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Abstract In this paper, a residual correction method based upon an extension of the finite
calculus concept is presented. The method is described and applied to the solution of a scalar
convection-diffusion problem and the problem of elasticity at the incompressible or
quasi-incompressible limit. The formulation permits the use of equal interpolation for
displacements and pressure on linear triangles and tetrahedra as well as any low order element
type. To add additional stability in the solution, pressure gradient corrections are introduced as
suggested from developments of sub-scale methods. Numerical examples are included to
demonstrate the performance of the method when applied to typical test problems.

1. Introduction
In a series of papers, Oñate et al. have introduced the concept of finite
increment calculus (or finite calculus) method for providing a stabilization
which is very effective (Oñate, 1998, 2000; Oñate and Arraez, 2002; Oñate and
Garcia, 2001; Oñate and Manzan, 1999; Oñate et al., 1998, 2001). What we shall
show in this paper is the problem of incompressible flow or elasticity which can
reproduce very simply the ideas used in other stabilization processes already
published or those recently in the process of introduction.

The concept of the finite calculus is to start the approximation from
equations or a series of equations in which the size of the domain in which
balance (or equilibrium) equations are established is finite and of the order of
the finite spacing that will be used in the numerical solution. This physical
concept is equivalent to the attempt of a discrete solution of a system of
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equations that is of the form in which not only the original residual appears but
also the derivatives of this residual, multiplied by the size of the increment used
in the numerical process (which we will call h), appears. Thus, a very general
statement can be made purely algebraically.

When using a numerical process for obtaining solution to a differential
equation, it can be written in a much abbreviated form as

ra ¼ 0 ð1Þ

where a may stand for one if a single equation is considered or in a more
general system lists the whole set of governing equations being used. In the
finite calculus, we solve a modified system of differential equations written as

ra 2
1

2
hi
›ra

›xi

¼ 0: ð2Þ

Equation (2) can be obtained for problems in mechanics by invoking the
balance of fluxes (or equilibrium of forces) in a domain of finite size and
retaining higher order terms in the Taylor series expansions for approximating
the different balance terms.

Clearly, the system (2) if solved by a numerical process in which hi are
characteristic lengths which are constantly being reduced to make the solution
more accurate, such as the sizes of finite element or a finite difference
increments, the solution will converge to the exact one given by equation (1). As
hi tends to zero the solution will not be polluted by any other terms that
frequently occur in procedures using least squares where spurious solutions
sometimes occur.

It is at this stage important to observe that not all equations have to
include additional terms involving hi as some of these where no stability
problems arise can simply be omitted without destroying the general
procedure. Indeed, the intelligent use of such omission should be applied by the
investigator when dealing with a particular set of equations.

In Section 2, equation (2) is extended to a more general form of a residual
correction method. We then consider the application of the extended process to
the convection-diffusion equation with a scalar variable and show that it
mimics the well known characteristic based Galerkin (CBS) or streamline
upwinding process (Zienkiewicz and Taylor, 2000a).

We next consider the application of the process to linear elasticity in which
incompressibility or near (quasi) incompressibility occurs. The case with full
incompressibility is identical to the problem of Stokes flow and thus, the
description is applicable to either process. It is well known that unless special
precautions are taken the (near) incompressibility term, in numerical
approximations in which displacement (velocity) and pressure are
independently approximated, can lead to stability difficulties, with the well
known Babuška-Brezzi limitations applicable (Babuška, 1973; Brezzi, 1974) or
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alternatively the mixed patch test (Zienkiewicz and Taylor, 1997, 2000b;
Zienkiewicz et al., 1986) not being passed.

The application of a finite calculus process is introduced and shown to give
alternative solution, including one which leads to the Brezzi-Pitkäranta (Brezzi
and Pitkäranta, 1984) or Galerkin least squares (Hughes et al., 1989) result of
adding a Laplacian term as well as an orthogonal sub-scale form (Codina, 2000;
Codina and Blasco, 2000). These are obtained with very little manipulation.
Indeed, once we derive these forms it will be clear that they are equally
applicable once certain coefficients are identified.

The more complex process of time stepping introduced by Chorin (1967,
1968) and later generalized by Zienkiewicz and Codina (1995) and Zienkiewicz
et al. (1995) can obviously be developed but here we shall delay its introduction
to a later work.

2. Theory
As noted earlier, the solution of problems posed as differential equations is here
expressed in a residual form as

ra ¼ 0; a ¼ 1; 2; . . .;N ð3Þ

where a denotes the particular equation we consider and N is the total number
of equations defining the problem.

Generally, exact solutions to the equations are not available and numerical
solutions are introduced to obtain approximate solutions. Here, we consider
discrete methods in which the solution is defined at a set of points which are
connected by a finite element method, a finite difference method, or any method
in which some measure of their separation is defined by a parameter h for each
point or element.

For this case, starting from the set of modified equation (2) and after some
manipulations we can extend the residual form to incorporate additional terms
which vanish for an exact solution but give beneficial properties to the discrete
formulation (Oñate et al., 2002). In the present work, we express the extended
form as

r̂a ¼ ra þ g
ab

i h
›rb

›xi

¼ 0 ð4Þ

where i ¼ 1; . . .; d; with d the space dimension of the problem being solved and
a repeated index implies summation over the range of the index. Here, h is a
single characteristic length and the g

ab

i are parameters which must be
dimensionally consistent with the equation being solved (a) and the modifier
equation (b) added. For the case where a ¼ b the parameter g

ab

i is
dimensionless.
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The specification of a problem is completed by adding appropriate boundary
(and for time dependent problems, initial) conditions which give a well posed
form.

Here, we shall only consider a weak (weighted residual) form to construct
approximate solutions. Accordingly, for equation (3) we use the solution form

GðRa; raÞ ¼

Z
V

Rara dV ¼ 0 ð5Þ

where R a is an arbitrary conjugate variable to each equation. For equation (4)
the solution form

GðR̂a; r̂aÞ ¼

Z
V

R̂ar̂a dV ¼ 0 ð6Þ

is used in which again R̂a is the conjugate variable to each equation. Often it is
sufficient to let Ra ¼ R̂a: Integration of some terms by parts in the above
forms permits some boundary conditions to be explicitly added to the weak
form (Neumann conditions) whereas some must be included explicitly in the
trial functions used to construct the approximate solution (Dirichlet conditions).
As shown by Oñate (1998), it is expedient in constructing solutions to equation
(6) to express the flux type boundary conditions in extended form also.

To make the above notions clear we consider some example problems.

2.1 Scalar advection-diffusion equation
We first consider the scalar advection-diffusion equation given by

r ¼ 2aj
›f

›xj

þ
›

›xj

k
›f

›xj

� �
þ Q ¼ 0 in V ð7Þ

in which k is a positive diffusion parameter, aj are components of a specified
vector, Q is a given source term, f is the dependent variable and V is the
domain of the problem. The boundary conditions are given in terms of either
Dirichlet,

f ¼ �f on G1 ð8Þ

or Neumann,

qn ¼ 2njk
›f

›xj

¼ njqj ¼ �qn on G2 ð9Þ

types where nj are components of an outward pointing normal to the boundary
and qj are components of the diffusive flux.

2.1.1 Residual equation for solution. Here, there is only a single equation and
we may write equation (4) in the simpler form
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r̂ ¼ r þ gih
›r

›xi

¼ 0 ð10Þ

indicating that only d parameters need to be defined. A possible definition is
to let

gi ¼ g
ai

jaj
ð11Þ

where jaj ¼
ffiffiffiffiffiffiffi
aiai

p
and g is a parameter to be selected.

2.1.2 Weak form of residual equation for numerical solution. Since there is
only one equation, the arbitrary conjugate variable is related to f and here we
let

R̂ ¼ df ð12Þ

and a weak form for the extended problem is given as

Gðdf; r̂Þ ¼

Z
V

df r þ gh
ai

jaj

›r

›xi

� �
dV ¼ 0 ð13Þ

Introducing the definition of r and integrating the diffusion and g terms by
parts yields

Gðdf; r̂Þ ¼

Z
V

›df

›xj

k
›f

›xj

2 dfai
›f

›xi

� �
dV2

Z
V

›df

›xi

gh
ai

jaj
r

� �
dV

þ

Z
G

df 2nik
›f

›xi

þ nigh
ai

jaj
r

� �
dG ¼ 0

ð14Þ

In Oñate (1998), it is shown that the modified form of the Neumann boundary
condition given by equation (14) can be anticipated a priori by using the
concept of balance in a domain of finite size next to a boundary segment.The
integrand of the boundary integral may be written as

2nik
›f

›xi

þ nigh
ai

jaj
r ¼ qn þ gh

an

jaj
r ð15Þ

where an ¼ niai is the component of the vector a that is normal to the
boundary. Here it is convenient to split the boundary into G1 and G2 and to
consider an extended form of the Neumann boundary condition given by Oñate
(1998).

qn þ gh
an

jaj
r ¼ �q on G2 ð16Þ

together with df ¼ 0 on G1. With these additions the weak form becomes
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Gðdf; r̂Þ ¼

Z
V

›df

›xi

k
›f

›xi

2 dfai
›f

›xi

� �
dV2

Z
V

›df

›xi

gh
ai

jaj
r

� �
dV

þ

Z
G2

df�qn dG ¼ 0

ð17Þ

It appears from the above construction that C1 continuous interpolation is
required in an approximate solution, whereas, in a normal Galerkin solution
process, only C0 interpolation is necessary. In the following, we shall assume
only C0 interpolation and ignore interface boundary terms (we could also argue
that these terms will in fact tend to zero with h or based on a residual which is
zero for an exact solution).

It is instructive at this point to consider the form of the g term. To this end
we note that

›df

›xi

ai

jaj
r ¼

›df

›xi

ai

jaj
2aj

›f

›xj

þ
›

›xj

k
›f

›xj

� �
þ Q

� �
ð18Þ

For the case of linear interpolation of f and df on triangles in two dimensions
or tetrahedra in three dimensions, the second derivative terms vanish within an
element and the added second term reduces to

›df

›xi

ai

jaj
r <

›df

›xi

ai

jaj
2aj

›f

›xj

þ Q

� �
ð19Þ

the first term on the right side being a conventional streamline diffusion type
term and the latter a modification to any source term Q. The above is a well
known process which mimics both the CBS (Zienkiewicz and Codina, 1995;
Zienkiewicz et al., 1995) or the streamline upwind Petrov Galerkin (SUPG)
(Brooks and Hughes, 1982) methods. Note that with the algebra used the value
of g must be negative to add diffusion to the discrete problem (Oñate, 1998). Of
course the optimal choice of g has to be decided.

Different alternatives for computing g taking advantage of the form of the
modified governing equation (10) are given by Oñate (1998, 2000), Oñate and
Arraez (2002), Oñate and Garcia (2001), Oñate and Manzan (1999) and Oñate
et al. (1998). In practice the value of g generally follows that deduced in the mid
1970s (Christie et al., 1976; Zienkiewicz et al., 1977).

2.2 Linear elasticity: incompressible limit behavior
As a second example, we consider the problem of linear isotropic elasticity in
which limits approach near incompressible behavior. As it is customary for this
class of problems we first split the stress sij as
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sij ¼ sij þ dijp where p ¼
1

3
sii ð20Þ

In this form, sij define deviator stresses and p is the mean stress (pressure).
Similarly, we split the strain 1ij as

1ij ¼ eij þ
1

3
dij1v where 1v ¼ 1ii ð21Þ

In this form, eij are deviator strains and 1v is the (small strain) volume change.
Using the above splits, we have the following systems:

Momentum equations. Ignoring effects of inertial loading, the balance of
linear momentum describe the equilibrium behavior and are given by

›sji

›xj

þ
›p

›xi

þ bi ¼ 0 ð22Þ

where bi are body forces per unit of volume.
Strain-displacement equations. The standard form for the infinitesimal

strain-displacement relations is given by

1ij ¼
1

2

›ui

›xj

þ
›uj

›xi

� �
ð23Þ

in which ui are components of the displacement vector. The
strain-displacement relations for the split form are given by

eij ¼
1

2

›ui

›xj

þ
›uj

›xi

2 dij
2

3

›uk

›xk

� �
ð24Þ

for the deviator (isochoric) part and

1v ¼
›uk

›xk

ð25Þ

for the volumetric part.
For an incompressible material, 1v will be zero and for a near (quasi)

incompressible material it will be very small relative to the deviatoric part.
Stress-strain (constitutive) equations. The stress-strain relations for an

isotropic linearly elastic material may be written as

sij ¼ 2Geij ð26Þ

for the deviatoric part and

p ¼ K1v ð27Þ
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for the volumetric part. The two parameters G and K denote the shear modulus
and bulk modulus, respectively. Note that the volumetric equation also may be
written as

1

K
p ¼ 1v ð28Þ

and thus incompressible behavior implies K ¼ 1: Near or quasi
incompressible behavior is characterized by K=G @ 1: Using the definitions

G ¼
E

2ð1 þ nÞ
and K ¼

E

3ð1 2 2nÞ
ð29Þ

near incompressible behavior is also given by n! 1=2:
Boundary conditions. The boundary conditions are given by specified

displacements

ui ¼ �ui on G1 ð30Þ

and specified traction

ti ¼ njsji ¼ �ti on G2 ð31Þ

2.2.1 Residual equations for solution. The system of residual equations which
we propose to solve for three-dimensional applications are:

(1) the reduced set obtained by substituting the constitutive equation for
deviatoric stresses into the strain-displacement equations and then into
the momentum equation; and

(2) the volumetric strain-displacement equation substituted into the
constitutive equation for pressure-volume effects.

Accordingly, we will solve the resulting set of equations given by:

r 1 ¼
›sj1ðukÞ

›xj

þ
›p

›x1
þ b1 ¼ 0

r 2 ¼
›sj2ðukÞ

›xj

þ
›p

›x2
þ b2 ¼ 0

r 3 ¼
›sj3ðukÞ

›xj

þ
›p

›x3
þ b3 ¼ 0

r 4 ¼
›ui

›xi

2
1

K
p ¼ 0

ð32Þ
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In a two-dimensional plane strain or axisymmetric problem we ignore the third
equation and adjust ranges of the indices i, j, k ¼ 1, 2. Plane stress gives no
difficulties for any range of properties and may be considered using a pure
displacement approach. In the above, we use the notation

sijðukÞ ¼ G
›ui

›xj

þ
›uj

›xi

2 dij

2

3

›uk

›xk

� �
ð33Þ

to denote the effects of substitutions for the deviatoric behavior. We observe
that equation (32) permits consideration of a solution when the bulk modulus K
is infinite (the incompressible limit). As is well known, only elements which
pass the Brezzi-Babuška (Babuška, 1973; Brezzi, 1974) or mixed patch test
(Zienkiewicz et al., 1986) lead to stable solutions and for low order elements
these always involve different interpolation for uk and p. However, the use of
the modified residual equations will allow accurate solution to be achieved even
when the displacements uk and pressure p are approximated within finite
elements with linear interpolation on triangles or tetrahedra.

Before starting the solution process, we note that the momentum residuals
r a for a ¼ 1, 2, 3 have dimensions F/L 3, whereas the constitutive residual r 4 is
dimensionless. Thus, whenever we have a gabi in which a – b we must include
terms which restore correct dimension to the equations. This has been noted
previously for other approaches (Brezzi and Pitkäranta, 1984; Zienkiewicz and
Taylor, 2000b).

A simple construction for the r̂a is to set all gabi to zero except for g41
1 , g42

2
and g43

3 , which we will set as

g41
1 ¼ g42

2 ¼ g43
3 ¼ g

h

2G
ð34Þ

in which g is a single scalar variable to be chosen and the factor h/G is chosen
for dimensional considerations (we use G as it remains bounded for all values of
K computed for 0 , n # 0:5). Thus, the residual equations we will use in our
approximation are given by

r̂a ¼ ra for a ¼ 1; 2; 3 ð35Þ

and

r̂4 ¼ r 4 þ g
h2

2G

›r i

›xi

ð36Þ

The modified pressure-volumetric strain equation (36) can also be derived by
manipulating the original finite calculus forms of the equilibrium and pressure
constitutive equations given by equation (2) (Oñate et al., 2002).

We expand the divergence of the first three residuals to give
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›r i

›xi

¼
›2sji

›xi›xj

þ
›2p

›xi›xi

þ
›bi

›xi

ð37Þ

At this point there are different options we can pursue. The first is similar to
that introduced by Brezzi and Pitkäranta (1984) and extended to elasticity by
Zienkiewicz and Taylor (2000b). In this approach we note (for constant G and K)
that

›2sji

›xi›xj

¼ G
›3uj

›xi›xi›xj

þ
›3ui

›xj›xi›xj

2
2

3
dij

›3uk

›xk›xi›xj

� �

¼
4G

3

›2

›xi›xi

›uk

›xk

� �

¼
4G

3K

›2p

›xi›xi

ð38Þ

which permits the derivative of the residual to be written as

›r i

›xi

¼ 1 þ
4G

3K

� �
›2p

›xi›xi

þ
›bi

›xi

ð39Þ

Thus, we have the fourth extended equation given by

r̂4 ¼ r 4 þ g
h2

2G
1 þ

4G

3K

� �
›2p

›xi›xi

þ
›bi

›xi

� �
ð40Þ

An alternative approach to equation (40) represents the deviatoric and body
force terms in the momentum equation by a new parameter set Pi in which

Pi ¼
›sjiðukÞ

›xj

þ bi ¼ 2
›p

›xi

ð41Þ

To use this approach, we must introduce the additional set of residual
equations

r 5 ¼
›p

›x1
þP1 ¼ 0

r 6 ¼
›p

›x2
þP2 ¼ 0

r 7 ¼
›p

›x3
þP3 ¼ 0

ð42Þ
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The introduction of P was deduced from an orthogonal sub-scale approach by
Codina (2000) and Codina and Blasco (2000) and later employed by Chiumenti
et al. (2002a, b) for elasticity and elasto-plasticity problems.

2.2.2 Weak form of residual equations for numerical solution. A Galerkin
form to the equations may be constructed as

GðR̂a; r̂aÞ ¼ 2

Z
V

R i r i dVþ

Z
V

R̂4r̂4 dV ¼ 0 ð43Þ

The first integral defines the statement on the momentum equation which we
treat without modification and select

R̂ i ¼ dui for i ¼ 1; . . .; d: ð44Þ

The second integral is the constitutive equation for pressure-volume which we
consider modified to the extended form and set

R 4 ¼ dp: ð45Þ

For the present, we do not consider which extended form will be used, however,
we note that introduction of Pi will obviously require additional terms in
equation (43).

After substitution of equation (32) and performing an integration by parts,
the momentum terms become

Gðdui; r
iÞ ¼

Z
V

1

2

›dui

›xj

þ
›duj

›xi

� �
½sijðukÞ þ dijp� dV

2

Z
V

dui bi dV2

Z
G

duiti dG

ð46Þ

which we recognize as a standard Galerkin or virtual work form of the
momentum equations.

Treating the second integral, we have the form

Gðdp; r̂4Þ ¼

Z
V

dp
›ui

›xi

2
1

K
p

� �
dVþ

Z
V

gh2

2G
dp

›r i

›xi
dV ð47Þ

At this point we may either substitute using equation (39) or introduce the
sub-scale terms Pi. Introducing the Brezzi and Pitkäranta form and integrating
by parts we obtain
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Gðdp; r̂4Þ ¼

Z
V

dp
›ui

›xi

2
1

K
p

� �
dV

2

Z
V

gh2

2G

›dp

›xi

1 þ
4G

3K

� �
›p

›xi

þ bi

� �
dV

þ

Z
G

dp
gh2

2G
ni 1 þ

4G

3K

� �
›p

›xi

þ bi

� �
dG

ð48Þ

Usually the last term is ignored in numerical computations. This act must be
based on arguments concerning h or ri tending to zero as, in general, the
multiplier term is not zero. However, some controversy surrounds the results
obtained by ignoring the term (Pierre, 1988, 1995).

An alternative is to introduce the sub-scale approximation defining Pi and
directly integrate the residual term to obtain

Gðdp; r̂4Þ ¼

Z
V

dp
›ui

›xi

2
1

K
p

� �
dV2

Z
V

gh2

2G

›dp

dxi

›p

›xi

þPi

� �
dV

þ

Z
G

dp
gh2

2G
ni

›p

›xi

þPi

� �
dG

ð49Þ

In this form, the boundary integral again involves h and a residual which
permits it to be dropped without recourse to material behavior. Indeed, we may
introduce any constitutive equations for other material behavior (e.g.
visco-elasticity, elasto-plasticity, etc.) without altering the definition of Pi.

Combining the above two terms and introducing a split on the boundary for
displacement and traction types we can write the final weak form for the
solution of the elasticity problem as

Gðdu; dp; r̂aÞ ¼

Z
V

1

2

›dui

›xj

þ
›duj

›xi

� �
½sijðukÞ þ dijp� dV

2

Z
V

dui bi dV2

Z
G2

dui
�ti dG

þ

Z
V

dp
›ui

›xi

2
1

K
p

� �
dV2

Z
V

gh2

2G

›dp

›xi

r i dV ¼ 0

ð50Þ

where r i is either deduced from equation (39) or is given by the Pi form of the
momentum equations expressed in equation (42). In the latter case, it is
necessary to introduce a weighted residual form for the equations to provide a
solution for the added variables. Two forms have been proposed for this
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projection. The first based on the orthogonal sub-scale argument adds the
equations as

G ¼

Z
V

gh2

2G
dP1 r 5 þ dP2 r 6 þ dP3 r 7
� �

dV ¼ 0 ð51Þ

where we have set Riþ4 ¼ dPi: The second form merely uses

G ¼

Z
V

dP1 r 5 þ dP2 r 6 þ dP3 r 7
� �

dV ¼ 0 ð52Þ

thus avoiding the g term completely. For the elasticity problem the form given
by equation (51) leads to fully symmetric equations which is an advantage if
the equations are solved as one set. If, however, a split of the equations is used
and the solution for equation (50) is first obtained with the Pi set at their
previous value (i.e. zero at the first iteration) followed by solution of either
equation (51) or (52) little is gained by introducing the g weighting.

Note that a typical term in equation (51) or (52) is given by

dP1r
5 ¼ dP1

›p

›x1
þP1

� �
ð53Þ

Thus, treating R 5 as an arbitrary (virtual) P1 will lead to a mass type matrix in
the numerical solution process (Brooks and Hughes, 1982; Codina, 2000; Oñate
et al., 2002). The idea of projecting values by what is essentially a least squares
method is not new. In the context of stress projections it was used by Brauchli
and Oden (1971). Cantin et al. (1978) and Loubignac et al. (1978) used a similar
approach to build improved stress results from a displacement solution and in
a mixed approximation and solution context this was extended by Zienkiewicz
et al. (1985a, b). As noted earlier, the approximate recovery of the pressure
gradients is not unique and other schemes can be considered (e.g. a
superconvergent patch recovery (SPR) projection as introduced by Zienkiewicz
and Zhu (1992).

3. Numerical examples
The above formulation has been implemented in the general purpose finite
element program FEAP which is described by Taylor, (2003) and Zienkiewicz
and Taylor (2000b, c). This formulation permits solutions using either the fully
monolithic algorithm in which the displacements, pressures and pressure
gradient projections are computed simultaneously or using a split algorithm in
which the displacements and pressures are computed separately from the
pressure projection values and iterative improvements are used (Oñate et al.,
2002).
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3.1 Cook problem
We first consider the problem shown in Figure 1 known as the Cook problem.
The original problem was given as a plane stress problem; however, to test the
performance of elements in a quasi incompressible state it has been given as a
plane strain problem. The properties are taken as shear modulus with a value
of G ¼ 375 and Poisson ratio with a value of n ¼ 0:4999:

The remaining geometric factors are shown in Figure 1. Meshes of
quadrilaterals and linear triangles are used with 2, 5, 10, 20 and 50 elements on
each side of the mesh. The meshes for five elements per side are shown in
Figure 2. To illustrate the effects of locking for this problem we also consider

Figure 2.
Cook problem meshes:
plane strain

Figure 1.
Cook problem
description
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standard displacement models employing linear triangles and four-node
quadrilateral elements.

The displacements on the left boundary are fully restrained and a
uniformly distributed shear load with unit intensity is applied to the right
boundary.

In Figure 3, we present results for the vertical displacement at the top of
the right boundary. The left figure presents results for the standard
displacement formulation (Q1), the mixed Q1P0 element described by Simo
et al. (1985) and the enhanced assumed strain element (Q1Enh) given by Simo
and Rifai (1990). In the right part of the figure, we present results for triangles
using the standard displacement model (T1), the mixed displacement pressure

Figure 3.
Cook problem: vertical

displacement at top
corner
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form (T1P1) and the new form (T1P1Pi). The results for the T1P1 element
where both displacements and pressure are defined using continuous linear
interpolation on each triangle are in fact identical to many other forms
(Zienkiewicz and Taylor, 2000b) and occur as the first solution in the
iterative split form. It is evident that adding the pressure projection does not
improve the accuracy for the displacement at this point. Indeed, the effect is
more evident in the pressure distribution as we shall show in subsequent
examples.

In Figure 4, we compare the results for the Q1Enh and T1P1Pi elements. It is
remarkable that the triangle performs quite well compared with the
quadrilateral element, which in fact is excellent in both quasi-incompressible
and bending applications.

In Figures 5 and 6, we present the same type of results as just described for
the horizontal displacement at the top. In addition, in Figures 7-10, we show
results for the bottom corner displacement components. Generally, behavior of
results are similar to those at the top. However, we note that the displacements
at these two points converge in a more monotonic manner using the
formulation including the pressure projection variables Pi.

3.2 Tension strip with slot
The second problem considered is a confined strip with a central slot with
circular ends. The problem is loaded by a uniform axial load at the top and
bottom and has geometric properties as shown in Figure 11. The material
properties are: Young’s modulus (E) of 24 and Poisson ratio (n) of 0.
49999995. The analysis is performed in plane strain to again give a
quasi-incompressible response. This problem has no infinite stress at any
point and thus provides a check on the triangular elements to perform well
over the entire problem.

Figure 4.
Cook problem: vertical
displacement at top
corner
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Figure 5.
Cook problem: horizontal

displacement at top
corner

Figure 6.
Cook problem: horizontal

displacement at top
corner
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Figure 7.
Cook problem: vertical
displacement at bottom
corner

Figure 8.
Cook problem: vertical
displacement at bottom
corner

EC
20,5/6

646

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

t P
ol

ite
cn

ic
a 

de
 C

at
al

un
ya

 A
t 0

1:
57

 0
7 

Ja
nu

ar
y 

20
19

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400310488790&iName=master.img-007.jpg&w=189&h=354
http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400310488790&iName=master.img-008.jpg&w=189&h=156


Figure 9.
Cook problem: horizontal

displacement at bottom
corner

Figure 10.
Cook problem: horizontal

displacement at bottom
corner
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The distribution of pressure along the axes is presented in Figure 12 for cases
with the Pi (T1P1Pi) and for the Brezzi-Pitkäranta form (T1P1). Both are free of
oscillations, however, the form which includes the Pi modification produces
answers which are in closer agreement with other methods (Zienkiewicz and
Taylor, 2000b).

3.3 Driven cavity
We consider the problem of a square region in which the top is displaced
horizontally by a unit displacement. This is a standard problem in fluid
mechanics known as the driven cavity problem in which a velocity is specified at

Figure 11.
Region and mesh used
for slotted tension strip
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the top instead of a displacement (Oñate and Garcia, 2001). The cavity has a
unit length for both the horizontal and vertical sides. The material properties
are Young’s modulus, E, of 3 and Poisson ratio, n, of 0.49999995. This leads to
shear modulus of near unity, a ratio of the bulk to shear modulus (K/G)
approximately equal to 107 and, thus, represents a quasi-incompressible solid.
To represent the driven cavity, all boundaries have zero displacement in both
the normal and tangential directions except the top face which has a unit
horizontal displacement at all nodes except the corner ones which are set to
zero.

For the solution reported here, the pressure at the center of the bottom face is
set to zero. The problem is solved using different meshes ranging from ten

Figure 12.
Pressure distribution on

axes of slotted tension
strip
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elements per side to 40 elements per side. The 10 £ 10 mesh is shown in
Figure 13.

To illustrate the effects of the sub-scale Pi terms, we plot the pressure along
the horizontal centerline in Figure 14. The curve labeled T1P1 ignores the P
terms in all equations and thus leads to a form which includes only the
displacement u and pressure p at each node. In this form, the equations are
identical to that introduced originally by Brezzi and Pitkäranta (1984).

Figure 13.
The 10 £ 10 mesh of
triangles

Figure 14.
Pressure on horizontal
centerline for 10 £ 10
mesh
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In Figure 15 we show the same result for a 40 £ 40 mesh. These results have
been computed with the monolithic algorithm in which all five degrees of
freedom (u1, u2, P, P1 and P2) are included in a single solution. The value for
stabilization array is set as t ¼ gh2=ð2GÞI where h 2 is taken as twice the area
of each triangle and g ¼ 0:75 as given by a finite calculus derivation (Oñate
et al., 2002).

The above solution was repeated using the iterative solution in which the
displacement and pressure are solved separately from the P variables.
Figures 16 and 17 show the results for iterations 1, 3, and 5. The result for the

Figure 15.
Pressure on horizontal
centerline for 40 £ 40

mesh

Figure 16.
Pressure on horizontal
centerline for 10 £ 10

mesh and iterative
solution
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10 £ 10 mesh was iterated to convergence and the behavior for the results at
the upper left corner are shown in Figure 18 (note that P is multiplied by 1,000
to permit graphical display).

Figure 19 shows the sensitivity of the pressure at the mid height for different
values of the parameter g. It is evident that much less dependence on this value
results from the addition of the added Pi stabilization terms.

Figure 17.
Pressure on horizontal
centerline for 40 £ 40
mesh and iterative
solution

Figure 18.
Convergence of pressure
p and P at upper left
corner vs iteration
number
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Finally, in Figures 20-22, the convergence of the centerline displacements and
pressure are presented for different uniform mesh divisions with 10, 20, 40 and
80 elements per side. Again, it is evident that much less sensitivity results from
the addition of the Pi terms.

Figure 19.
Dependence of pressure

on value of g for
20 £ 20 mesh
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4. Concluding remarks
The concept of finite calculus which accepts that the governing equations in
mechanics are satisfied in a domain of finite size, provides a natural procedure
for introducing residual corrections into the discrete forms of the classical
equations of the infinitesimal theory. This allows to derive new families of

Figure 20.
Dependence of
u-displacement at x ¼ 0
with mesh subdivision
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stabilized numerical methods using finite element, finite differences or, indeed,
any other discretization procedure. In this paper, we have shown two examples
of the derivation of residual corrected forms for the advective-diffusive
equation and the incompressible and near (quasi) incompressible linear
elasticity equations.

It is shown that for the elasticity problem, the finite calculus process
results in the addition of a Laplacian of pressure terms and a projected
gradient of pressure forms. The examples of application show that this
form is essential to obtain accurate numerical results which converge in a

Figure 21.
Dependence of

v-displacement at y ¼ 0
with mesh subdivision
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more monotonic manner and are less sensitive to the value of the
stabilization parameters.
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