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Abstract

In this work, two methodologies for the analysis of unidirectional fiber reinforced composite materials are presented.

The first methodology used is a generalized anisotropic large strains elasto-plastic constitutive model for the analysis

of multiphase materials. It is based on the mixing theory of basic substance. It is the manager of the several constitutive

laws of the different compounds and it allows to consider the interaction between the compounds of the composite

materials. In fiber reinforced composite materials, the constitutive behavior of the matrix is isotropic, whereas the fiber

is considered orthotropic. So, one of the constitutive model used in the mixing theory needs to consider this charac-

teristic. The non-linear anisotropic theory showed in this work is a generalization of the classic isotropic plasticity

theory (A Continuum Constitutive Model to Simulate the Mechanical Behavior of Composite Materials, PhD Thesis,

Universidad Polit�eecnica de Catalu~nna, 2000). It is based in a one-to-one transformation of the stress and strain spaces by
means of a four rank tensor.

The second methodology used is based on the homogenization theory. This theory divided the composite material

problem into two scales: macroscopic and microscopic scale. In macroscopic level the composite material is assuming as

a homogeneous material, whereas in microscopic level a unit volume called cell represents the composite (Tratamiento

Num�eerico de Materiales Compuestos Mediante la teor�ıı de Homogeneizaci�oon, PhD Thesis, Universidad Polit�eecnica, de
Catalu~nna 2001). This formulation presents a new viewpoint of the homogenization theory in which can be found the
equations that relate both scales. The solution is obtained using a coupled parallel code based on the finite elements

method for each scale problem. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Anisotropic; Debonding; Fiber reinforced; Homogenization theory; Composite materials; Double scale formulation;

Periodic structure

1. Introduction

The use of composite materials in structures has significantly increased during the past few years. This
trend is mainly because composite materials have properties which are very different from conventional
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isotropic engineering materials. Composite materials present high strength–weight and high stiffness–
weight ratios, are corrosion resistant, thermally stable and are well suited for structures in which the weight
is a fundamental variable in the design process. Structural components requiring high stiffness and strength,
impact resistance, complex shape and high volume production are suitable candidates to be manufactured
using composite materials. Aerospace, automotive and marine industries are taken the advantages of the
special characteristics of these materials.
Several attempts using the finite element method (FEM) for the analysis and design of composite ma-

terial components have been carried out in the past few years. The correlation between analytical and
measured results is deficient (Ali, 1996) (Klintworth and Macmillian, 1992). The inability to simulate the
behavior of highly non-linear anisotropic materials is the main problem with conventional FEM codes.
This is extremely important in fiber reinforced materials, which are strongly anisotropic.
Micro and the macro-models constitute the alternatives to study the mechanical behavior of composite

materials. Micro-models focus the study at micro-mechanical level of the interatomic bounding and on the
integrity of the composite beyond the damage point limit (Obraztsov and Vasilev, 1982). Although micro-
models are quite expensive for practical purposes, they can be successfully used for modeling the behavior
of composite materials.
Macro-models express the whole composite behavior as that of a single material. Most macro-

mechanical models are based on mixing theory. This theory allows to study the behavior of composite
materials as a combination of individual compounds each one with its own constitutive law satisfying an
appropriate closing equation. This equation establishes the inter-material kinematics conditions. In this
work, perfect compatibility between the different compounds is assumed.
The layout of the paper is the following: In the next section, the macro-model based on the mixing theory

is presented. In Section 3 the constitutive model based on the homogenization theory is presented. In
Section 4, an application example comparing both constitutive models is presented. Finally, the conclusions
of the work are presented.

2. Macro-mechanical model

In this model and as an alternative to the ‘‘ad-hoc’’ models specially formulated for each compound of
the composite material, relevant features about the compounding behavior are introduced through the
mixing theory. It is the manager of the several constitutive laws of the different compounds and it allows to
consider the interaction between the compounds of the composite materials. This theory allows to consider
different type of components in the composite materials.
Trusdell and Toupin (1960) studied mixing theory providing the background for the work of Ortiz and

Popov (1982a). These results also constitute the base of the work of Green and Naghdi (1965) and Ortiz
and Popov (1982b) for bi-phase materials. The model presented here is a more general one and it allows to
represent the non-linear constitutive behavior of a material made up of ‘‘n’’ anisotropic phases undergoing
large strains.
In particular, in fiber reinforced composite materials the constitutive behavior of the matrix is isotropic

and of the fiber is anisotropic. So, one of the constitutive model used in the mixing theory needs to consider
this characteristic.
The mixing model chosen is based on the following assumptions: (i) in each infinitesimal volume of a

composite material a finite number of compounding substances participate; (ii) each substance participates
in the behavior of the composite in the same proportion that its volumetric participation; (iii) all com-
pounds have the same strain (closing equation or compatibility concept); (iv) the volume occupied by each
compound is much smaller than the total volume of the composite.
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The second hypothesis implies a homogeneous distribution of all substances in a certain region of the
composite. The interaction between the different compounding substances, each one with their own con-
stitutive (‘‘base’’) model, yields the behavior of the composite which depends on the percentage volume
occupied by each substance and its distribution in the composite.
The third hypothesis is based on the fact that all phases in the mixture have the same strain field. 1 The

strain compatibility condition must be fulfilled in the reference and updated configurations for each phase.
On the updated configuration the condition can be written as (Trusdell and Toupin, 1960; O~nnate et al.,
1991):

eij � ðeijÞ1 ¼ ðeijÞ2 ¼ � � � ¼ ðeijÞn ¼ ð1
2
½I ij � ðbijÞ�1�Þn ð1Þ

where eij is the Almansi strain tensor and b ¼ FFT is the left Cauchy–Green strain tensor.
In the referential configuration the closing equation proposed is:

EIJ � EIJð Þ1 ¼ EIJð Þ2 ¼ � � � ¼ EIJð Þn ¼ 1
2
CIJð � IIJ Þ ð2Þ

where EIJ is the Green–Lagrange strain tensor and C ¼ FTF is the right Cauchy–Green strain tensor.

2.1. The free energy function, stress and constitutive tensors definitions

Composite materials that fulfill Eqs. (1) and (2) also satisfy the basic condition of additivity of the free
energy of their components (Trusdell and Toupin, 1960). In the updated configuration this can be expressed
as

mw ee; h; amð Þ ¼
Xn

c¼1
kcmcwc e; epð Þc; h; am

c

� �
ð3Þ

where m and mc are the density of the composite and of each of the phases in the updated configuration,
respectively, wc the free energy corresponding to each one of the compounding substances of the mixture, kc

the volumetric participation coefficient, epð Þc the plastic deformation of each phase and am
c are the internal

variables of each phase, which define the physical behavior of the phase.
The definition of the stress s of the whole composite is obtained considering an hyperelastic model

(Malvern, 1969) as

s ¼ m
ow
oe

¼
Xn

c¼1
kcmc

owc

oe
¼

Xn

c¼1
kc sð Þc ð4Þ

where kc is the ratio between the volume of the compounding c and the total volume of the whole com-
posite. The elastoplastic tangent constitutive tensor is obtained as (Car et al., 2000)

cT ¼ o2w
oe	 oe

¼
Xn

c¼1
kc cT
� �

c
ð5Þ

where ðcT Þc is the tangent elastoplastic real anisotropic constitutive tensor. Details of the derivation of the
elastoplastic tensor are given in Oller et al., 1996.

1 This assumption is valid in absence of atomic diffusion. The atomic diffusion phenomena take place at high temperatures. In this

analysis a moderate temperature below melting point is considered.
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2.2. Large strain elastoplastic anisotropic model

2.2.1. Material formulation
Fibre reinforced composite materials are made, basically, with two phases: matrix and fiber. The con-

stitutive model is based on the mixing theory of basic substance acting as a manager of the constitutive laws
of the matrix and fiber phases and it allows to consider the interaction between these phases. In fiber re-
inforced composite materials, the constitutive behavior of the fiber is anisotropic.
The anisotropic theory developed in this work is based on the ideas proposed by Betten (Betten, 1981,

1988) and uses the concept of mapped tensors. This concept allows to use the advantages and algorithms
developed for classic isotropic materials. The implementation of this theory in finite element codes is
straightforward. The anisotropic behavior of the material is expressed in terms of isotropic fictitious stress
and strain spaces, which are the linear tensor transformations of the real anisotropic stress and strain
spaces. All the information on the material anisotropy is contained in the fourth order transformation
tensors AS and AE in the reference configuration and as and ae in the updated configuration relating the
stresses and strains in the real (anisotropic) and fictitious (isotropic) spaces. The parameters that define the
transformation tensors in the reference configuration can be calibrated from adequate experimental tests.
Under large strain hypothesis, as and ae in the updated configuration, are obtained considering the de-
formation gradient (Car et al., 2001). The constitutive model in the fictitious isotropic space is defined by
the same yield function, plastic potential and integration algorithms developed for standard isotropic
materials.
The transformation of the second Piola–Kirchhoff stress tensor S in the anisotropic space to the iso-

tropic space is performed by:

SIJ ¼ AS
IJKLSKL ð6Þ

where AS is a four rank tensor which relates the stress tensors in the real and fictitious spaces, S and S are
the second Piola–Kirchhoff stress tensor in the fictitious isotropic and real anisotropic stress spaces re-
spectively. The four rank tensor AS is defined in the reference configuration and remains constant in this
configuration. The definition of the elements of AS is obtained considering the symmetry of the Cauchy
stress tensor in the anisotropic and isotropic spaces, therefore the four rank transformation tensor must
satisfy the following symmetries:

AS
ijkl ¼ AS

jikl ¼ AS
jilk ð7Þ

The symmetry of the four rank transformation tensors is also necessary:

AS
ijkl ¼ AS

klij ð8Þ

The global expression of AS is obtained by standard transformation of the local components given by

AS
IJKL ¼ RIJRSðAS

RSPQÞlocRPQKL ð9Þ

where ðAS
RSPQÞloc is the four rank stress transformation tensor in the local coordinate system and R is a

rotation matrix.
It is also necessary to define the relationship between the Green–Lagrange elastic strain in the real

anisotropic space Ee and the Green–Lagrange elastic strain E
e
in the fictitious isotropic space. This relation

is

E
e
IJ ¼ AE

IJKLE
e
KL ð10Þ

where AE is a four rank tensor, which relates the Green–Lagrange strains in the anisotropic and isotropic
spaces, E and E are the Green–Lagrange strain tensors on the isotropic space and anisotropic space re-
spectively. The four rank strain transformation tensor is computed taking into account Eqs. (6) and (10)
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AE
MNRS ¼ CMNIJ

� ��1
AS

IJKLCKLRS ð11Þ

where CMNIJ is the constitutive tensor in the isotropic space and CKLRS is the constitutive tensor in the real
anisotropic space. The choice of CMNIJ can be arbitrary and for this purpose the properties of any known
material can be chosen, because their influence in the computations is cancelled when all the quantities are
returned to the real space.
The anisotropic constitutive tensor C is defined in global axes by the following transformations

CIJKL ¼ RIJRS CRSPQ

� �
loc

RPQKL ð12Þ

where CRSPQ

� �
loc
is the local four rank constitutive tensor in the anisotropic space in the local coordinate

system and R is a rotation matrix.

2.2.2. Updated formulation
The relationship between the Kirchhoff stresses in the anisotropic and isotropic spaces on the updated

configuration is given by

sij ¼ as
ijklskl ð13Þ

where as is the four rank tensor, which relates the stress tensor in the anisotropic and isotropic spaces on the
updated configuration, s and s are the Kirchhoff stress tensors in the isotropic and anisotropic spaces
respectively.
In a large strain context, it is necessary to redefine the four rank transformation tensor on the updated

configuration due to the fact that the four rank tensor as is not constant in this configuration and it is a
function tensor AS in the referential configuration and the deformation gradient F. Tensor as in the updated
configuration is obtained by the ‘‘push-forward’’ operations (Car et al., 2000):

as
ijkl ¼ FiI F �1� �

Kk
F �T
� �

lL
F T
� �

Jj
AS

IJKL ð14Þ

Similarly, the relation between Almansi strains in the anisotropic and isotropic spaces is defined by

eij ¼ ae
ijklekl ð15Þ

where tensor ae, establishes the relationship between the Almansi strain tensors in the anisotropic and
isotropic spaces and �ee and e are the Almansi strain tensors in the isotropic and anisotropic spaces re-
spectively.
In a similar way ae on the updated configuration is obtained as:

ae
ijkl ¼ F �T

� �
iI

F T
� �

Kk
FlL F �1� �

Jj
AE

IJKL ð16Þ

In Fig. 1, the four rank tensors which relate the stresses and strains spaces in the real and fictitious spaces
in the referential (AS and AE) and updated (as and ae) configurations are shown.

2.2.3. Flow rule and evolution law for the internal variables
The evolution law of the plastic deformation on the updated configuration is given by:

Lv epð Þ ¼ dp ¼ _kk
og
os

ð17Þ

Taking into account that all the information on the material anisotropy is contained in the four rank
transformation tensor as, the following plastic potential function on the fictitious space is proposed

g s; g; að Þ ¼ g s; as; g; að Þ ¼ g s; g; að Þ ¼ k ð18Þ
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Considering Eqs. (17) and (18) the evolution of the plastic part of Almansi strain is

dp ¼ _kk
og
os

¼ _kk
og
os

:
os

os
¼ _kk

og
os

: as ¼ ð _�ee�eeÞs : as ð19Þ

Fig. 1. Extension of the anisotropic model to large strains. Spaces definition in reference and updated configurations.
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where ð _eeÞs is the plastic flow normal to the plastic potential function g in the isotropic space. The additivity
concept of the strain velocity allows to extend the strain transformation rule to the plastic part of the
strains, so

�ddp ¼ ae : dp ¼ _kkae :
og
os

: as ¼ ae : ð _�ee�eeÞs : as ð20Þ

where �ddp is the isotropic plastic strain on the updated configuration. The evolution of the plastic hardening
internal variable is given by

_aa ¼ _kk hmð Þr :
og
os

¼ k
:

hmð Þr :
og
os

:
os

os
¼ _kk hmð Þr :

og
os

: as ð21Þ

where the second order tensor hmð Þr is a function of the actual stress state and of the actual hardening
plastic variable. This tensor, in the simplest case of plasticity theory, is the stress tensor. Therefore, the
evolution law of the internal variable is written as

_aa ¼ _kks :
og
os

ð22Þ

2.3. Debonding phenomenon

The compatibility equation in the updated and in the referential configuration (Eqs. (1) and (2)) is
suitable only for composite materials with parallel behavior. The stress in the whole composite material is
obtained considering that all the substances contribute to the behavior of the composite proportionally to
the relative volume that they occupy, ex.: reinforced concrete, long fiber reinforced composite materials, etc.
Due to the presence of other phenomena in the failure of composite materials, the classical mixing theory

is not enough, i.e. short fiber reinforced composite materials or debonding phenomena. This phenomenon
takes place in composite materials when there is a relative slip between compounding and the maximum
shear stress of the interface is greater than its yield value. In this case, the matrix is not able to transfer the
loads to the fiber, so the fiber cannot increase its stress state because the matrix–fiber interface cannot resist
it. The modification in the mixing theory to take into account these phenomena is based on the ideas that
the transfer of loads between matrix and fiber change when the matrix plastifies. This model is considered a
‘‘non-local material’’ model. It is based on defining the stress state in the fiber at the time the matrix reaches
the plastic state. Then the fibers increase their stress state according to a new constitutive tensor, which is
a function of the frictional forces between matrix and fibers. Due to the load transmission mechanism
between matrix and fiber, the maximum strength of the fiber is given by (Car, 2000)

f R
s

� �
Fib

¼ min f N
s

� �
Fib

; f N
s

� �
Mat

; 2 f N
s

� �
Fib�Mat=rf

n o
ð23Þ

where f N
s

� �
Fib
, f N

s

� �
Mat

and 2 f N
s

� �
Fib�Mat=rf are the nominal shear strength of the fiber, matrix and fiber–

matrix interface (Car, 2000).
As it has been seen in this section, the classical mixing theory has strong limitations to represent the

behavior of composite materials whose compounds do not participate in a parallel way. Nevertheless the
adjustment in the classical mixing theory made in this work allows to approach the complex phenomenon
which could not be take into account with the classical mixing theory. The quality of the modified theory
here presented could be see in the comparison with the results obtained with experimental tests.
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3. Homogenization theory

The homogenization theory is an alternative formulation to simulate the constitutive behavior of
composite materials. Various multi-scale methods have been developed to resolve the problems presented
by composite materials. These methods can be included in the context of the homogenization theory, in
which the composite material problem is divided into two different scales. Thus, the composite material is
assumed to be homogeneous material on a macroscopic scale (xi) and its behavior can be studied by taking a
representative unit volume, represented on a second scale (yi), called microscopic scale. When the internal
structure of the composite material is periodic, the representative unit volume is called a cell. The use of
these two scales is equivalent to determining the properties of a given composite material under a limiting
condition, i.e. when the cell’s dimensions tend toward zero.
The homogenization theory, proposed and developed by Sanchez-Palencia (Sanchez-Palencia, 1980),

Bensoussan (Bensoussan et al., 1978), Duvaut (Duvaut, 1976), is formulated in terms of the asymptotic
expansion theory. On the other hand, Suquet (Suquet, 1982, 1987) employs the method of averages and finds
that upon extending it to the non-linear case, the macroscopic variables become coupled to the respective
microscopic ones. This presents an important difficulty because coupling implies that the composite con-
stitutive equation depends on an ‘‘infinite number of internal variables’’. For the purposes of obtaining a
simplified constitutive law for the composite, it has been proposed to make certain simplifications, however,
these are only applicable to simpler structural problems. In recent years, various methods have been
proposed as a solution to the non-linear two scale problems. (Ghosh et al., 1996) proposes a no-conven-
tional method in which the composite microstructure is represented by finite Voronoi elements and used the
asymptotic expansion theory as a bridge between the two scales. Fish (Fish et al., 1997), on the other hand,
uses the field transformation theory (Dvorak et al., 1994) as well as the asymptotic expansion theory. In any
case, use of these methods seeks to reduce computational effort, but can however, result in a certain loss of
accuracy.
This paper uses a double-scale method formulation (Zalamea, 2001). This formulation is based on

previous concepts developed in foregoing formulations, especially by the local periodicity vectors. Fol-
lowing the classical double scale method and thanks to the analysis of the periodical media behavior, it is
possible to obtain the government equation for each one of the macroscopic and microscopic scale levels. In
this formulation no second order terms are needed in order to represent the periodic fluctuations on the
microscopic level, such as that shown in the classical asymptotic developments.
In the developed equations, the homogenized strain tensor (macroscopic strain tensor) is obtained

throughout the change of the symmetries in the media. These symmetries are represented by means of the so
called periodicity vectors. The homogenized stress tensor (macroscopic stress tensor) is the result of the
symmetries of the forces in the cell boundary and represents the average of the microscopic stresses gen-
erated in the cell domain. With these connections, in the stresses and strains field, the composite material
problem can be formulated in each one of the two scales and their solutions can be obtained by numerical
coupling using the FEM. In the following section a brief synthesis of the formulation used herein will be
presented.

3.1. Formulation of the homogenization theory

Given a body in a global system of references X and assuming that this body is made up of a fine periodic
structure domain that its only be appreciated by amplifying a small domain, in that case, we can use a
microscopic coordinate system Y which would be sensitive to extremely small dimensions, see Fig. 2.
All periodic composite materials are, in fact, heterogeneous media which have one or more translation

symmetries. These symmetries can be represented by vectors that define the exact locations of the particles
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or points which necessarily have equal properties. Therefore, each point of the continuum media belongs
to a group of points, called periodic points.
The periodic distribution of the constituent materials creates symmetries which permits splitting the

composite materials into structural units called cells. This virtual split of the medium is achieved by means
of parallel surfaces called sides which satisfies the translation symmetry. Thus, a composite material rep-
resented as a two-dimensional space, can be divided into four sided cells (two pairs of periodic sides) called
quadrilateral cell, or into cells of six sides (three pairs of periodic sides) called hexagonal cells.
The points in which the material coordinates Yi have the same relative position in the neighboring cells,

are called periodic points; e.g. in Fig. 3, a point whatever in the cell domain is indicated by P; in the neigh-
boring cells these same points (P) have been so indicated; these are the so called periodic points.
The relative position of these points determine a base of vectors Di which are the periodicity vectors.

Therefore, each point on the cell boundary has a periodic point on the opposite side. Moreover, in quad-
rilateral cells, the four corners are periodic whilst in hexagonal cells, the six corners divide into two groups of
three periodic points.

Fig. 2. Two scales representation, macroscopic and microscopic.

Fig. 3. Periodicity vectors in the referenced configuration Di and the new periodicity vectors di on the up-dated configuration.
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3.2. The relationship between the scales

For heterogeneous material, some concepts such as stress or strain can be understood as values that are
dependant upon the scale. For example: seen macroscopically, the composite material may be considered as
a homogeneous material in which each point has an effective stress or strain value. Nevertheless, at the
microscopic level, there can be great fluctuations in the values of these variables. In passing from the
microscopic variables to the macroscopic ones, the hypothesis of local periodicity (Sanchez-Palencia, 1987)
is used. This hypothesis is a consequence of energy minimization, which ordains that the microscopic
variables within the cell are equal to the respective variables of neighboring cells, but may be very different
from those cells that are more distant.

3.2.1. The homogenized strain tensor
Considering that Xc represents a cell domain of a composite material (represented in material space Yi),

and this cell domain is characterized by the periodicity vector Di (Di ¼ Y pi � Y p0 ). Then if the medium
undergoes a displacement, the local periodicity hypothesis ensures that composite material, despite its
deformation, retains its periodicity relation with its neighboring cells. Therefore, the deformed cell, together
with its neighboring cells, all undergoes the same transformation. Consequently, the new periodicity vectors
di can be written as

d i ¼ ypi � yp0 ¼ Di þ ðupi � up0Þ; i ¼ 1; 2 ð24Þ

where, upi � up0 is the displacement difference between periodic points. The transformation of the cells space
is associated with the change of periodicity vectors. The partial derivative of these vectors is

od i

oDj
¼

oðypi � yp0Þ
oðY pj � Y p0Þ

ð25Þ

Now then, on the macroscopic level, the periodicity vectors are infinitesimally small (jDj ! 0). Conse-
quently, on a macroscopic scale this value tends toward a limit

lim
D!0

od i

oDj

� 	
¼ lim

D!0

oðypi � yp0Þ
oðY pj � Y p0Þ


 �
¼ ox

oX
¼ F ð26Þ

then,

d ¼ FD

where F is the homogenized deformation gradient tensor. This simple change of scale allows to obtain the
macroscopic strain tensor using the classical mechanics of continuous mediums. The square of the length of
the new periodicity vectors is

jdj2 ¼ DT ðFT ÞðFÞD ð27Þ

and the difference between the square of the length of the new periodicity vectors and the periodicity vectors
in the reference configuration is

jdj2 � jDj2 ¼ ½DTFT �½FD� �DTD

jdj2 � jDj2 ¼ 2DTED:
ð28Þ

Thus, the Green Lagrange tensor expressed in Eq. (2) is obtained here as a measure of strain on a macro-
scopic scale
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E ¼ 1
2

FTF
�

� I
�
¼ 1
2

od

oD

T od

oD



� I

�
ð29Þ

This tensor E can be called homogenized strain tensor and is associated with the change of periodicity
vectors. This equation means that if the medium has local periodicity, the strain is measured by the change
of position between periodic points. This measurement is independent of the periodical fluctuations in the
cell boundary. For example, assuming a continuum media under periodic displacements field, in which the
periodicity vectors remain without changes because the relative position among the ‘‘constant’’ points
(Fig. 4), and in spite of the oscillation of the microscopic strains, the macro-scale strains remain zero. In
opposition, if some periodicity vector is modified, a strain phenomenon takes place in the micro-scale and
it is amplified to the macro-scale.
Eq. (26) does not have terms that represent the periodic part. This is due to that the change of the

periodicity vectors defines the change between periodic points. This change is independent of the periodic
fluctuations that take place.
Notice that in this case, contrary to other procedures (classical asymptotic expansion theory) the second

order strain terms are not used to determine the periodic part. Eq. (29) allows establish a condition in the
displacement field, necessary to solve the boundary value problem at the cell level. From here the micro-
scopic strain field is obtained. Moreover, it coincides with the classical equation of the average theory
(Suquet, 1982)

E ¼ heðyÞiXc ¼
1

Xc

Z
Xc

eðyÞdXc ð30Þ

where, e is the microscopic strain field and Xc is the cell domain.

3.2.2. The homogenized stress tensor and the equilibrium equation
Consider X as a domain of a composite material with a periodic distribution of its compounds. This

domain is divided into cells, whose volume Vc is very small macroscopically (Vc ! 0). Then, disregarding the

Fig. 4. Periodicity vectors in the referenced configuration Di and the new periodicity vectors di on the updated configuration.
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effect of the volume forces (on a microscopic scale), the static equilibrium equation on the cell domain isZ
Sc

rijnj dSc ¼ 0 ð31Þ

where, Sc is the boundary surface of the cell, r is the microscopic stress field, n is a unit normal vector of the
surface element dS. The orientation of two surface elements located at periodic points (see Fig. 5) has unit
normal vectors (n1 and n2) in opposite directions. Due to equilibrium conditions the surface forces
F ¼ tðnÞdSc in the two surface elements are equal but with opposite direction. This is known in the ho-
mogenization literature as an anti-periodic force field (Lene, 1986) on the cell’s sides.
A second order tensor Rij is defined as the average of the forces acting on the cell’s sides:

Rik ¼
R
Sc
ykrijnj dScR

Sc
yknj dSc

ð32Þ

If the volume forces effect is disregarded (rij;j ¼ 0), and using the divergence theorem, the average theory
equation is obtained:

Rik ¼
R
Vc
yk;jrij dVcR

Vc
yk;j dVc

¼
R
Vc

dk;jrij dVcR
Vc

dk;j dVc
¼ 1

Vc

Z
Vc

rik dVc ð33Þ

The overall surface force ettðn̂nÞ is defined as the average of the forces on the cell sides Sc determined by the
direction of a (macroscopic) unit vector n̂n,

ettiðn̂nÞ ¼
R
Sc
ykrijnj dScR

Sc
yknj dSc

n̂nk ¼
1

Vc

Z
Vc

rik dVcn̂nk ð34Þ

The value of the right hand side of the equation is a linear function that depends on the direction of n̂n (i.e.ettiðn̂nÞ ¼ Rik n̂nk), and since the tensor R fulfils, on the macroscopic level, the same requirements of the stress
tensor r (on homogeneous materials), the tensor R is henceforth called the homogenized stress tensor.
On the other hand, if the whole composite material’s domain X (which is formed by an infinite number

of cells) is considered, the static equilibrium equation can be written as:Z
S

1

Vc

Z
Vc

rij dV
� 	

n̂nj dS þ
Z

V

1

Vc

Z
Vc

qbi dVc

� 	
dV ¼ 0 ð35Þ

Fig. 5. Acting forces on the cell boundaries.
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The body forces per unit volume must be considered because on a macroscopic scale their magnitudes can
be important. This effect may be assumed as the average of the volume forces ðebbÞ inside the cell, or

ebbi ¼
1

Vc

Z
Vc

qbi dVc ¼ constant ð36Þ

substituting Eqs. (33) and (36) in Eq. (35) and using the divergence theorem,Z
V

Rij;j dV þ
Z

V

ebbi dV ¼ 0 ð37Þ

This equation is valid for an arbitrary volume V and, therefore, it is valid when choosing very small
domains (the limit of which is the cell domain ðX ! Xc; Xc ! 0Þ), then

Rij;j þ ebbi ¼ 0 ð38Þ

and thus we obtain the homogenized local equation of static equilibrium is obtained.

3.3. Formulation of the problem in each scale

Consider a body, which occupies a region X formed by a composite material of fine periodic structure.
The boundary of X is noted oX in which oXu is the part of the boundary where the displacements are known
(Dirichlet’s conditions) and oXt is the part of the boundary where the surface forces are known (Newman’s
condition). On the other hand, the structure of this material lends itself to being divided into very small
structural units (cells). This domain is a space Xc such that, by ordered repetition the body of the composite
material X can be restored. Moreover, two scales of differing orders of magnitude are assumed in such a
way that the particles of the domain X can be labeled in accordance with their position within a space xi

(at a macroscopic level), while the position of the cell’s particles can be labeled within a local space yi (at
a microscopic level). Therefore, at a macroscopic level, the problem of composite materials becomes a
boundary-value problem of homogeneous materials in which we look for displacement and stress fields
ðuðxÞ;RðxÞÞ, which satisfy the following equations:

oRðxÞ
ox

þ ebb ¼ 0 equilibrium equation in X ð39Þ

RðxÞ ¼ 1

Xc

Z
Xc

rðx; yÞdXc constitutive equation in X ð40Þ

uðxÞ ¼ �uuðxÞ displacements on oXu ð41Þ

RðxÞ : n ¼ �ttðxÞ forces on oXt ð42Þ
On the other hand, at the microscopic level, the cell’s boundary conditions must locally reproduce the

conditions of the material microstructure. Then, in accordance with the local periodicity hypothesis, when
the composite material is subjected to a microscopic deformation, the change in the periodicity vectors is
described by

d i �Di ¼ upi � up0 ð43Þ
in which upi and up0 represents the displacements of two periodic points, Di represents the periodicity vector
defined between these points in the microscopic reference configuration Xi, and d i is the new periodicity
vector came out from the deformation. Under small-strains hypothesis, the relative displacement between
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the cell boundary’s periodic points is equivalent to (Zalamea et al., 1999):

upi � up0 ’ EDi ð44Þ

This relative displacement condition between boundary points represents a field of periodic displace-
ments. Additionally, the forces generated in the cell boundary are of equal magnitude but have opposite
directions. Then, the problem on a microscopic scale, yi, comes down to solving the following boundary-
value problem in the cell domain Xc:

orðyÞ
oy

¼ 0 equilibrium equation in Xc ð45Þ

_rrðyÞ ¼ CðyÞ : _eeðyÞ constitutive equation in Xc ð46Þ

upi � up0 ¼ EDi periodic displacements on oXc ð47Þ

tpi ¼ �tp0 periodic forces on oXc ð48Þ

where Eq. (45) is the microscopic static equilibrium equation (disregarding the effect of the volume forces);
this equation must hold for each point of the cell domain. The behavior of the compounding materials is
represented by the expression 46 in which C is the constitutive tensor. In this case, the constitutive equation
of compounds materials may be of any kind (elastic, plastic, viscous, etc.). Eqs. (47) and (48) create dis-
placement and force periodicity conditions in the boundary of the cell oXc, and at the same time connect,
through the strain tensor E, with the local state at the macroscopic level. Consequently, both problems are
interrelated, i.e. the solution of the problem on a macro-scale requires that each point of the domain X
satisfies the microscopic boundary-value problem (Eqs. (45)–(48)); this implies an infinite number of prob-
lems at the microscopic level. However, despite the difficulty implied, this problem can be solved in a discrete
way by use of the FEM.

3.4. Macro–micro-structural coupling

For the solution of the problems concerning composite materials by the homogenization method, a
macro–micro-structural coupling is proposed using the FEM in two scales (see Ghosh et al. (1996) and Fish
et al. (1997) for other coupling two-scale methods). Then, on the macroscopic scale we look for equilibrium
forces in the composite material’s body, whereas on the microscopic scale we determine the behavior of
the composite material. Thus, each integration point of the macro-structure’s finite element represents a
boundary-value problem on the microscopic scale. This means that the law governing the composite ma-
terial’s behavior is a numerical constitutive equation. In this case, this macroscopic law is strain-driven (by
means of the boundary condition imposed on the cell). The internal variables of the composite material
correspond to all of the internal variables in the whole cell domain. Then, in the global problem one must
simultaneously solve the macro-structure and as many cells (of the composite material) as the number of
integration points that the macro-structure contains. The solution is obtained once all the boundary-value
problems satisfies the equilibrium equations.
The finite element implementation of two-scales problem is carried out using Parallel Virtual Machine

(PVM) (Geist et al., 1994). This software creates a virtual data processing system constituted by one or
more computers in which several processes are handled at the same time. Then, one process solves the
macroscopic problem whereas one or more parallel processes solve the problems at the microscopic level.
These processes are synchronized and they exchange information when necessary. Inasmuch as each of the
boundary-value problems on a microscopic scale is an independent problem, this implementation allows to
solve the cell problems in one or in as many processors available.
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4. Example

In this section, an application example using the proposed model is presented. The examples consist in
the numerical simulation of the non-linear behavior of a specimen made up of composite material subjected
to a tension state. The simulations have been carried out using a finite element mesh of standard four node
rectangular finite elements with 548 elements, 603 nodes and 1124 degrees of freedom. This mesh is similar
to the one used in a study carried out by the European Space Agency (Stavrinidis, 1985).
The test is carried out on specimens of carbon-epoxi T300/914C that present a notch in the central area

of the specimen. The reinforcement are carbon fibers. The angle orientations of the carbon fibers in the
different tests specimens is 0� related to the longitudinal axis of the sample.
The test consists in a tensional state imposing a displacement on the top of the specimen. In Fig. 6

dimensions of the specimen, a detail of the central area and the points in which the experimental measures
were carried out are observed.
In the notched area a stress concentration is generated which perturbs the matrix. This situation gen-

erates stresses that exceed the elastic limit of the matrix. In unidirectional fiber reinforced composite ma-
terials cracks always start in the matrix and tend to advance parallel to the fiber direction. This behavior is
the opposite of that observed in tests carried out on homogeneous isotropic specimens.
The mechanical properties of each phase (matrix and fiber) are summarized in Tables 1 and 2.
An incremental analysis considering 30 displacement increments was performed. The total displacement

imposed at the top of the specimen was 0.385 mm.
Fig. 7a shows the deformation of the specimen in the final state. These figures present a displacement

amplification factor of 50 illustrating the most important phenomena obtained in the analysis. In this type
of fiber reinforced composite material four cracks start in the notch root and progress parallel to the
longitudinal axis of the specimen coincident with the reinforcement direction. The origin of two of the
cracks can be appreciated in Fig. 7a. They start in the notch root and spread in the direction of the lon-
gitudinal axis.
In Fig. 7b contours of the displacements norm is presented. It is observed that in the central area of

the specimen the displacement field presents a soft gradient, with four areas clearly distinguished where
displacement gradients are high. These areas begin in the root of each notch and progress parallel to the
longitudinal axis of the specimen, coincident with the reinforcement direction.

Fig. 6. Specimen geometry. Dimensions, mesh and detail of the central part.
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The equivalent plastic strain contours in the composite are plotted in Fig. 8d. The areas with higher
straining are in the notch root due to the concentration of stresses. Plasticity effects progress in a parallel
direction to the longitudinal axis of the sample.
Fig. 8e shows the plasticity levels in fibers clearly indicating the regions where the debonding phe-

nomenon has taken place. One of the reasons of the non-linear behavior of reinforced composite materials
is due to the phenomenon of crack propagation in the matrix and the relative displacement between fiber
and matrix. The phenomenon of matrix cracking and debonding or slip between fibers and matrix reduces
the global stiffness and leads to inelastic or not recoverable strains. This phenomenon is taken into account
here by limiting the load capacity of the fibers due to the inability of the matrix to transmit the loads. More

Table 1

Properties of epoxi resin

Young modulus 14,715 MPa

Poisson coefficient 0.325

Yield stress 43,323 MPa

Post yield behavior law Exponential with softening

Fracture energy 5 N/m

Vm 52.5%

Table 2

Properties of carbon fiber

Young modulus 239,551 MPa

Poisson coefficient 0.0

Yield stress 300 MPa

Post yield behavior law Linear with hardening

Vf 47.5%

Fig. 7. Test of T300/914C specimen with 0� fiber angle. (a) Deformation (amplified 50 times) and (b) contours of displacement norm.
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details about modeling of this phenomenon are presented in Car (2000). Fig. 8 also clearly shows that
cracks progress from the root of the notch, due to the concentration of stresses in this area, towards the
center of the specimen. The debonding phenomenon prevents fibers reaching the maximum yield stress as
the matrix is not able to transfer the load to the fiber. This also leads to a change in the slope of the load–
displacement curve (Fig. 8a).
Some experimental and numerical results are compared in Fig. 8a and b. The curve in Fig. 8a shows

the force vs. the displacement at the top of the specimen. A comparison between experimental re-
sults, the results obtained with the mixing theory considering a linear elastic behavior for each phase and
the proposed non-linear models are presented. Results using the linear elastic model provide upper limit
values.
At high load levels, a non-linear behavior is observed in experimental tests due to debonding phenomena

between fibers and matrix. Numerical results detect with remarkable agreement the onset of this non-linear
phenomenon. In Fig. 8b, curves relating the displacement at the top level of the specimen and the crack
opening displacement (COD) in the central area are plotted (see Fig. 6).
Fig. 8b shows that the COD obtained with the homogenization method are lesser than the experimental

results. The COD obtained with the macro-model is greater than the experimental results up to 125 lm of
displacement at the top of the specimen. For greater displacement at the top of the specimen, the numerical
results obtained with the macro-model are lesser than the experimental results.

Fig. 8. Test of T300/914C specimen with 0� fiber angle. (a) Load vs. displacement, (b) COD vs. displacement, (c) load vs. displacement
with different meshes at the top of the specimen, (d) equivalent plastic strain contours in the composite and (e) equivalent plastic strain

contours in fibers.
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Fig. 8c shows the load vs. displacement plot at the top of the specimen for different meshes. This figures
shows that the macro model is mesh independent. In the case of the macro-micro model, mesh indepen-
dence has not been proven, but there is no evidence that it exists.

5. Concluding remarks

In this work two procedures to simulate the constitutive behavior of fiber reinforced composite materials
are presented. These procedures are based on two different concepts. The first one simulates the constitutive
behavior considering a macroscopic approach (Mixing theory), whereas the second procedure, based on a
multiscale approach (Homogenization theory), takes into account the composite material microstructure.
In spite of the different nature of the procedures the obtained results show a good agreement with the
experimental values. CPU time needed to solve the example and the finite element code are also different.
The Homogenization theory requires a parallel code due to the large number of computations required.

Acknowledgements

The authors wish to thank Construcciones Aeron�aauticas S.A. (CASA) Space Division and especially to
Mr. Pedro Luengo for contributing with the experimental data. The first author also wants to express his
thanks to the Generalitat of Catalunya for the economic support through the scholarship 1998TDOC00065.
In addition, Mrs. Agustina Pioli help is gratefully acknowledged.

Appendix A. Microstructure representation

In Fig. 9 the unit volume called cell is showed. In this figure the two phases of the material are observed:
matrix and fiber. In this case the unit cell is a prism with quadrilateral section in which are contained the
reinforcement phase and the matrix. In this domain, the dimensions of the fiber and matrix zones are

Fig. 9. Microstructure and unit cell.
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related to the volumetric participation of the two phases in the whole composite material. The bidimen-
sional approximation requires that the circular section of the fiber must be replaced by a rectangular
equivalent section. The dimensions of the cell, and each phase of the composite are showed in Table 3.
The unit cell is discretized with 24 quadrilateral finite element under plane stress condition. To simulate

the constitutive behavior of the matrix, an exponential damage law is used (Oliver et al., 1990). The
constitutive behavior of the fiber is simulated through a classical Von Mises plasticity model. All the phases
in the cell are considered isotropic. The anisotropic behavior of the whole composite is obtain through the
homogenization theory.
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