Seakeeping analysis of monohull ships at preliminary design using artificial neural networks

Pablo Romero Tello
Área de Construcciones Navales
Escuela Técnica Superior de Ingeniería Naval y Oceánica
Universidad Politécnica de Cartagena (UPCT)
E-mail: pablo.romero@upct.es

José Enrique Gutiérrez Romero
Área de Construcciones Navales
Escuela Técnica Superior de Ingeniería Naval y Oceánica
Universidad Politécnica de Cartagena (UPCT)
E-mail: jose.gutierrez@upct.es

Borja Serván Camas
Centre Internacional de Metodes Numerics en Enginyeria (CIMNE)
E-mail: bservan@cimne.upc.edu
Seakeeping analysis of monohull ships at preliminary design using artificial neural networks

Register for free at https://www.scipedia.com to download the version without the watermark
The result of the work will be a set of ANN algorithms that allow the pre-assessment of a ship’s seakeeping with very short pre-processing and solver times, and to determine the added masses, damping and external forces required to compute the seakeeping of conventional monohulls.

\[(M + A_{ij})\ddot{\eta}_j + B_{ij}\dot{\eta}_j + K_{ij}\eta_j = F_j \cdot e^{-i\omega t}\]
The design in early stages should be based on seakeeping.

To obtain an initial result, in a short time and without high computational cost, to solve the problem in the design phase and consequently design taking into account the seakeeping.

The main idea is to obtain a Generalized Algorithm based on Artificial Neural Network to predict the seakeeping of any type of monohull vessel.
Methodology

• Introduction
• Seakeeping
• Objectives
• Methodology
• Verification and Results
• Conclusions

Seakeeping analysis of monohull ships at preliminary design using artificial neural networks

Base Case Generation: data augmentation

Boundary condition

Simulation

Meshing

Post processing

Data processing

ANN competition

Verification

Register for free at https://www.scipedia.com to download the version without the watermark
Methodology

- Introduction
- Seakeeping
- Objectives
- Methodology
- Verification and Results
- Conclusions

Register for free at https://www.scipedia.com to download the version without the watermark
Methodology

- Introduction
- Seakeeping
- Objectives
- Methodology
- Verification and Results
- Conclusions

Register for free at https://www.scipedia.com to download the version without the watermark

400 Geometry variations (L/B; B/T; L/T)
Register for free at https://www.scipedia.com to download the version without the watermark

Methodology

• Introduction
• Seakeeping
• Objectives
• Methodology
• Verification and Results
• Conclusions

Base Case Generation: Simulations & data processing

Simulations

• Potential solver simulation in frequency domain (>2.0 x 10^4 simulations)
• 7 wave heading from 0 to \(\pi \) rad
• Up to 30 frequencies \(k \in \left[\frac{2\pi}{0.1L_w}, \frac{2\pi}{2.0L_w} \right] \)

Data processing

• Principal component analysis
• Selection main parameters regarding ship particulars
• Break down seakeeping components: added masses, damping, excitation forces, diffraction forces.

Seakeeping analysis of monohull ships at preliminary design using artificial neural networks

IX International Conference on Computational Methods in Marine Engineering
<table>
<thead>
<tr>
<th>Methodology</th>
<th>ANN competition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introduction</td>
<td>Layers</td>
</tr>
<tr>
<td>• Seakeeping</td>
<td>1 - 3</td>
</tr>
<tr>
<td>• Objectives</td>
<td>Neurons</td>
</tr>
<tr>
<td>• Methodology</td>
<td>1 - 30</td>
</tr>
<tr>
<td>• Verification and Results</td>
<td>Optimizer</td>
</tr>
<tr>
<td>• Conclusions</td>
<td>Adam, RMS…</td>
</tr>
</tbody>
</table>

Non-normalised

<table>
<thead>
<tr>
<th>Activation</th>
<th>Epoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigmoid, ReLU,…</td>
<td>10 - 300</td>
</tr>
</tbody>
</table>

Overfitting

| Dropout, batchnorm, … | |

Seakeeping analysis of monohull ships at preliminary design using artificial neural networks

Register for free at https://www.scipedia.com to download the version without the watermark

IX International Conference on Computational Methods in Marine Engineering
Seakeeping analysis of monohull ships at preliminary design using artificial neural networks

Methodology

- Introduction
- Seakeeping
- Objectives
- Methodology
- Verification and Results
- Conclusions

Register for free at https://www.scipedia.com to download the version without the watermark
Verification and Results

- Introduction
- Seakeeping
- Objectives
- Methodology
- Verification and Results
- Conclusions

Verification ships

Six monohulls totally different from data base to face with potential solver
Seakeeping analysis of monohull ships at preliminary design using artificial neural networks

Verification and Results

- Introduction
- Seakeeping
- Objectives
- Methodology
- Verification and Results
- Conclusions

Added masses and dampings:
Verification and Results

- Introduction
- Seakeeping
- Objectives
- Methodology
- Verification and Results
- Conclusions
Conclusions

• Difficulty in obtaining a sufficient number of vessels to apply these techniques, thousands of hours of computing.

• Ability to predict the seakeeping behaviour of any conventional monohull, with uncertainty similar to that of a potential solver and considerable time savings.

• Vessel data required for the study, principal characteristics.
Thanks for your attention

Pablo Romero Tello/José Enrique Gutiérrez Romero
pablo.romero@upct.es/jose.Gutierrez@upct.es