.R. Hughes and M. Mallet, ‘A new finite element formulation for computational fluid
dynamics: III. The generalized streamline operator for multidimensional advective-diffusive
systems’, Comput. Meths. Appl. Mech. Engrg., 58, 305-328 (1986).

(18] C. Johnson, U. Névert and J. Pitkiranta, ‘Finite element methods for linear hyperbolic
equations', Comput. Meths. Appl. Mech. Engrg., 45, 285-312 (1984).

[19] P. Lesaint and P.A. Raviart, ‘On a finite element method for solving the neutron transport
equation’, in: C. de Boor (ed.), Mathematical aspects of the finite element method, Academic
Press, 1974.

[20] T.J.R. Hughes, L.P. Franca and M. Balestra, ‘A new finite element formulation for computa-
tional fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-
Galerkin formulation for the Stokes problem accommodating equal-order interpolations’,
Comput. Meths. Appl. Mech. Engrg., 59, 85-99 (1986).

[21] F. Brezzi and M. Fortin, Mized and hybrid finite element methods, Springer-Verlag, 1991.

[22] T.J.R. Hughes and L.P. Franca, ‘A new finite element formulation for computational fluid
dynamics: VII The Stokes problem with various well-posed boundary conditions: symmetric
formulations that converge for all velocity /pressure spaces’, Comput. Meths. Appl. Mech.
Engrg., 85, 85-96 (1987).

[23] L.P. Franca and R. Stenberg, ‘Error analysis of some Galerkin least-squares methods for the
elasticity equations’, SIAM J. Numer. Anal., 28, 1680-1697 (1991).

[24] F. Shakib and T.J.R. Hughes, ‘A new finite element formulation for computational fluid
dynamics: IX. Fourier Analysis of space-time Galerkin/least-squares algorithms’, Comput.
Meth. Appl. Mech. Engrg., 87, 35-58 (1991).

(25} I. Harari and T.J.R. Hughes, ‘What are C and h 7 : Inequalities for the analysis and design
of finite element methods’, Comput. Meth. Appl. Mech. Engrg., 97, 157-192 (1992).

[26] F. Shakib, T.J.R. Hughes and Z. Johan, ‘A new finite element formulation for computational
fluid dynamics: X. The compressible Euler and Navier-Stokes equations’, Comp. Meth. Appl.
Mech. Engng., 89, 141-219 (1991).

[27] J. Douglas and J. Wang, ‘An absolutely stabilized finite element method for the Stokes
problem’, Math. Comput., 52, 495-508, (1989).

33




