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Abstract. In this work, a simple and effective Rigid Beam Model is proposed for studying the 

dynamic behaviour of ancient freestanding stone columns. As well known, monolithic and 

multi-drum freestanding columns are historical structural elements typical of ancient temples 

that still can be found in the Mediterranean area. These columns are particularly prone to 

collapse in case of seismic actions. The dynamic behaviour of freestanding columns has been 

studied by many authors in the past [1-3], and it is characterized by a strong nonlinearity due 

to sliding and rocking between the drums. The Rigid Beam Model here described assumes each 

drum of the column as a rigid beam element and each interface between the drums as a node 

of the model able to move horizontally. Similar to Housner [1] approach, this model assumes 

small displacements and no sliding between blocks. Furthermore, the material nonlinearity is 

considered by means of a moment-rotation constitutive law slightly modified with respect to the 

bilinear one introduced by Housner. Numerical simulations were performed on monolithic and 

multi-drum columns modelled using the proposed Rigid Beam Model approach. Results are 

compared against simulations of the same columns undertaken by means of the Discrete 

Element Model, which is able to consider large displacements and the possible sliding between 

the drums, and it has already proven its effectiveness in simulating column behaviour [2-4]. 

1 INTRODUCTION 

Monolithic and multi-drum stone columns are structural elements typical of ancient 

monuments of the Mediterranean area, built, among the others, by Roman, Greek, and Egyptian 

civilizations. In the current days, such columns can be often found in freestanding condition, 

given that the original buildings had been fully or partially destroyed by past earthquakes and 

other natural or anthropic events. Even if these structural elements survived up to current days, 
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they are still subjected to seismic actions and they are prone to collapse. 

The analytical and numerical assessment of the dynamic behavior of monolithic and multi-drum 

columns was studied by many researchers (see for instance the references collected in [4]). In 

particular, the pioneering analytical model proposed by Housner [1] is the first contribution that 

studied the behavior and the possible overturning of a single rigid block subjected to different 

types of horizontal actions. The subsequent research activities focused on the assessment of the 

dynamic behavior of monolithic elements by means of accurate numerical models and with 

laboratory experiments. Some other research activities focused on the analytical assessment of 

the dynamic behavior of columns made of a limited number of drums, whereas most of the 

research activities were dedicated to the use of more or less accurate numerical models for 

simulating the dynamic behavior of multi-drum columns and more complex stone structures 

(namely buttresses, arches on columns, trilithic structures). Among the different numerical 

models adopted for studying monolithic and multi-drum columns, the Discrete Element Method 

(DEM), introduced for the analysis of soils and rocks [6], has been extensively used, due to the 

possibility of modelling the column drums as distinct elements, with the possibility to apply 

dynamic excitations and achieve large displacements. 

In this work, a simple and effective numerical Rigid Beam Model, already introduced by 

authors [5] for studying the dynamic behavior of both monolithic and multi-drum columns, is 

further investigated. The model considers a multi-drum column as an assemblage of vertically 

aligned rigid beam elements, with each drum represented by a beam element and each interface 

represented by a node. Small displacements are considered, and no sliding is assumed at 

interface level. The effectiveness of the Rigid Beam Model is further validated here by 

simulating the numerical tests on rigid blocks subjected to harmonic excitations performed by 

Spanos and Koh [7], and also by applying a half sine-wave ground excitation for reproducing 

one of the solutions proposed by Housner [1]. Furthermore, a comparison between the results 

from harmonic analyses on slender monolithic and multi-drum columns obtained from the 

Rigid Beam Model and the two-dimensional (2D) Discrete Element (DE) code UDEC [8] are 

provided. 

2 RIGID BEAM MODEL 

As stated in the introduction, the Rigid Beam Model was introduced by authors in a recent 

contribution [5] for representing a generic multi-drum column made of n blocks or drums on a 

rigid ground, having overall height H, lower base width or diameter B1 and upper width or 

diameter Bn (Figure 1a). The rigid beam model is defined by assuming a rigid beam element 

for each drum of the column and considering n+1 nodes at beam element ends, representing the 

interfaces between the drums (Figure 1b). Sliding between the drums is neglected; hence, the 

degrees of freedom of the rigid beam model are given by horizontal nodal translations, 

velocities and accelerations ui, iuɺ  and iuɺɺ , respectively (Figure 1b). Small displacements are 

also assumed, hence a generic beam element can be subjected to a rigid rotation depending only 

on upper and lower nodal displacements and element height: 1( ) /i i i iu u hθ
+

= − . Each beam 

element is also characterized by a mass mi and by the corresponding weight Pi. 
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Figure 1: Multi-drum column (a), corresponding rigid beam model (b), i-th beam element (c) 

The typical internal forces of the beam element, namely a normal force, a shear force, and a 

moment Ni, Ti, and Mi, respectively, act at each beam end (Figure 1c). The translational and 

rotational equations of motion for a beam element may be written as follows: 

 1 1

1 1

( ) / 2

( ) / 2

i i i i i

Gi i i i i i i

m u u T T

I M M T T hθ

+ +

+ +

+ = −

= − + + +

ɺɺ ɺɺ

ɺɺ
 (1) 

where IGi is the polar inertia of the drum corresponding to the beam element. The static 

equilibrium in vertical direction is given by: 

 1i i iP N N
+

= −  (2) 

If the column is subjected to a horizontal ground acceleration ag(t), equations of motion (1) are 

subjected to the following boundary conditions at column base and top nodes: 
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 (3) 

and the equations of motion (1) for the whole column can be written in matrix form as follows: 

 
a g

G g

= −

= + −

T M u A

M GT I u B

ɺɺ

ɺɺ
 (4) 

where vectors T and M are nodal shear forces and moments from node i to n: T = [T1 T2 … 

Tn]
T, M = [M1 M2 ... Mn]

T; vector uɺɺ  is horizontal accelerations from node 2 to n+1: 

2 3 1[ ... ]T

nu u u
+

=uɺɺ ɺɺ ɺɺ ɺɺ . Ma, G, and IG can be defined, respectively, as mass coefficient matrix, 

geometric coefficient matrix, and polar inertia coefficient matrix. Ag is a vector characterized 

by null values except the first component, representing the acceleration at the base of the 

column: Ag = [ag(t)m1/2 0 ... 0 0]T; and, similarly, Bg = [ag(t)IG1/h1 0 ... 0 0]T. Substituting the 

H

B1

Bn

Bi

n

i

1
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expression of T in the expression of M, a system of differential equations to be solved for 

determining the displacements of the multi-drum column is obtained: 

 
a g G g= − + −M GM u GA I u Bɺɺ ɺɺ  (5) 

where M=M(θ), since each moment Mi is assumed to depend on the rotation θi of the 

corresponding i-th drum by means of a bi- or tri-linear moment-rotation constitutive law, which 

represents the stabilizing moment for varying block rotation (Figure 2), and it is slightly 

modified with respect to Housner law by means of an initial elastic bending stiffness KM,i and 

a smoothing parameter ξ ≤ 1 for reducing the stabilizing moment Mu,i at each interface: 

 
,

( / 2)
n

u i i j

j i

M B P
=

=   (6) 

The system of differential equations in (5) is solved by means of a Runge-Kutta ODE solver. 

 

Figure 2: Moment-rotation constitutive law 

3 NUMERICAL TESTS 

Several numerical tests were performed in order to evaluate the effectiveness of the proposed 

Rigid Beam Model in simulating the dynamic behavior of freestanding monolithic and multi-

drum columns, with respect to existing numerical and analytical solutions. For instance, the 

numerical tests performed by Spanos and Koh [7] on simple rectangular monolithic blocks 

subjected to harmonic excitations were considered. Then, the slender column type already 

adopted by authors in past contributions [4-5] was taken into consideration and a simple half-

sine wave excitation and a harmonic one were applied to the ground in order to evaluate the 

columns’ dynamic behavior modelled with Rigid Beams and compared both with Housner 

solution and numerical results obtained from DEM. 

3.1 Monolithic blocks and columns subjected to harmonic excitations 

The numerical tests performed by Spanos and Koh [7] on monolithic rectangular columns 

were considered in this study. A slender and a thick column, having height to width ratio H/B 

equal to 4 and 2, were subjected to harmonic excitations with varying input frequency and 

acceleration amplitude. Such specimens were reproduced by means of the proposed Rigid Beam 

Model and considering a single rigid beam element. Harmonic excitations were applied for 10 

seconds. Starting with the slender column case, Figure 3 shows several deformed configurations 

KM,i

ξMu,i

Mi

θi

Mu,i

αi
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at the end of the numerical tests and Figure 4 collects base and top horizontal displacements 

versus time. Both the deformed configurations and the horizontal displacements at the top show 

overturning conditions obtained with 0.5g and 0.5Hz and 1Hz. More information about the 

possible overturning of the column are collected in Figure 5, which shows the safe-unsafe 

domain obtained with the Rigid Beam Model compared with that obtained by Spanos and Koh 

[7], who assumed in this case a restitution coefficient close to 1. Probably due to this condition, 

the two safe-unsafe-domains are in excellent agreement, both starting with a collapse 

acceleration equal to 0.25g, corresponding to the static load multiplier for overturning the 

column, and with an increasing collapse acceleration for increasing frequency, up to 1.5g with 

2Hz. 

 0.5 Hz 1.0 Hz 2.0 Hz 

0
.2

 g
 

   

0
.5

 g
 

   

Figure 3: Deformed configurations for a slender monolithic rectangular column (H/B = 4) subjected to several 

harmonic excitations 
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Figure 2: Base (red continuous line) and top (black dashed line) displacements for a slender monolithic 

rectangular column (H/B = 4) subjected to several harmonic excitations 
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Figure 3: Safe-unsafe domain for a slender monolithic column (H/B = 4) subjected to harmonic excitations 

Focusing then on the thick column case modelled with the proposed Rigid Beam Model, Figure 

6 shows the deformed configurations at the end of the harmonic tests with several values of 

acceleration and frequency. Also Figure 7 shows the column top and base displacements for the 

same frequency and acceleration values as before. Overturning conditions in this case were 

obtained with 0.5g and 1Hz and with 1.0g with frequency values less than 1Hz. 
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Figure 6: Deformed configurations for a thick monolithic rectangular column (H/B = 2) subjected to several 

harmonic excitations 



Daniele Baraldi, Gabriele Milani and Vasilis Sarhosis 

 7

  0.5 Hz 1.0 Hz 2.0 Hz 
0
.2

 g
 

d
 [

m
] 

   

0
.5

 g
 

d
 [

m
] 

   

1
.0

 g
 

d
 [

m
] 

   
  time [s] time [s] time [s] 

Figure 7: Base (red continuous line) and top (black dashed line) displacements for a thick monolithic rectangular 

column (H/B = 2) subjected to several harmonic excitations 

 

Figure 8: Safe-unsafe domain for a thick monolithic column subjected to harmonic excitations 

Figure 8 shows the safe-unsafe domain obtained with the Rigid Beam Model, which is 

significantly different with respect to that obtained by Spanos and Koh [7], probably due to the 

small H/B ratio of the case study considered, and also due to the restitution factor close to 0.5 



Daniele Baraldi, Gabriele Milani and Vasilis Sarhosis 

 8

adopted in the reference work. In this case, both domains are characterized by a collapse 

acceleration equal to 0.5g for small frequency values, which is correctly coincident with the 

static collapse multiplier of the thick column. For increasing frequency, the Rigid Beam Model 

allows to obtain overturning accelerations increasing to 1g with 2Hz and 1.5g close to 3Hz, 

whereas the collapse acceleration values obtained by Spanos and Koh increase rapidly to 1.5g 

close to 1Hz. 

3.2 Monolithic columns subjected to half-sine wave excitations 

The slender monolithic column already considered by authors in the previous research [4-5] 

is here adopted for further validating the proposed Rigid Beam Model. The column has an 

overall height H=5 m, and lower and upper base width B1=0.96 m, Bn=0.66 m. A simple half 

sine wave base excitation is applied to column base by varying the amplitude and the 

wavelength of the excitation. Overturning accelerations obtained with the proposed model are 

compared with the well-known Housner solution [1]. For this purpose, the smoothing parameter 

of the moment-rotation relationship is assumed equal to 1, together with an infinite bending 

interface stiffness between the ground and the column. 

 

Figure 9: Safe-unsafe domain for a slender monolithic column subjected to half sine-wave excitations 

Numerical results obtained with the Rigid Beam Model are in excellent agreement with 

Housner solution, except for a frequency range between 0.3 and 0.7Hz, characterized by smaller 

collapse accelerations obtained numerically with respect to the analytic solution. These results 

are collected in Figure 9. 

3.3 Monolithic columns subjected to harmonic excitations 

The numerical tests on the slender monolithic column already considered by authors are here 

updated by adding the column configurations at the end of the analyses or close to the end 

obtained with the Rigid Beam Model. Collapse mechanisms are evident since they are 

characterized by large rigid rotations of the column with respect to its base (Figure 10). 
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Figure 10: Deformed configurations for a monolithic column subjected to several harmonic excitations 

The safe-unsafe domain obtained with the Rigid Beam Model, compared with that obtained 

with a standard DEM which allows both sliding and rocking of interfaces, shows that the 

hypothesis of no interface sliding influences the dynamic behavior of a monolithic column, 

since it reduces the collapse acceleration values for increasing input frequency (Figure 12a). 

3.4 Multi-drum columns subjected to harmonic excitations 

Similarly to the previous sub-section, the numerical tests on the slender multi-drum column 

equivalent to the monolithic one already considered by authors [4-5] are here updated by adding 

the column configurations at the end of the analyses or close to the end obtained with the Rigid 

Beam Model. Collapse mechanisms are evident since they are characterized by large rigid 

rotations of an upper part of the column or of the entire column with respect to its base (Figure 

11). The safe-unsafe domain obtained with the Rigid Beam Model is slightly updated with 

further results with respect to the previous proposed results; however, the multi-drum column 

modelled by means of the Rigid Beam Model is still characterized by small acceleration 

amplitudes with respect to DEM results, and such amplitudes slightly increase for increasing 

input frequency (Figure 12b). 
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Figure 11: Deformed configurations for a multi-drum column subjected to several harmonic excitations 
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a  b 

Figure 12: Safe-unsafe domain for a slender monolithic column (a) and an equivalent multi-drum column (b) 

subjected to harmonic excitations 

4 CONCLUSIONS 

A simple and effective Rigid Beam Model, recently introduced by authors for studying the 

dynamic behavior of freestanding monolithic and multi-drum columns [5], has been further 

investigated with several numerical tests. The model assumes each drum of the column as a 

rigid beam element and each joint between the drums as a node, in which are lumped the 

horizontal degrees of freedom of the model. A bi or tri-linear moment-rotation nonlinear law at 

each joint is also assumed, whereas sliding is neglected. The proposed model turned out to be 

in excellent agreement with the results of the harmonic analyses performed by Spanos and Koh 

[6] with the slender column case (H/B = 4), whereas a not so good agreement has been obtained 

with the thick column case (H/B = 2), probably due to the small restitution factor adopted in the 

reference work. The simple case of a ground excitation given by a half sine-wave proposed by 

Housner [1] has been successfully simulated by the proposed model. Finally, the sufficient 

agreement of the Rigid Beam Model with respect to the DEM, already showed by authors [5], 

has been further detailed by performing more harmonic tests on the multi-drum column. 

Further developments of the proposed Rigid Beam Model will regard the further comparisons 

with existing numerical and laboratory results, by considering in some cases real ground 

motions on monolithic and multi-drum columns. 
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