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[1] Aquifer remediation is a challenging problem with environmental, social, and economic
implications. As a general rule, pumping proceeds until the concentration of the target
substance within the pumped water lies below a prespecified value. In this paper we
estimate the a priori potential failure of the endpoint of remediation due to a rebound of
concentrations driven by back diffusion. In many cases, it has been observed that once
pumping ceases, a rebound in the concentration at the well takes place. For this reason,
administrative approaches are rather conservative, and pumping is forced to last much
longer than initially expected. While a number of physical and chemical processes might
account for the presence of rebounding, we focus here on diffusion from low water mobility
into high mobility zones. In this work we look specifically at the concentration rebound
when pumping is discontinued while accounting for multiple mass transfer processes
occurring at different time scales and parametric uncertainty. We aim to develop a risk-
based optimal operation methodology that is capable of estimating the endpoint of
remediation based on aquifer parameters characterizing the heterogeneous medium as well
as pumping rate and initial size of the polluted area.
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1. Introduction

[2] Pump-and-treat is a process where contaminated
groundwater is extracted from the subsurface by pumping
and then in principle treated before it is discharged or rein-
jected into the aquifer. It is probably one of the most com-
mon forms of groundwater remediation at polluted sites
[e.g., Mackay and Cherry, 1989; Zhang and Brusseau,
1999]. Despite its common use, several studies have shown
that as currently designed it often fails. For example, the
National Research Council [1994] studied 77 sites where
pump-and-treat was applied and identified that it failed to
properly remediate these sites in 69 of those sites. One ex-
planation for the failure is that the pumping process effec-
tively removes contaminants from the most mobile zones
in the subsurface, while high levels of contamination can
persist in relatively immobile regions [Soga et al., 2004].

[3] Concentration signals in the well at early times are
associated with preferential flow paths, while concentra-
tions at late times are mostly controlled by the less conduc-
tive areas. Thus, while the concentrations of water arriving
at the pumping well might decrease below some desired
threshold, once pumping stops, an exchange of contaminant
between mobile and less mobile zones (e.g., low permeabil-
ity zones and/or stagnant zones) could take place leading to
a rebound in water concentrations [e.g., Cohen et al., 1994;
Harvey et al., 1994; Luo et al., 2005, 2006]. This is demon-
strated schematically in Figure 1, which shows the effect of
pumping on the concentration signal at the well (see with-
drawal stage and resting stage). During the initial stage, the
flux-averaged concentration [e.g., Kreft and Zuber, 1978; van
Genuchten and Parker, 1984] at the well decreases with time.
This does not imply a reduction of the resident concentration
since most of the solute remains in the low mobility regions
(denoted immobile regions). This mass is transferred to the
more permeable zones by diffusion or desorption processes
[Haggerty and Gorelick, 1995].

[4] The occurrence of rebound concentrations has impor-
tant implications for the use of pump-and-treat strategies
[e.g., Harvey et al., 1994]. In order to truly remediate a
site, one may have to pump for a significantly longer period
when compared to the time estimated assuming all solutes
are fully mobile. This means that a particular site could
potentially remain contaminated for a longer time than ini-
tially expected, resulting in serious economic consequences
both in terms of having to run the remediation process for
longer times and the fact that the site will remain unavail-
able for other uses until cleanup is achieved.
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[5] In many real systems it can be practically difficult to
model in full detail all the complex processes that occur in
the subsurface. This is due to lack of characterization data
and the natural occurrence of variability. Given these chal-
lenges, a variety of effective models that aim to capture the
role of heterogeneity have arisen. From all the available
models, we choose to work with the multirate mass transfer
(MRMT) [e.g., Haggerty and Gorelick, 1995; Carrera
et al., 1998] as it is developed conceptually and explicitly
from the idea that mass is transferred between a mobile
zone and a suite of immobile zones. Such models have also
been shown to properly incorporate desorption processes
[Lawrence et al., 2002] and tested in the field [Meigs and
Beauheim, 2001; Haggerty et al., 2001; McKenna et al.,
2001; Gouze et al., 2008; Ma et al., 2010]. Thus, in our
opinion, it provides a framework to model rebound of

concentrations driven by back diffusion in pump-and-treat
scenarios.

[6] It is important to note that a deterministic estimate of
the rebound concentration is typically unfeasible due to
lack of subsurface characterization [e.g., Rubin, 2003].
Therefore, uncertainty quantification of the rebound con-
centration is an important component that should be incor-
porated in a remediation framework.

[7] In this work we develop a risk-based modeling
framework, based on the MRMT approach, with the goal of
properly studying a pump-and-treat system that is capable
of capturing concentration rebound events that have to date
lead to failure of remediation efforts. The important contri-
bution of this paper comes from the fact that we present a
new risk-based framework capable of estimating the end-
point of pump-and-treat remediation methods and corre-
sponding uncertainty. We provide a flexible framework
that could be used to design optimal pumping tasks while
accounting for the risk of rebound occurrence. This work is
unique in the sense that it unites uncertainty quantification
with the use of an upscaled model (MRMT) to estimate the
risk of a rebounding event to be above some critical con-
centration. We highlight the following outcomes of our
work:

[8] We derive closed-form expressions to estimate the
concentration rebound at the pumping well that account for
back diffusion with different memory functions. These
expressions allow for a better understanding of the parame-
ters controlling the magnitude of the rebound concentration.

[9] We provide a stochastic evaluation of the rebound
concentration conducive to estimating the probability that
the rebound concentration will exceed some regulatory crit-
ical value.

[10] The probabilistic modeling framework developed in
this paper can help address the following challenging ques-
tions: How long should we pump in order to minimize the
risk of the rebound concentration exceeding a critical con-
centration value? What is the uncertainty associated with
the risk of such an undesired event occurring? How does
risk decrease with the intrinsic mass transfer processes tak-
ing place within the aquifer?

[11] In section 2, we introduce our conceptual setup and
model development. Section 3 provides analytical solutions
for the rebound concentration under idealized, but justifi-
able, approximations. Section 4 explores the model by con-
sidering two different but often used memory functions for
the MRMT model, namely, the single-rate and power-law
distribution of rates. In section 5, we perform a probabilis-
tic analysis by accounting for uncertainty in the MRMT pa-
rameters. An analytical derivation of the rebound
concentration probability density function (PDF; account-
ing for parametric uncertainty) is provided. In section 6, we
show how to use the stochastic model described with data
from a field site. This section will help to illustrate the
potential applicability of our model. Finally, we provide a
summary in section 7.

2. Problem Formulation

2.1. Definitions

[12] We are interested in better understanding the con-
trolling factors influencing concentration rebounds after

Figure 1. (top) Pumping operation versus time. (bottom)
Concentration signal response to pumping operation and
mass transfer. An extended contaminant source is detected,
and the pumping well is activated to remediate the problem
(top). Once the concentration level decreases (bottom,
withdrawal stage), the pumping well is turned off. A
rebound occurs (bottom, resting stage), and the concentra-
tion can rise with time toward a value C1 which could
exceed a given critical concentration Ccrit (marked by the
horizontal dashed line).
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shutting down of a pumping well and the associated risk of
concentration being above a regulatory value denoted here
as Ccrit. The ultimate goal is to develop a capacity to pro-
vide a priori estimates of pumping time and flow rate that
could result in a remediated aquifer given a degree of cer-
tainty. The different stages of the problem investigated are
outlined in Figure 1.

[13] We start with a large contaminant plume being
detected within an aquifer. After detection, a pumping well
is installed and the concentration C [ML�3] is monitored at
the source zone of contamination. The well is put into oper-
ation at a volumetric rate Q [L3T�1] (withdrawal stage, see
Figure 1), and C of the outflow water is recorded as a func-
tion of time. After some time of pumping, te [T], when the
concentration C has dropped to some prespecified value,
the pumping well is shut down (Q¼ 0). Mass is mostly
lowered in the permeable areas such that when pumping
ceases, the system is not equilibrated in terms of concentra-
tion. Thus, due to diffusive mass transfer from the immo-
bile zones to the mobile zone, the concentration signal
starts increasing (resting stage, see Figure 1) producing a
characteristic rebound effect. Note that the withdrawal and
resting stages could be repeated in cycles [see Harvey
et al., 1994; MacKay et al., 2000].

[14] Our focus is on the concentration evolution in time
at the pumping well during the withdrawal and resting
stages. As contaminated water is pumped from the aquifer
at location xw [L], the concentration signal decays with
time to a given value that depends on te, e.g., C xw; teð Þ.

[15] When pumping ceases, concentration values
rebound, increasing with time until eventually reaching a
maximum value C1 [ML�3]. This C1 value is a function
of the natural system, the initial distribution of the concen-
tration, the total mass, and finally, the management opera-
tion (through Q and te).

[16] Due to the inherent uncertainty present in hydro-
geological modeling, decision makers are interested in
quantifying the probability that C1 � Ccrit . If such an
event occurs, then measures need to be taken to continue
cleanup at the site. Here Ccrit corresponds to a threshold
concentration based on public health studies and
established by a regulatory agency [e.g., U.S. Environmen-
tal Protection Agency, 2001]. Therefore, risk is defined
here as

RiskðxwjteÞ ¼ Pr ½C1 xwð jteÞ � Ccrit �: (1)

[17] The challenge lies in being able to estimate C1
based on te, Q, and the properties that define the hydrogeo-
logical characteristics of the aquifer. Note that in equation
(1), C1 is assumed to be time independent. In reality, after
the initial rebounding buildup, the concentration signal at
the well can decrease with time due to natural attenuation
or even shift due to ambient flow. For our work, we assume
that the time scale of natural attenuation is very large com-
pared to the time needed for C1 to reach a plateau. In other
words, natural attenuation will be present but acting on a
slower time scale. Following a conservative approach
within a risk-based framework, we neglect the contribution
of natural attenuation in the cleanup process. Under this
condition, C1 is an asymptotic value and can correspond to
a worst-case scenario (aligned with a conservative risk

approach). Under this assumption, the rebound concentra-
tion, conditional on te, can be expressed as

C1 xwð jteÞ ¼ lim
t!1

C xw; tð Þ; 8t � te: (2)

2.2. Conceptual Model

[18] For this work, we want a modeling approach that
accounts for transport in heterogeneous media by means of
an upscaled equation. We chose to use the MRMT model.
The MRMT modeling approach explicitly accounts for the
diffusive exchange between mobile and immobile zones
that can lead to the concentration rebounds of concern. The
use of the MRMT model as a valuable and convenient
upscaled transport equation has been shown in many papers
[Haggerty and Gorelick, 1995; Willmann et al., 2008;
Fern�andez-Garcia et al., 2009]. It has been employed to
model fate and transport through heterogeneous porous
media and is very flexible in capturing complex behaviors
[Chen and Wagenet, 1995; Lawrence et al., 2002] and
interpreting tracer tests in the field [Meigs and Beauheim,
2001; Haggerty et al., 2001; McKenna et al., 2001; Gouze
et al., 2008; Ma et al., 2010]. It can also address transport
of reactive solutes [Donado et al., 2009; Willmann et al.,
2010], which could be of potential interest for remediation
strategies of complex chemicals, a topic we deem to be
beyond the scope of our current study. The general equa-
tions of transport for the MRMT can be written as (see
works by Carrera et al. [1998] and Haggerty et al. [2000b]
for additional details)

�m
@Cm

@t
þ
Z1

0

�im �ð Þ @
@t

Cim �ð Þd� ¼ �qrCm þr � DorCm½ �

(3)

@

@t
Cim �ð Þ ¼ � Cm � Cim �ð Þ½ � (4)

with Cm [ML�3] representing the concentration in the mo-
bile zone and Cim �ð Þ [ML�3] representing the concentra-
tion in the immobile zone, both expressed as mass per unit
volume of water (we emphasize here that the term immo-
bile is a qualitative term since it can physically represent
low mobility zones). The specific discharge vector is given
by q [LT�1], Do [L2T�1] is the local-scale dispersion ten-
sor, and � [T�1] is a mass transfer rate coefficient charac-
terizing the immobile zone, which in the MRMT
formulation can take on multiple values. �m and �im �ð Þ are
the porosities of the mobile and immobile zones, respec-
tively. In the latter, � is also used for the parameterization
of �im �ð Þ. Solving equation (4), we get

Cim x; t; �ð Þ ¼
Z t

0

� exp �� t � �ð Þ½ �Cm x; �ð Þd�

þ Co
im x; �ð Þexp ��t½ �; (5)

where Co
im x; t; �ð Þ is the initial concentration for an indi-

vidual immobile zone. Let �im be the contaminant mass in
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the immobile zone per total unit volume of aquifer at a
given location and time, i.e.,

�im x; tð Þ ¼
Z1

0

�im �ð ÞCim x; t; �ð Þd�: (6)

[19] Note that �im �ð Þ reflects a distribution, continuous
or discrete, of multiple mass exchange rates �, and it is
assumed constant in space. Using equation (5), �im can be
written as

�im x; tð Þ ¼
Z t

0

Cm x; �ð Þg t � �ð Þd�

þ
Z1

0

�im �ð ÞCo
im x; t; �ð Þexp ��t½ �d�; (7)

where g tð Þ denotes what is called the memory function,
defined as

g tð Þ ¼
Z1

0

��im �ð Þexp ��t½ �d�: (8)

[20] The memory function is a key component of the
MRMT model, and its structure is what ultimately controls
the complex concentration dynamics in a given system. A
wide variety of memory functions have been proposed
reflecting a variety of rate distributions ranging from single
first order, multiple discrete first order, Gamma or power-
law distributed [e.g., Haggerty et al., 2000b]. One of the
interesting features of this model is the rich dynamics that
can emerge due to the wide range of memory functions and
corresponding behaviors that can be chosen. In particular
cases, such as the presence of a memory function that
depends only on time, the MRMT shares a large number of
similarities with the continuous time random walk (CTRW)
approach [Dentz and Berkowitz, 2003]. Many works have
been able to show that the CTRW works effectively in
reproducing lab and field data [e.g., Berkowitz et al., 2006].

3. Approximate Solution

3.1. Assumptions and Especial Cases

[21] From a practical perspective it is often necessary to
solve the equations presented so far in a seminumerical or
fully numerical manner [e.g., Haggerty et al., 2000a]. For
the problem at hand we are most interested in predicting
C1. To develop a fully analytical solution for this problem
we invoke some simplifying assumptions, which we sum-
marize below:

[22] High P�eclet : We assume that the pumping rate from
the aquifer Q is sufficiently large that advection is the main
transport mechanism in the mobile zone. Based on this we
assume (to first order) that it is reasonable to neglect the
effect of local-scale dispersion (Do � 0). Therefore we
consider only problems where advection dominates the sys-
tem (in the mobile zone). This is because pumping
increases the dominance of advection. The whole aim of

pumping is to mobilize water to the well ; this suggests that
for a well designed system the advection process should
indeed dominate during the pumping process. It is impor-
tant to note that the only relevant mass transfer process in
the immobile zone is diffusion.

[23] Late-time approximation: Haggerty et al. [2000b]
argued that at late times it is reasonable to assume that con-
centrations do not change significantly over time. This
assumption implies that at late times, concentrations are
driven by mass exchange (by diffusion) between mobile
and immobile zones.

[24] One-dimensional radial system : We assume that the
pump-and-treat process is placed in the center of the con-
taminant plume that is sufficiently large and uniform to
assume radial symmetry. Although the expressions we de-
velop are for a radial flow configuration, they can also be
written for uniform-in-the-mean flow conditions.

[25] Using the first two assumptions we can approximate
�im with

�im x; tð Þ � g tð Þmo þ
Z1

0

�im �ð ÞCo
im x; t; �ð Þexp ��t½ �d�; (9)

where mo is the zeroth moment of the breakthrough curve
(see more details in Haggerty et al. [2000b]). Invoking the
third assumption, the MRMT governing equation (3) for
the mobile concentration can be simplified as

@Cm

@r
¼ � 1

v�m

@�im

@t
; (10)

where v ¼ q=�m. Since under the late-time assumption �im
is no longer a function of r, equation (10) can be solved,
and the mobile concentration at the well location is

Cm xw; tð Þ ¼ � tadv

�m

@�im

@t
; (11)

where tadv �
Z R

rw

v�1dr is the advective time over radius R,

and rw denotes the well radius. The parameter R can repre-
sent an estimate of the extent of contamination. Taking v ¼
Q=2�rb�m and assuming that R� rw we approximate the
advection time as

tadv ¼
�R2b�m

Q
; (12)

with b [L] denoting the formation’s thickness. Differentiat-
ing equation (9) and substituting into equation (11), the
concentration within the mobile phase can be calculated as

Cm xw; tð Þ ¼ � tadv

�m
mo
@g

@t
þ @

@t

Z1

0

�im �ð ÞCo
im �ð Þexp ��t½ �d�

2
4

3
5:
(13)

[26] Equation (13) provides the late-time solution for the
withdrawal phase concentration. To obtain an estimate
for C1, we assume that the system is fully mixed
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(concentrations in the mobile and immobile domains at a
given point are equal). Thus, by mass balance we obtain

C1 xwð jteÞ ¼
�mCm xw; teð Þ þ �im xw; teð Þ

�tot
; (14)

where the total porosity is given by �tot ¼ �mþZ
�im �ð Þd�.

[27] Equation (14) is a conservative estimate that will
yield results greater than actual values. From equation (14),
it should be clear that initial conditions in the immobile
concentration can play an important role in the final result
(see equation (9)). Thus, we will consider two end-member
cases for initial conditions to test the extremes. These will
correspond to young and old contaminated sites. By young,
we mean that the spill was sufficiently recent such that no
concentration has had time to enter the immobile zone. By
old, we mean that the spill occurred sufficiently long ago
such that the immobile and mobile concentrations are in
equilibrium and thus equal. Any other intermediate sce-
nario should lie between these two extremes. Therefore,
evaluating the rebound concentration for both setups
(young and old) provides end-member cases and thus an
upper and lower bound on the cleanup times. This is in-
formative within a risk context since it is inherently diffi-
cult to obtain a detailed characterization of the initial and
boundary conditions. The assumption of young and old
sites can be relaxed in the presence of available computa-
tional power to perform simulations along with detailed
site information.

3.1.1. Young Contaminated Site
[28] By our definition of a young contaminated site, Co

im ¼
0. Thus, combining equations (9), (13), and (14) results in

C1 ¼
1

�tot
g tð Þmo � tadv mo

@g

@t

� ����
t¼te
; (15)

which can readily be evaluated at te, the end of pumping
time. Recall that mo is the zeroth-order moment of the
breakthrough curve.

3.1.2. Old Contaminated Site
[29] Similarly, by our definition of an old contaminated

site, Co
im ¼ Co

m ¼ Co. Substituting equations (13) and (9)
into equation (14) yields

C1 ¼
g tð Þmo

�tot
þ Co

�tot
h tð Þ � tadv mo

�tot

@g

@t
� tadv Co

�tot

@h

@t
; (16)

where

h tð Þ ¼
Z1

0

�im �ð Þexp ��t½ �d� �
Z1

t

g �ð Þd�: (17)

[30] Executing the integrals, this can be simplified and
evaluated at time te as

C1 ¼
1

�tot
g tð Þmo þ Coh tð Þ � tadv mo

@g

@t
þ tadv Cog tð Þ

� ����
t¼te
;

(18)

which is similar to the young site expression in equation
(15) with two additional terms reflecting the different initial
condition.

3.2. Discussion

[31] Equations (15) and (18) can be used to obtain a pre-
liminary deterministic estimate of the time needed for aqui-
fer remediation. This could be applied to obtain an estimate
of the cleanup time used to evaluate the potential cost of
the remediation effort for a given Q value (which is a
design variable). Thus, a predesign of a remediation system
can be performed using the equations for C1. For the given
approach described in the previous section, the way to pro-
ceed involves the evaluation of the following parameters :

[32] The memory function g(t) : The memory function
can be estimated from either knowledge of the system or
more generally, from the interpretation of tracer tests at the
site or in a laboratory. A model could also be prespecified
and then could be tested for different combinations of
parameters.

[33] The zeroth moment of the breakthrough curve mo

can be estimated by evaluating the ratio between the initial
mass in the system, based on a number of existing measure-
ments or on the information of the total mass spilled, and
the pumping rate. For more details, see Haggerty et al.
[2000b].

[34] The total porosity �tot could be obtained from exist-
ing data from outcrops or else by an estimate based on the
geology of the site.

The advective time tadv : Its estimation depends on the ge-
ometry of the aquifer (with thickness b) and the pumping
rate Q (the design variable).

[35] By setting C1¼Ccrit, a curve Q versus te could be
obtained. Such a curve would allow one to determine an
optimal combination Q; teð Þ that minimizes the financial
costs involved; this could be achieved by providing an eco-
nomic model accounting for Q (which can be translated to
terms of energy costs) and te (duration of the energy costs
plus the opportunity costs involved in the fact that the site
cannot be used until cleanup is completed). Additional
restrictions could be included, such as the need to limit the
value of Q so as to reduce drawdown or to increase pump
efficiency.

[36] It is important to emphasize that the ideas put forth
in this work (as well as the upcoming results) are not lim-
ited to the MRMT model. Our choice is to work in a fully
analytical framework. However, numerical approaches
could be used to relax the assumptions we invoke and to
capture more complex heterogeneity patterns [see Carrera
et al., 1998; Silva et al., 2009]. Alternative approaches
using upscaled models such as the stochastic advection dis-
persion equation [Morales-Casique et al., 2006], Lagran-
gian models of anomalous transport [Cushman and Ginn,
1993], the CTRW [Berkowitz et al., 2006], and the frac-
tional advection dispersion equations [Benson et al., 2001]
could also be used within our framework. For a review and
discussion of these approaches and the similarity between
all of these models, see Dentz and Berkowitz [2003], Mar-
golin et al. [2003], and Neuman and Tartakovsky [2009]. In
addition, a suite of full-blown numerical Monte Carlo sim-
ulations could also be applied, say if the setup or boundary
conditions do not allow for a closed-form solution
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[Maxwell et al., 2008]. Implementing the problem from a
numerical perspective would also be a convenient way to
take into consideration nonsmooth heterogeneities.

[37] The analysis presented in this work considers the
presence of a single pumping well. In practice, multiple
wells might be used. The methodology and solution pro-
vided will not change if these multiple wells are located far
away from one other in such a manner that they do not
interfere (or that the interference can be neglected). In the
event of interference, our analytical solution could be seen
as an upper bound. In any case, for a complete solution
with multiple wells, one would have to solve the governing
equation numerically and then include the solution in the
risk analysis.

[38] In the following sections, we will quantitatively
illustrate how the expressions derived in section 3 can
be used to (1) better understand the mechanisms
controlling the magnitude of C1 and (2) estimate the prob-
ability of C1 > Ccrit (i.e., risk of remediation failure, see
equation (1)).

4. Impact of the Memory Function on the
Rebound Concentration

[39] This section will focus on illustrating the influence
of the memory function g(t) on C1. We will concentrate on
two different, but often applied, memory function models,
corresponding to a single-rate mass transfer and a power-
law distribution of rates. We will explore how their param-
eters affect C1. For illustrative purposes, we will focus on
our solution assuming that the contaminated site is young
(i.e., equation (15)). The parameter values used in the simu-
lations are listed in Table 1.

4.1. Single-Rate Mass Transfer Model

[40] Let us consider the case of a single-rate mass trans-
fer model, which in the context of the model presented here
corresponds to an immobile porosity distribution �im �ð Þ ¼
�0

im � �� �0½ � , where �o
im is the total porosity of the immo-

bile zone and � is the Dirac � operator. Using this expres-
sion and equation (8), the memory function becomes

g tð Þ ¼ �o�
o
im exp ��ot½ �: (19)

[41] Differentiating this expression and substituting into
equation (15) yield the following closed-form solution for
the rebound concentration

C1 ¼
mo�o�

o
im

�tot
1þ tadv�oð Þexp ��ote½ �; (20)

which can now be evaluated for a given setup.

[42] From equation (20) we note that C1 decays expo-
nentially with pumping time. This rate of exponential decay
is governed by the rate �o, i.e., the larger the value of �o

the faster the decrease in C1. This reflects that large values
of � imply fast exchange between mobile and immobile
zones, so that the latter are flushed more quickly. C1 is
directly proportional to mo (i.e., zeroth moment of the
breakthrough curve) and to �o

im =�tot , the fraction of immo-
bile to total porosity in the system, reflecting what fraction
of the mass is available to the immobile zone, eventually
causing the rebound. Finally, C1 is also proportional to
1þ tadv�o ; large values of tadv reflect either larger plumes
or small pumping rates, thus resulting in large times needed
to flush the system. Higher values of �o result in larger
rebound concentrations at early times, which results in an
interesting competition between the early time constant
value and exponential decay, which dominates later times.

[43] Figure 2 (top half) depicts the evolution of C1 with
te for various values of �o spanning several orders of mag-
nitude. The influence of the individual parameters dis-
cussed in the previous paragraph is visible in Figure 2.
Parameter values are listed in Table 1 and in the caption of
Figure 2.

[44] As one would expect from equation (20), C1 values
decrease exponentially with an increase of te ; however, its
rate of decrease depends on �o. After a certain threshold
value for te, C1 decreases with a steep gradient. This is
more pronounced for larger �o. For �o ¼ 10�3d�1, a con-
stant value for C1 persists for values of te up to 3	 103

days (approximately 8 years). This implies high costs asso-
ciated with pumping operations for contaminated sites that
have small mass transfer rates between mobile and immo-
bile zones.

[45] The bottom half of Figure 2 is a contour plot of C1
for various te and �o. This plot illustrates the nonmonotonic
behavior in �o. The dark black line is an isocontour corre-
sponding to C1 ¼ 0:35 mg L�1, which was defined as a
threshold for risk (i.e., C1 ¼ Ccrit ). The nonmonotonic
behavior in �o demonstrates how uncertainty in �o may
lead to significant uncertainty in risk assessment.

4.2. Power Law

[46] Next we consider a power-law distribution of �,
which might be associated with systems that display strong
power-law tailing in breakthrough curves, frequently
observed in field and laboratory studies. The power-law
model implies [e.g., Haggerty et al., 2000b]

�im �ð Þ ¼ A�tot
im�

k�3 with A ¼ k � 2

�k�2
max � �k�2

min

; k > 0; k 6¼ 2;

(21)

k represents the power-law exponent, and �min and �max

are the minimum and maximum cutoffs, respectively.
The corresponding memory function (equation (8)) is
given by

g tð Þ ¼ A�tot
im

Z�max

�min

�k�2exp ��t½ �d�

¼ �tot
imAt1�k G k � 1; t�minð Þ � G k � 1; t�maxð Þð g;f

(22)

Table 1. Parameter Values Used in the Simulations

Parameter Values

Zeroth-order moment of the breakthrough curve mo 1 h kg m�3

Mobile porosity �m 0.14
Immobile porosity �im 0.21
Radius of the contaminated area R 10 m
Pumping rate Q 10 m3 d�1

Aquifer thickness b 5 m
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where �tot
im is the total immobile zone porosity, and G z; að Þ

is the incomplete Gamma function. Differentiating g tð Þ and
substituting in equation (15) yield

C1 ¼
mo�

tot
imA
�tot

W1 � tadv W2 þW3ð Þ½ �; (23)

where W1, W2, and W3 are given by

W1 ¼ t1�k
e G k � 1; t�minð Þ � G k � 1; t�maxð Þð Þf g

W2 ¼ 1� kð Þt�k
e G k � 1; te�minð Þ � G k � 1; t�maxð Þð Þf g

W3 ¼ t�1
e ak�1

max e�teamax � ak�1
min e�tea min

� �
:

(24)

[47] This result shares some common features with the
single-rate solution. For example, the rebound concentra-
tion is proportional to mo and �tot

im =�tot for the same reasons
as discussed above. It is also directly proportional to A (see
equation (21)). This is analogous to C1 being directly pro-
portional to � for the single-rate case; that is, when A is
larger there is more weight in the larger exchange rates
thus increasing the initial proportionality.

[48] The top half of Figure 3 illustrates how C1 varies
with te for different power-law slopes (k). As for the single-
rate case, there is a transition from smaller te (where larger

k means larger C1) to larger te (where smaller k yields
smaller C1).

[49] Juxtaposition of Figures 2 and 3 allows one to visu-
alize the impact of the memory function on the interplay
between C1 on te. For the power-law model, we have a
more pronounced and distributed variation in C1 with
respect to te. We observe that for smaller te, there appears
to be a power-law decay at one rate, followed by a slower
but still power-law decay rate at intermediate times and
finally, a sudden exponential drop off at later times. For the
single-rate model, C1 appears to maintain a more or less
constant plateau at early times until it reaches a threshold
value for te where it starts to decrease in a steep (exponen-
tial) manner.

[50] The contour plot in Figure 3 (bottom) depicts C1
for various te and k. Much like the single-rate case the non-
monotonicity with k is evident with a peak in values around
k¼ 2. The black solid line corresponds to a constant value
of C1 that visually depicts the nonmonotonic nature nicely.
This behavior suggests that uncertainty in k may lead to a
significant uncertainty in the assessment of risk for a partic-
ular problem.

Figure 2. (top) Evolution of C1 (mg L�1) with te (days)
for several values of �o (d�1). (bottom) Contour plot of
log10 C1ð Þ for various �o and te. The parameter values used
are listed in Table 1. The bold iso-contour line corresponds
to C1 ¼ 0:35 mg L�1.

Figure 3. (top) Evolution of C1 (mg L�1) with te (days)
for several values of k. (bottom) Contour plot of log10 C1ð Þ
for various k and te. The parameter values used are listed in
Table 1 together with �min ¼ 1	 10�5 d�1 and �max ¼
1	 103d�1. The bold iso-contour line corresponds to
C1 ¼ 0:35 mg L�1.
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5. Risk Analysis and Uncertainty Quantification

[51] The parameters controlling the closed-form solu-
tions provided in the previous sections are typically uncer-
tain. For example, the total mass of the released pollutant,
the area affected by the contamination, the initial condi-
tions (young or old contamination), and the parameters
controlling mass transfer properties are seldom known with
absolute certainty.

[52] Measures of these uncertainties can be obtained
from expert opinion through a variety of statistical infer-
ence techniques [Rubin, 2003, chap. 13] or estimated based
on the observed decrease of concentration during pumping
operations at the contaminated site. In this section, we
show that the derived analytical solutions can actually be
used to transfer these inherent parameter uncertainties into
risk of remediation failure. Risk is defined as the probabil-
ity of concentration exceeding a critical value (see equation
(1)). Knowing that equations (15) and (18) express C1 as a
function of model parameters, one can directly estimate the

PDF of C1 by performing a variable transformation
for random variables [see Stone, 1996, pp. 60–68]. The
PDF of the rebound concentration C1 is denoted here by
pc C1ð Þ.

5.1. Dependence of the Risk on the Memory Function,
Pumping Rates, and Operation Times

[53] Figure 4 illustrates the risk, defined as Pr C1 �½
Ccrit � (equation (1)), versus te for a young contaminated site
for various values of Q. For the results in Figure 4, we set
Ccrit ¼ 5	 10�3 mg L�1. Figure 4 (top) provides the eval-
uation of risk using a single-rate mass transfer model, while
Figure 4 (bottom) corresponds to the power-law model. In
the single-rate case, we assumed that �o is uncertain and
uniformly distributed �o � Uniform 0:08; 0:2½ �. For the
power-law model, k is considered uncertain with k �
Uniform 1:2; 1:8½ �.

[54] As shown in Figure 4, quantifying the uncertainty in
C1 and the probability of exceeding a regulatory threshold
value are important in order to decide how long to operate
the pump such that C1 is kept below Ccrit within an accept-
able risk level. Fixing a pumping end-time (te) in both plots
in Figure 4, we note that higher risks are associated with
smaller pumping rates. Also, as expected, with increasing
te for a given Q value, the risk given in equation (1)
decreases. However, note that the rate at which the risk
decreases strongly depends on the shape of the memory
function as well as on the uncertainty of its parameters
(i.e., k, �o, etc.).

[55] A key element in evaluating the risk curves in Fig-
ure 4 lies in quantifying the PDF of C1, denoted by pc.
Therefore, analyzing the factors that control pc will allow
us to better grasp the mechanisms dictating the risk decay
rate as a function of te. In the following, we provide a
closed-form solution for the pc for the specific case of a sin-
gle-rate mass transfer model.

5.2. Rebound Concentration PDF

5.2.1. Uncertain Single-Rate Mass Transfer
Coefficient

[56] Consider the case of a young contaminated site
(see equation (20)). Suppose also that the single-rate mass
transfer model is applicable at the site. Single-rate models
are widely employed and provide a simple interpretation of
the physics involved [e.g., van Genuchten and Dalton,
1986].

[57] We consider the single-rate mass transfer coefficient
(�o) to be uncertain with PDF p�. Figure 5 shows the
nonmonotonic relationship between C1 and �o as given by
equation (20) (see also Figure 2). This is due to the fact
that for small �o the mass is slowly released from the
immobile region and therefore trapped in this region
even after pumping. In this regime and for a given time of
pumping, C1 will increase linearly with �o. In contrast, for
large values of �o, the system is fully mixed and the mass
can transfer rapidly from the immobile region when pump-
ing, thereby leading to lower rebound conditions
(C1 ! 0).

[58] Looking at Figure 5 it should be noted that C1 �oð Þ
can only be inverted by parts (in this case, two parts). This
is due to the nonmonotonicity of C1 �oð Þ. Let us denote
these two inverse functions as �o ¼ a1 C1ð Þ and

Figure 4. Probability of C1 � Ccrit (mg L�1) versus te
(days) for various values of Q¼ 1, 5, 10, and 20 m3 d�1.
(top) Risk obtained for a single-rate model. For this plot,
�o was considered uncertain and uniformly distributed
�o � Uniform 0:08; 0:2½ �. (bottom) Risk obtained for a
power-law model. For this plot, we assumed that
k � Uniform 1:2; 1:8½ �. Parameter values are listed in Table
1, and Ccrit ¼ 5	 10�3mg L �1.
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�o ¼ a2 C1ð Þ. Then, to obtain pc, we need the univariate
change of variable transformation

pc C1ð Þ ¼
��� @

@�o
C1 a1 C1ð Þð Þ½ �

����1
p� a1 C1ð Þð Þ

þ
��� @

@�o
C1 a2 C1ð Þð Þ½ �

����1
p� a2 C1ð Þð Þ: (25)

[59] One needs to first calculate the inverse functions a1

and a2 and then the derivative of C1 with respect to the
uncertain parameters (in this case, �o) to obtain pc. This
approach was, for example, used by Sanchez-Vila et al.
[2009] to derive the PDF in reactive solute transport [see
also Tartakovsky et al., 2009]. The derivative can be ana-
lytically obtained as

@C1
@�o

¼ mo�
o
im

�tot
1þ 2�otadv � �ote 1þ �otadvð Þ½ �exp ��ote½ �; (26)

and the functions a1 and a2 can be estimated by finding the
two-zero roots of the following equation:

F �oð Þ ¼ C1 �
mo�o�

o
im

�tot
1þ �otadvð Þexp ��ote½ �: (27)

[60] The rebound concentration PDF can be evaluated by
substituting equation (26) into equation (25) together with
a prescribed assumed (or inferred) model for p�.

5.2.2. Illustration
[61] Let �o be uniformly distributed, �o � Uni-

form[�o;min , �o;max ] where �o;min and �o;max represent
lower and upper bounds on �o, respectively. The values for
�o;min and �o;max can be based on prior information or
expert opinion. For our illustration, we opted for the uni-
form distribution; however, there are several methods
available that allows one to estimate a prior PDF for �o

[Kitanidis, 1986; Woodbury and Ulrych, 2000; Hou and
Rubin, 2005; Kitanidis, 2012]. Using p� along with equa-
tions (25) and (26), we can estimate pc.

[62] Figure 6 shows pc for different pumping times (te).
The parameter values used are those listed in Table 1.
Results illustrate that pc follows a U shape with two clear
asymptotes that closely resembles a Beta-PDF with shape
parameters less than unity. The latter result is consistent

Figure 5. Rebound concentration C1 (mg L�1) versus
the single-rate mass transfer coefficient �o (d�1) for differ-
ent pumping end-times te (days).

with the initial findings of Bellin and Tonina [2007] and
frequently found later in a number of publications for dif-
ferent transport conceptual models and problem configura-
tions. The asymptotes obtained in our case correspond to
the two situations in which the derivative of C1 with
respect to �o is zero. These are the peak and the tail of the
C1 distribution associated with large �o values (Figure 5).
In our case, the prior associated with �o expands over a
large range so that the asymptotes are clearly depicted. It is
worth mentioning that for other situations, smaller priors
can truncate the left asymptote (controlled by �o;max ) and
result in discontinuities in the PDF (when a1 is different
than a2). If the duration of pumping increases, the range of
possible values that C1 can attain decrease.

[63] In a similar fashion, for a given end-time of pump-
ing te, one can analytically estimate the risk of exceeding a
critical concentration. With the aid of equation (25), equa-
tion (1) can be rewritten as

Risk¼ Pr C1 � Ccrit½ �

¼ 1�
Za1 Ccritð Þ

0

p� �oð Þd�o �
Z1

a2 Ccritð Þ

p� �oð Þd�o
: (28)

or simply,

Risk ¼ 1� I1 Ccritð Þ � I2 Ccritð Þ; (29)

where we have the following explicit solutions for I1 and I2

(given a uniform PDF model for p�) :

I1 Ccritð Þ ¼
a1 Ccritð Þ � �o;min

�o;max � �o;min
; a1 Ccritð Þ > �o;min

0 otherwise

8<
: (30)

I2 Ccritð Þ ¼
�o;max � a2 Ccritð Þ
�o;max � �o;min

; a2 Ccritð Þ < �o;max

0 otherwise
:

8<
: (31)

[64] The dependence of risk on Ccrit and end-time of
pumping is illustrated in Figure 7. Our results show that the
risk tends to decrease with te following a power-law behav-
ior with slope close to �1. Afterward, a sudden drop in risk
occurs. The pumping time needed for this situation to occur

Figure 6. PDF for the rebound concentration pc C1ð Þ
evaluated at different values of te¼ 0.8tadv, tadv, and 1.3tadv

days.

DE BARROS ET AL.: REBOUND CONCENTRATION ESTIMATION

1937



(i.e., the sudden drop in the evaluated risk) is actually the
time needed for C1 to approach Ccrit. When this happens,
a1 approaches a2 and I1þ I2¼ 1 such that the risk
approaches zero (see equation (29)).

[65] For a given contaminant and corresponding critical
concentration Ccrit, we can estimate the time needed to
obtain this sudden drop of risk by estimating the time te
needed for C1 �p

	 

to approach Ccrit, i.e.,

Ccrit ¼
mo�

o
im

�tot
�p 1þ �ptadv

	 

exp ��pte

� �
; (32)

where �p is given by

�p ¼
� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4#

p
2#

with

� ¼ tadv þ
mo�

o
im

�tot
tadv � teð Þ;

# ¼ mo�
o
im

�tot
tadv te:

(33)

[66] This relationship between Ccrit and the necessary te
to reduce the risk to its minimum expression is shown in

Figure 8. Here te is normalized by tadv. In Figure 8, we can
clearly distinguish two separate regimes. For te < tadv , Ccrit

rapidly decreases following a power-law behavior with a
slope of �2. Once te > tadv the slope changes to a value of
�1, and the time needed to reduce the risk increases. This
is consistent with our conceptual model of mass transfer. If
mass transfer is important and critical concentrations are
relatively large, then it is possible to cleanup the aquifer by
direct pumping. However, for very toxic contaminants with
small Ccrit values, the mass remaining in the immobile
regions becomes critical, ultimately increasing the time
needed for pumping.

[67] Up to now, results were obtained for a young conta-
minated site. Now we compare an old contaminated site
versus a young contaminated site. In the case of an old con-
taminated site, the approach used to obtain pc and
Pr C1 > Ccrit½ � is analogous with the exception that we
employ equation (18) as a starting point.

[68] To determine the initial concentration Co in both
immobile and mobile regions for the old contaminated site
scenario based on the data given in Table 1, we use
M¼Co�R2b	 ¼ Qmo (where M denotes mass). For the pa-
rameters used, this gives Co¼ 0.018 kg m�3.

[69] Figure 9 compares pc for old contaminated sites
against young contaminated sites at te¼ tadv. Notably, old
contaminations are shown to be difficult to cleanup, having
large C1 occurs with greatest probability. The C1-PDF
still shows the U shape with two asymptotes. The left as-
ymptote remains almost the same as for young contami-
nated sites. It corresponds to large mass transfer
coefficients (fully mixed system) in which the immobile
region does not effectively exist.

[70] Figure 10 shows how the risk varies with te for an
old and young site contaminated by a toxic compound of
Ccrit¼ 0.05 mg L�1. As expected, an old contaminated site
poses a more severe contamination problem with a higher
risk of C1 exceeding Ccrit. As expected, results show that
an old contaminated site will require longer pumping times
to reach the same level of risk.

5.2.3. Accounting for Uncertainty in Other
Parameters

[71] Results obtained so far only consider one source of
uncertainty in �o. In practice, other important parameters
such as the initial mass and/or the volume affected by the

Figure 7. Risk versus the end-time of pumping te (days)
for different Ccrit (mg L�1). Risk is defined as
Pr C1 � Ccrit½ � (see equation (1)).

Figure 8. Illustrating the dependency between the critical
concentration and the normalized end-time of pumping (te/
tadv) for different values of the zeroth-order moment of the
breakthrough curve mo (h kg m�3). Results show the
changes of the slope when te approaches tadv.

Figure 9. PDF for the rebound concentration pc C1ð Þ for
an old and young contaminated site (see equations (15) and
(18)).
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pollution may also be uncertain. In those cases, the method-
ology remains the same with a slight modification in the
rule of random variable transformation. Let us consider
that the field capacity 
 ¼ �im =�tot is also uncertain. To
illustrate this, let us also assume that �o and 
 are two inde-
pendent random variables. Furthermore, for the sake of
simplicity, we consider 
 be uniformly distributed between

min and 
max with PDF p
 
ð Þ. Under these conditions, we
can formulate the following PDF for C1 :

pc C1ð Þ ¼ 1


max � 
min

Z 
max


min

��� @

@�o
C1 a1 C1;
ð Þð Þ½ �

����1

	 p� a1 C1ð Þð Þd
 þ 1


max � 
min

Z 
max


min

	
��� @

@�o
C1 a2 C1;
ð Þð Þ½ �

����1
p� a2 C1ð Þð Þd
:

(34)

[72] It is important to note that other types of distribu-
tions for the uncertain parameters can be used. Depending
on the complexity of the uncertain parameter PDF, numeri-
cal integration may be required. Therefore, the procedure
described in this paper is not limited to our choice of prior.
As will be shown in the next section, the choice of the prior
PDF is crucial. The method above can also take into
account multiple-correlated random variables.

6. Application and Field Data

[73] In this section, we aim to show the potential of the
risk-based probabilistic framework and how it could be
used in applications. Here we test the performance of the
simple risk-based concentration rebound model described
in the previous sections against field data. The data used for
comparison are taken from a controlled pulsed pump-and-
treat remediation field experiment performed at the Dover
Air Force Base, USA [MacKay et al., 2000]. The aquifer
consists of a medium-to-coarse sand, sometimes intermixed
with clay lenses. The bottom of the aquifer overlies an
aquitard that separates the Columbia and Frederica aqui-
fers. The experimental site contains several dissolved
plumes that occurred due to the depletion of an upgradient
dense nonaqueous phase liquid (DNAPL) source contami-

nation believed to have occurred 25–50 years before the
experiment.

[74] The experiment was designed to investigate the effi-
ciency and advantages of a pulsed-pumping strategy com-
pared to continuous extraction during the application of a
pump-and-treat remediation scheme. Here, we will focus
only on the pulsed-pumping strategy results to be able to
compare our risk analysis method with the rebound concen-
trations obtained after the pumping cycle. Sheet pile test
cells were used to isolate the plumes in a controlled envi-
ronment. A battery of injection and extraction wells was
then placed inside the cell to flush the system with pumping
cycles. The experiment provides a realistic field setting that
is well suited for our purposes and will allow us to illustrate
the applicability of our probabilistic framework. In this
field experiment, diffusive concentration rebounding from
a less permeable region (mainly the aquitard) was observed
to control the elution curves for PCE, TCE, and c-DCE.
Moreover, the selected experimental site was located far
away from the source zone so that free DNAPL phase was
not present; monitored biotransformation processes were
observed to be negligible for the 9 month duration of the
field experiment. We note that the flow configuration is
fundamentally different from the main scenario previously
presented in this paper. This helps us highlight a strength of
the methodology which essentially depends on travel times
but not on the specific underlying flow configuration.

[75] Figure 19b of MacKay et al. [2000] provides the
breakthrough curve for c-DCE from the Dover Site (prior to
and during the pumping phase and after pumping ceases).
For completeness, Figure 11 replicates the data from Figure
19b of MacKay et al. [2000]. Based on the information
given in MacKay et al. [2000], we were able to obtain rough
estimates for the following parameters that will serve as
inputs for the model. Consistent with the double porosity
approach, the upscaled model considers the coexistence of a
permeable region (the aquifer) and a less permeable region
(the aquitard). The aquifer is approximately 11 m in depth,
while the aquitard thickness is about 2 m. Knowing that the
porosity in the aquifer and the aquitard are about 0.34 and
0.545, respectively, this yields �m � 0.28, �im � 0.08, and
�tot � 0.37. Other relevant parameters estimated from
MacKay et al. [2000] are b � 13 m, te¼ 27 days, and Q �
3.55 m3 d�1. An estimated value mo � 49,600 d mg m�3

was obtained from the c-DCE breakthrough curve (assum-
ing the system was in equilibrium). All the values men-
tioned above were taken from MacKay et al. [2000] or else
inferred from the information found in the text and Figures
17b and 19b of MacKay et al. [2000]. Based on the same
breakthrough curves, the travel time is approximately 10
days, and Co � 5531 mg L�1. The only information that was
not directly available in this paper was the mass transfer
coefficient parameters of the memory function. It is very
important to note that this analysis is only meant to provide
a rough comparison given the absence of more precise in-
formation. It primarily serves to illustrate the probabilistic
risk framework put forth in this work that can be used when
uncertainty prevails. It is under these conditions that proba-
bilistic tools are needed and uncertainty quantification can-
not be ignored [see Rubin, 2003, chaps. 1–2].

[76] Given the lack of additional site information, we opt
to perform the comparison using the single-rate model.

Figure 10. Risk versus the end-time of pumping te (days)
for an old (equation (18)) and young (equation (15)) conta-
minated site for Ccrit¼ 0.05 mg L�1. Risk is defined as
Pr C1 � Ccrit½ � (see equation (1)).
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Using the breakthrough data obtained during the pumping
regime in Figures 17b and 19b of MacKay et al. [2000], we
performed a simple linear fit to estimate the single-rate
mass transfer coefficient. The result of the fitting process
varied since it depends on the number of data points and
the portion of the breakthrough used for the estimation [see
MacKay et al., 2000, Figures 17b and 19b]. The smallest
estimated mass transfer coefficient value was �o � 0.055
d�1, and the largest was �o � 1:15d�1. Because of the
uncertainty in �o, we assume that it is uniformly distrib-
uted, �o � Uniform[0.055,1.15].

[77] Since the Dover Site has been contaminated for
many years, we choose to classify it as an old contaminated
site. Therefore, using the single-rate mass transfer model in
equation (18), we obtain the following solution:

C1 ¼
mo

�tot
�o�

o
im exp ��ot½ � þ tadv�

2
o�

o
im exp ��ot½ �

� �
þCo�

o
im exp ��ot½ � þ tadv�oCo�

o
im exp ��ot½ �:

(35)

[78] We test our probabilistic predictions of C1 against
the temporal statistics of the concentration data from the
resting phase depicted in Figure 11. Specifically, we
depict the mean �c � 9:14 �g L �1

	 

and standard deviation

�c � 3:03 �g L �1Þ
	

of the rebound phase data (see
Figure 11).

[79] Figure 12 depicts the estimated C1-PDF. From the
C1-PDF, we quantified that the probability that C1 lies
within the �c62�c confidence interval is equal to 8%. The
mean value for C1 predicted from the PDF is approxi-
mately equal to 31 mg L�1 and therefore, larger than �c.
This is consistent with the conservative formulation pro-
vided in equation (14). It is worth noting in Figure 12 that
the most probable concentrations occur at the smallest con-
centrations. As shown in Figure 12, the �c and confidence
interval are already in the low probability regime of the
PDF. This PDF also allows us to quantify the probability of
exceeding a critical concentration value, for example, the
Prob[C1 � 7 �g L �1� ¼ 22%, which again demonstrates
that almost 80% of the probable concentrations lie below
this value.

[80] It is very important to note that the results shown
here are entirely conditional on the parameter values esti-
mated and in particular our choice of the prior PDF for �o

(uniform PDF). Uniform distributions are known to be the
least informative type of prior but often used for practical
reasons. The inference of priors is clearly beyond the scope
of this paper, and we refer to Rubin [2003, chap. 13, and
references therein] for more elaborate prior inference meth-
odologies [see also Kitanidis, 1986; Hou and Rubin, 2005;
Kitanidis, 2012]. Better estimates and updates of the �o

prior PDF would improve the performance of the model.
Additionally, our assumption of a single-rate mass transfer
model for this comparison could be relaxed as there is evi-
dence in Figures 17b and 19b of MacKay et al. [2000] that
the memory function would be best characterized by multi-
ple rate mass transfer coefficients.

[81] Summarizing, our purpose in this section is to
illustrate the potential of the probabilistic framework to
estimate rebound concentration and corresponding uncer-
tainties from a risk perspective. Evidently, as more infor-
mation becomes available from the site, estimates of the
model’s input parameters and their corresponding uncer-
tainty will be improved and lead to better predictions. The
performance of the results is attributed to several factors :
(i) we opted for the simplest prior distribution for �o, (ii)
neglected the uncertainty of other input parameters, and
(iii) the choice of the memory function.

7. Summary and Final Remarks

[82] Assessment of the efficiency of any remediation
technology prior to its application in the field is inherently
cumbersome. Among the many difficulties, assessing the
likelihood of occurrence of concentration rebound caused
by back diffusion is a key factor. This fact has led the sci-
entific community to think that the effectiveness of reme-
diation technologies should be evaluated by the risk
reduction that is achieved by their application [Soga et al.,

Figure 11. Data taken from Figure 19b of MacKay et al.
[2000]. The temporal mean �c and standard deviation �c of
the rebound concentration data (rebound phase) are marked.

Figure 12. Rebound concentration PDF. Here �c and �c

correspond to the mean and standard deviation of the
rebound concentration data over the rebound phase marked
in Figure 11. Rebound concentration data were taken from
Figure 19b of MacKay et al. [2000].
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2004]. Our goal was to employ a probabilistic framework
that could be used to design optimal pumping tasks while
accounting for the risk of rebound occurrence. Therefore,
this paper dealt with the widely observed effect of the
increase of registered concentration at the well after pump-
ing ceases in a pump-and-treat remediation effort. The
buildup of the concentration is attributed to the resident
concentration around the well being much larger than the
flux-averaged concentration at the well. While different
processes may account for this phenomenon, we focus on
natural heterogeneity. The role of spatial variability of the
distribution of permeability on transport is modeled by
means of an effective governing equation, i.e., the MRMT
model.

[83] Based on a number of simplifying hypotheses, we
generated a deterministic solution to obtain the concentra-
tion that would be observed at the well after a certain time
te of pumping at a constant rate Q. The medium is charac-
terized by a memory function and some information
regarding the extent of pollution and the history of the con-
taminated site is required. As shown, the closed-form
expressions are flexible and can be implemented within
water resources management framework [Bolster et al.,
2009; de Barros et al., 2011a; Fern�andez-Garcia et al.,
2012]. Furthermore, the solutions presented in this work
could be expanded to account for different types of mem-
ory function and multiple sources of uncertainty.

[84] Within their range of validity, our expressions can
be employed to provide relatively simple a priori risk esti-
mates. This has social, environmental, and economic impli-
cations when applied to real sites. The analytical
expressions derived in this work may serve as a preliminary
screening tool in order to allocate resources toward uncer-
tainty reduction and model refinement (see detailed discus-
sion in de Barros and Rubin [2008] and de Barros et al.
[2011b]). The solutions provided need some information
about the site and the geological formation. Such informa-
tion can be obtained in terms of priors and with additional
sampling can be updated using available statistical infer-
ence tools [e.g., Hou and Rubin, 2005]. In addition, the an-
alytical expressions derived in this work provide the ability
to obtain insights into many of the important factors that
control the evolution of the risk curves. For instance, our
results illustrate the importance that advective time plays in
the risk decay curves as a function of both the target con-
centration (e.g., regulatory based) and the pumping opera-
tional time. We also showed how the risk-based framework
could be used in applications by comparing our conserva-
tive stochastic predictions with field data taken from the
Dover Site.

[85] Finally, we emphasize that the focus of our paper is
not on the MRMT method used to estimate rebound con-
centrations but on the importance of considering within a
single framework the joint effect of (i) the pumping opera-
tion and (ii) uncertainty quantification in estimating the risk
of concentration rebounds. There are several existing meth-
ods [see Neuman and Tartakovsky, 2009, and references
therein] that could be used within the proposed framework.
The drawback of these upscaled models is that most of
them rely on fitting parameters. There is an ongoing
research effort that attempts to link these parameters with
the actual heterogeneity of the aquifer [e.g., Willmann

et al., 2008]. Regardless of the choice of method, this paper
describes a novel risk-based framework for both longtime
rebound concentrations and their corresponding uncertainty
characterization.
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