
3D numerical simulation of free-surface Bingham uids interacting with
structures using the PFEM

Alessandro Franci a,b,∗, Xue Zhang a,c
a International forCenter Numerical Methods Engineeringin (CIMNE), Spain
b Universitat Politècnica (UPC) 08034, Spainde Catalunya Gran Capitán Campus Nortes/n, UPC, Barcelona
c Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool, United Kingdom

       

This approach Bingham free-surface interaction withpaper presents purely Lagrangiana for the 3D simulation of uids and their deformable solid structures.
In the the is the Particle Element theproposed strategy,numerical uid handled using Finite Method (PFEM) to tackle issues resulting changesfrom extreme of
geometry, techniquesuch as asmesh free-surfacedistortion and evolution. Additionally, the Papanastasiou model is employed a regularization to overcome the
computational diculties associated with classical Bingham hypoelasticthe model. the is theThe solid structure, on other hand, represented by constitutive model
and andsimulated (FEM). uidusing Methodthe conventional Finite Element The coupling between the the is calledstructure achieved approach,via a monolithic
Unied correctness proposedformulation. Several tonumerical presentedexamples are illustrate the and the therobustness of formulation, in 2D inand 3D. Special
attention to computational regularization resultsis devoted the the theanalysis of convergence behavior of proposed framework, eectthe of the on the numerical
and detailed and data that andthe 3D eects. Moreover, comparisons between the simulated results experimental are performed so the concerned problems results
can benchmarks.serve as

1. Introduction

This forwork a three-dimensionalpresents (3D) numerical method
the simulation and withof free-surface Bingham uids their interaction
elastic structures.

The Bingham model [8] is one of the most studied and used non-
Newtonian law [2]. It has so-far been applied to the simulation of a 
wide range of engineering problems, such as debris ows [42,57,68], 
landslides [16,61], snow avalanches [9,18], mud ows [36,39] and 
fresh cement slump tests [14]. The attractiveness of the Bingham model 
lies in its simplicity and generality. Indeed, the Bingham material be-
haves like a solid under a threshold stress value, whereas, when the 
yield stress is exceeded, it starts to ow as a uid. Owing to this fea-
ture, the Bingham model is very popular for simulating uid solutions 
with solid/rigid particle suspension. Nevertheless, the single-phase ap-
proximation of multi-phase materials is reasonable only under certain 
conditions, for example when a macroscopic phase segregation is not 
produced [30,34,53]. From the computational point of view, the main 
drawbacks of the Bingham law are associated with its piecewise relation 
between the deviatoric stress and the strain rate, and the indeterminate 
value of stress under the yield stress limit. Notably, the use of the more 
general Herschel-Bulkley model [25] does not help to avoid this com-
putational diculty. For this reason, a regularized Bingham model has 
been used in this work. In the last decades, several regularized Bing-
ham methods have been proposed, such as the augmented Lagrangian 
approach [18,21,56], the biviscous model [18], and the regularization

∗ Corresponding author.
E-mail address: falessandro@cimne.upc.edu (A. Franci).

strategies proposed by Bercovier and Engelman [7] and Papanastasiou 
[52]. The Papanastasiou model succeeds in regularizing the Bingham 
model with good accuracy, when appropriate values of the regulariza-
tion parameter are used. Although the method suers from some nu-
merical inconveniences (e.g. the ill-conditioning of the linear system 
[62] and the incapability of reproducing the quiescent state when the
uid is at rest [45]), the Papanastasiou model is still one of the most 
used regularization methods, due to the easiness of its implementation 
in uid dynamic solvers. The Papanastasiou model has been applied to a 
wide range of engineering problems successfully, e.g. in [1,14,43,44,64]. 
These considerations have motivated the use of this regularized method 
in the present study.

In particular, the Papanastasiou model has been implemented into a 
three-dimensional (3D) Particle Finite Element Method (PFEM) frame-
work for free-surface uid dynamics [49]. The numerical simulation 
of a free-surface uid is complex because of the continuous evolution 
of its boundaries. In case of using an Eulerian solving strategy, this 
must be complemented by a specic technique capable of tracking the
uid free-surface at each analysis step, such as Level Set method [9] or 
Volume Of Fluid (VOF) [37]. On the contrary, Lagrangian strategies, 
computing at the material points and updating continuously their po-
sitions, detect automatically the free-surface of the uid. Nevertheless, 
a Lagrangian mesh cannot solve large deformation processes [72] be-
cause of the mesh distortion. Generally, there are three possible ways 
to overcome this inconvenience: to avoid the use of a computational 
mesh, to use an hybrid Eulerian/Lagrangian strategy, or to remesh.

https://doi.org/10.1016/j.jnnfm.2018.05.001
Received 29 January 2018; Received in revised form 27 March 2018; Accepted 2 May 2018 
Available online 3 May 2018
0377-0257/© 2018 Elsevier B.V. All rights reserved.



The Smoothed-Particle Hydrodynamics (SPH) [38] belongs to the rst 
category. See [26,40,54,63] for the application of this mesh-less method 
to landslides and mud ows simulations. On the other hand, both the 
Material Point Method (MPM) [66] and the PFEM2 [4] t in the second 
class. These approaches use an Eulerian xed mesh for computation, 
while a cloud of Largangian particles allows for tracking the deform-
ing computational domain. For applications of the MPM and PFEM2 to 
landslide simulations refer to [3,55] and [5], respectively. Finally, the 
PFEM [50] adopts the latter strategy, that is to regenerate completely 
the mesh when it reaches a prearranged threshold of distortion. The 
PFEM has been already applied in the past for the simulation of nat-
ural hazards involving geophysical free-surface uids, see for example 
[15,32].

The PFEM is based on an ecient remeshing strategy, which allows 
to dispose a good nite element mesh throughout the duration of the 
computation, even when highly deforming bodies are involved. In addi-
tion, the PFEM remeshing strategy allows to detect the contact between
uid and solid domains. This is of paramount importance for solving
uid-structure interaction (FSI) problems. In this work, the FSI solution 
is obtained through a monolithic strategy, called Unied formulation 
[23]. The method is derived by the original algorithm presented in [28]. 
The main idea of the Unied formulation is to compute uids and solids 
according to the same Updated Lagrangian Velocity-Pressure implicit 
solver. However, while the uid parts of the domain are remeshed with 
the PFEM, the structural parts maintain the same mesh for all the du-
ration of the analysis and are solved with the standard Finite Element 
Method (FEM). This is done to avoid the introduction of interpolation 
errors into the solid historical variables computation.

To the best of the authors’ knowledge, in the literature there are 
very few solvers for non-Newtonian free-surface uids interacting with 
deformable structures, and even less are those capable of tackling 3D 
geometries. In [33], the Lattice–Boltzmann Method (LBM) [65] is used 
to simulate the impact of geophysical ows against rigid walls. An hy-
brid Discrete Element Method (DEM)-LBM-FEM has been employed in 
[35] to reproduce the debris ow impact over a exible and permeable 
barrier. A similar problem has been analyzed in [46] with an Arbitrary 
Lagrangian-Eulerian (ALE) formulation and the nite element software 
LS-DYNA. Finally, in [31] and [17] the impact of a debris ow over a 
ring net metallic barrier and highly sti elastic obstacles, respectively, 
has been studied numerically. This general lack of numerical formula-
tions is accompanied by an even more poor literature of experimental 
tests analyzing the impact of non-Newtonian uids over deformable bar-
riers.

This work aims to ll the vacuum in this important eld, by present-
ing and fora robust accurate numerical framework computing the inter-
action Binghambetween free-surface structures,uids elasticand and
by proposing numericalsome easy-to-reproduce tests for benchmark-
ing and2D 3D FSI Insolvers eld.applied sameto the order to show
the the theapplicability of formulation to real engineering problems,
numerical geome-examples been consideringhave solved the actual 3D
tries numerical analysesof the tests.laboratory The include the simula-
tion of oftwo fresh tests, theconcrete slump study a bentonite solution
ow ofover impactan inclined plane with/without the a falling object,
and a highlyseries of dam break against an deformable structure ana-
lyzed The resultsfor dierent values of the yield stress. numerical have
been compared either otherto those obtained by laboratory tests or by
numerical numerical are toformulations. The examples also used test
several crucial issues method,of the computational such as the mesh
and and stabilizationthe convergencenon-linear the theeect of pa-
rameter numericalon the results. A special has beenattention deserved
to to planethe the eectsanalysis of 3D and the thevalidity of strain
assumption.

The structure of the article is the following. Section 2 is dedicated 
to the governing equations of the problem and the used constitutive 
laws. Then, in Section 3 the essential features of the PFEM are recalled 
and in Section 4 the FSI solution scheme is described. Section 5 is

devoted to the numerical simulations and their validation. Finally, in 
Section 6 the conclusions of the work are summarized.

2. Governing equations

The problemgoverning equations of the consist of the balance of
linear andmomentum the mass conservation. Considering an Updated
Lagrangian framework, readthese equations respectively as

𝜌�̇� 𝝈 𝒃−▽ ⋅ − = 𝟎 in Ω × (0, 𝑡) (1)

1

𝜅
�̇� −▽ ⋅ 𝒗 = 0 in Ω × (0, 𝑡) (2)

where vector,𝜌 is isthe thedensity of material, 𝒗 the velocity 𝝈 is the
Cauchy the thestress tensor, 𝒃 is body volume,force per unit of 𝜅 is
material andbulk modulus p is the pressure. theFinally, Ω denotes up-
dated/deformed computational domain, time. thatand t is the Note the
pressure is indened as positive tensile state.

The mass balance equation (Eq. (2)) is here solved in the quasi-
incompressible form, as originally proposed in [28,60]. In order to re-
cover the standard Navier-Stokes problem, an innite material bulk 
modulus should be considered, resulting in the fully-incompressible 
form of the mass balance equation (▽ ⋅ 𝒗 = 0).

The complementedgoverning equations are by the following bound-
ary conditions

𝑣𝑖 − 𝑣
𝑝

𝑖
= 0 Γon 𝑣

𝜎𝑖𝑗𝑛𝑗 − 𝑡
𝑝

𝑖
= 0 Γon 𝑡 (3)

where 𝑣𝑝
𝑖
and 𝑡

𝑝

𝑖
are velocities tractionsthe and prescribed Dirich-at the

let (Γv) (and Neumann Γt) boundaries, respectively, and n is the normal
vector.

2.1. Constitutive laws

For incompressible materials, it is useful to split the Cauchy stress
tensor into deviatoric volumetricits and parts as follows

𝝈 𝝉= + 𝑝𝟏 (4)

where part second order tensor.𝝉 is the deviatoric and 1 is the identity
For unidimensional deviatoric Binghama steady shear, the stress of a

uid is dened as

𝜏𝑥𝑦 = 𝜏0 + 𝜇
𝜕𝑣𝑥

𝜕𝑦
for 𝜏𝑥𝑦

 ≥ 𝜏0

𝜕𝑣𝑥

𝜕𝑦
= 0 for 𝜏𝑥𝑦

 < 𝜏0 (5)

where 𝜏0 is isthe shear yield stress and 𝜇 the dynamic viscosity.
In this work, a regularized Bingham law, namely the Papanastasiou 

model [52], is used in order to overcome the computational dicul-
ties arisen by the non-smooth law described in Eq.(5). According to the 
Papanastasiou 3D model, the deviatoric stresses are computed as

𝝉 = 2


𝜇 +

𝜏0

�̇�

1 − 𝑒−𝑚 �̇� 


𝒅 (6)

wherem is isthe regularization parameter, d the deformation rate tensor
dened as

𝒅 =
1

2


▽𝒗 +


▽𝒗

𝑇 
(7)

and �̇� is the equivalent strain rate computed from the deformation rate
tensor d as

�̇� = (2 ∶𝒅 𝒅 )
1
2 (8)

From a comparison between Eqs. (5) and (6), it arises that the Papanas-
tasiou model, unlike Bingham not capablethe law, is of reproducing the
rigid behavior. As uid ow,a consequence, the although it can reach



an almost static state, it cannot stop completely. However, the uid may 
reach such small velocities that it can be considered at rest from an en-
gineering perspective, as it will be shown in Section 5. In this sense, the 
regularization parameter has a key role for the approximation of the 
Bingham curve for small values of the shear strain rate. As it is shown 
in Fig. 1, the higher is m, the better is the approximation of the rigid 
behavior of the original Bingham model. The eect of the regulariza-
tion parameter on the numerical results will be analyzed and shown in 
a couple of problems studied in Section 5. Note that m has the dimension 
of the time. However, for simplicity, in the following the dimension of 
m will be omitted.

It is remarkable that the Papanastasiou regularized law can describe 
both Newtonian and non-Newtonian behaviors. For example, the New-
tonian law (𝝈 = 2𝜇𝒅 + 𝑝𝟏) is obtained if a null shear yield stress is con-
sidered in Eq. (6).

For the solid parts of the computational domain, an hypoelastic law 
is used. Considering the Jaumann measure, the rate of the Cauchy stress 
tensor 𝝈▽ is computed from the deformation rate tensor as [6]

𝝈▽ = 𝒄▽𝐽 ∶ 𝒅 (9)

where fourth-orderthe tensor c▽J is the Jaumann tangent moduli
which, for an asisotropic material, is dened

𝒄▽𝐽 = +2𝜅 ⊗𝟏 𝟏 𝐺𝐈′ (10)

where shear fourth-orderG is the modulus and I′ ais tensor computed
as

𝐈 ′ = −𝐈
1

3
𝟏 𝟏⊗ (11)

with I being the fourth-order tensor.symmetric identity
The rate of Cauchy stress 𝝈▽ is then integrated in time according to 

the scheme described in [24] to obtain the Cauchy stress of the solid.

2.2. Discretized problem

The governing equations of the problem, Eqs. (1) and (2), are dis-
cretized in the standard nite element fashion. Applying a Galerkin 
isoparametric discretization of the four nodal unknowns of the prob-lem, 
i.e. three components of nodal velocities 𝒗 ̄and the nodal pressure �̄�, the 
semi-discretized form of Eqs. (1) and (2) at the time instant 𝑡𝑛+1 reads

𝑴𝜌
̇̄𝒗
𝑛+1

+𝑲�̄�𝑛+1 − 𝑭 𝑛+1 = 𝟎 (12)

𝑴𝜅
̇̄𝒑
𝑛+1

−𝑸�̄�𝑛+1 = 𝟎 (13)

whereM𝜌 is isthe mass matrix, K the stiness-type matrix that contains
the the vector.constitutive information, and F is external force The ma-
trix M𝜅 has the same structure as M𝜌 however it depends on the bulk
modulus thanrather the the divergencedensity, and Q is discretized
operator.

Fig. 1. Papanastasiou approximation val-of Bingham curve for three dierent
ues (of regularization parameter m 𝜏0 = =50𝑃 𝜇𝑎, 20𝑃𝑎 𝑠⋅ ).

Linear shape functions are used for approximating both the velocity 
and the pressure elds. In case of dealing with incompressible materials, 
this combination does not fulll the so-called Ladyzenskaja–Babuska–
Brezzi (LBB) condition [10] and the problem needs to be stabilized. 
In this work, the so-called Finite Increment Calculus (FIC) stabilization 
strategy [49] has been used. The method modies the continuity equa-
tion in a consistent way to stabilize the problem. Details of this method 
can be found in [49].

The nodal accelerations in Eq. (12) are computed according to the 
implicit Newmark integration rule [6] as

̇̄𝒗
𝑛+1

=
2

Δ𝑡


�̄�𝑛+1 − �̄�𝑛


− ̇̄𝒗

𝑛
(14)

where Δt is the time increment.
The variation on time of nodal pressures of Eq. (13) is computed as

̇̄𝒑
𝑛+1

=
�̄�𝑛+1 − �̄�

𝑛

Δ𝑡
(15)

The stabilized and fully-discretized form of Eqs. (12) and (13) as well as 
the implicit solution scheme are reported in Appendix A. At each time 
step the solution is obtained by a two-step iterative process. More speci
cally (see also Fig. 2), the increment of the nodal velocities Δ𝒗 ̄ isrst 
resolved according to Eq. (12). Then, after updating the kinematic 
variables, the nodal pressures 𝒑 ̄ are obtained from Eq. (13). Iterations 
are performed until the following convergence criterion is fullled for 
both the velocity and the pressure elds

𝑒𝑎 =
𝑎𝑖+1 − 𝑎𝑖


𝑎𝑖

< 0.0001 (16)

where ea is the theerror associated to variable a, and subindices refer
to the considered non-linear iteration.

3. PFEM Bases

The Particle Finite Element Method (PFEM) is a Lagrangian strat-
egy suitable for large deformation problems. The PFEM was originally 
proposed to solve Newtonian uid dynamics problems involving free-
surface [29]. In the last decade, the method has been applied to a wide 
range of engineering problems, such as granular ows [69], melting of 
polymers [51], uid-structure interaction (FSI) [71], uid-soil interac-
tion [48] and landslides [16,61]. The Lagrangian nature of the PFEM 
enables to capture the computational domain accurately regardless of 
the extreme deformation. Meanwhile, the ecient remeshing algorithm

Fig. 2. Schematic generic step.representation iterativeof the solution of a time
The solution.subindex i represents the the implicititeration number of



Fig. 3. Solution scheme generic remeshing.for a step with

ensures the mesh the thepreservation of quality for all duration of anal-
ysis.

Once the nodal positions are updated according to the FEM solu-
tion (obtained in this approach as shown in Fig. 2), the quality of the 
Lagrangian discretization is checked. If the mesh has reached a dis-
tortion level higher than an imposed threshold, a new discretization 
is built. This is done by applying serially the Delaunay Triangulation 
(DT) [20] and the Alpha Shape (AS) method [19]. The DT rebuilds the 
discretization ensuring an high quality tessellation. For example in 2D 
meshes, it maximizes the minimum inner angle and minimizes the max-
imum one of each triangle. On the other hand, the AS method allows 
for the recognition of the physical boundaries of the domain. The AS 
method performs an elemental check for each simplex of the mesh. In 
particular, the element is erased from the discretization if the following 
condition is not veried

𝑅 < 𝛼ℎ (17)

where R is the circumradius of the element, 𝛼 is the scalar parameter that 
gives its name to the method and h is a characteristic length of the mesh. 
The typical value used for 𝛼 is around 1.25. Generally, in 3D cases a 
slightly higher value of the 𝛼 parameter is chosen. In this work, for the 
2D problems 𝛼 has been set equal to 1.25, while for the 3D ones 𝛼 = 1.35 
has been used. See [22] for a dissertation about the role of 𝛼 and for 
other details of the PFEM remeshing strategy.

4. PFEM-FEM solution scheme fluid-solid interactionfor

The continuous elimination of the nite elements produced by the 
remeshing, makes the PFEM more suitable for problems in which histor-
ical variables do not need to be stored at the element level but on mesh 
nodes. This explains why a Bingham model can be naturally employed 
in a PFEM formulation. Note that it is still possible to use the PFEM for 
constitutive laws depending on historical elemental variables [47,70]. 
However, in those cases, a procedure for variables mapping from the 
Gauss points of the previous mesh to the Gauss points of the new one is

required, and this interpolation intomay introduce errors the numeri-
cal workscheme. These considerations motivated the use in this of the
standard FEM thefor solid solution.

In conclusion, in this approach, uids and solids are solved mono-
lithically according to the same implicit scheme (see Section 2.2 and 
Appendix A), but, after updating the nodal positions for both the uid 
and the solid, only the uid domain is remeshed. Fig. 3 represents 
schematically this solution algorithm.

An admirable feature of the PFEM remeshing rests with its auto-
matic detection of the contact interface between the uid and the solid 
domains. During the remeshing procedure, the DT is performed over a 
cloud of points formed by not only all the uid nodes, but also those 
belonging to the rigid walls and to the deformable solids contours, as 
shown in Fig. 4b. With the following application of the AS method, the 
new contact elements (elements that are sharing uid and solid nodes) 
are identied (Fig. 4c). In this study, the contact elements are computed 
as uid elements.

It is important to note that the PFEM remeshing strategy guaran-
tees that, at the interface, uid and solid nodes are overlapped (see 
Fig. 4c). This conforming mesh algorithm facilitates the FSI solution, 
in monolithic as for staggered approaches, because it prevents from the 
implementation of a mapping strategy to transfer information from one 
material to the other. For example, in the proposed monolithic approach 
it is only needed to assemble properly the uid and solid elemental con-
tributions into the linear system, as for a standard FEM.

Fig. 4 also shows one of the main drawbacks of the PFEM remeshing 
procedure. In fact, after the creation of the new mesh, new elements may 
be included in the computational domain, while others may be erased. 
This induces articial local changes of the uid geometry and, globally, 
a lack of mass conservation. Although this is an endemic problem of 
the PFEM and it cannot be completely erased, it aects marginally the 
numerical simulation if a suciently ne mesh is used, and there also 
exist some techniques able to limit its eects [22].

5. Numerical examples

This section shows the application of the proposed numerical ap-
proach severalto problems involving uids.non-Newtonian First, the
dam break uids elastic toof Bingham against an barrier, is used analyze
several concretecrucial issues Then,of the numerical formulation. two
slump are simulated numerical are validatedtests in 3D and the results
with the theexperimental ones. Finally, ow of a bentonite solution
over studied consideringan inclined plane is in 2D as in 3D, also the
impact object.of a solid

5.1. Dam break impact against an elastic barrier

The dam a viscous abreak of uid against deformable membrane
is in inhere studied for dierent values of yield stress 2D as aswell
3D. analyze some importantThe test is used to aspects proposedof the
numerical approach, such as the mesh and the non-linear convergence,
the the theeect of regularization parameter m on numerical results,
and the the3D eect given by lateral connement. Furthermore, this

Fig. 4. Representation withof the PFEM thescheme detectingfor contact the solid boundaries.



Fig. 5. Dam anbreak against elastic barrier. Initial geometry.

example aims to show the application of this Lagrangian strategy to an 
unsteady ow regime and to propose numerical results as benchmarks 
for 2D and 3D FSI analysis involving Bingham free-surface uids. The 
problem is a modication of the benchmark for FSI analysis proposed 
in [27]. The problem is here analyzed without the vertical wall located 
behind the elastic membrane and for a reduced duration of 0.5 s. During 
this time period, the motion of the barrier is not aected by the wave 
created by that vertical wall, so the results are comparable to the ones 
of the benchmark [27]. These modications have been done in order to 
reduce the uncertainty of the numerical results. In fact, as shown in a 
recent analysis of the benchmark problem [41], after 0.5 s the numerical 
results start to diverge as a consequence of the uid unsteadiness and the 
dierent prediction of the rst impact. This makes almost meaningless to 
use the second part of the example for validation purposes. The authors 
believe that the capability to reproduce accurately the rst impact of 
the uid stream against the barrier is crucial to determine the eciency 
of the method.

The initial 2D geometry of the problem is given in Fig. 5.
Both 2D and 3D non-Newtonian problems have been studied for 

three values of yield stress, namely 25 Pa, 50 Pa and 100 Pa. Also the 
Newtonian case, corresponding to 𝜏0 = 0 Pa, has been analyzed for com-
parison purposes. The rest of material properties are the same as in [27]. 
The uid and solid data are collected in Table 1. No-slip conditions have 
been considered for the rigid walls.

5.1.1. Mesh convergence
The convergence analysis is performed for the 2D problem using 𝜏0 = 

100 Pa. Six dierent mean mesh sizes h have been considered. Each 
discretization has a dierent number of elements in the solid width. The
nest one (ℎ = 0.002 m) has 24,376 uid elements and 6 elements along 
the membrane width. The coarsest one (ℎ = 0.012 m) is composed of 642
uid elements and only one element in the solid width. The coarsest and 
the nest meshes are shown in Fig. 6.

Table 1
Dam anbreak against elastic barrier. Fluid and solid data.

Fluid data dataSolid

𝜌 [ /kg m3] [ · ]𝜇 Pa s 𝜏0 [ ] [ /Pa 𝜌 kg m3] [ ]E MPa 𝜈 [-]
1000 0, 25, 50, 100 25000.001 1 0

Fig. 7a shows the evolution of the horizontal maximum displace-
ment of the cantilever obtained with the six tested discretizations. On 
the other hand, the results plotted in Fig. 7b focus on the uid dynamic 
problem only and represent the evolution on time of the uid front posi-
tion for the period preceding the impact against the deformable obstacle.

In Fig. 8a the maximum horizontal deection of the membrane is 
given as a function of the number of elements, while Fig. 8b plots the 
percentage error, computed with respect to the solution obtained with 
the nest mesh, as a function of the mesh size.

The graphs show clearly the convergence behavior of the numeri-cal 
formulation. Furthermore, they show that while the uid dynamic 
problem could be solved with a relatively coarse mesh (the discretiza-
tion with ℎ = 0.004 m approximates well the solution obtained with the
nest mesh), a much ner mesh is required to simulate accurately the FSI. 
As shown in Fig. 8b, the deection computed with ℎ = 0.004 m is almost 
the 10% smaller than the one obtained with ℎ = 0.002 m. Note that, in 
the present conforming mesh approach, this aects the choice of the 
uid mesh size. In fact, in order to avoid topological inconveniences, such 
as the overlapping of uid and solid meshes or the penetration ofuid 
particles into the solid domain, the uid mesh close to the uid-solid 
interface must have a size similar to the solid one.

5.1.2. Non-linear convergence
It is well that non-Newtonianknown models non-increase the

linearity this importantof the Navier–Stokes problem. In sense, it is to
analyze non-linearthe convergence proposedof the implicit strategy. In
order have the convergence theto an overview of behavior of numerical
method, the non-linear convergence is analyzed at four time instants (t
= 0.05 s, 0.15 s, 0.3 s, 0.5 s), corresponding to dierent phases of the
dam The performedbreak problem. convergence analysis is for the same
problem before ( manalyzed 𝜏 = 100 Pa and ℎ .= 0 002 ).

Fig. 9 collects the velocity and pressure errors computed using 
Eq. (16). The graphs show that the convergence of the pressure eld 
is generally slower than the one of the velocity eld. The worst conver-
gence is exhibited at t = 0.3 s (5 iterations for the velocity and 10 for 
the pressure). This is due to the high non-linearity of the problem at this 
stage. In particular, the uid shows huge splashes and the solid obstacle 
has just reached the maximum deection. In all other cases, the iter-
ations are no higher than 6. This convergence behavior is reasonable, 
considering the high non-linearity introduced by both the Papanasta-
siou model and the FSI, and it is close to the one shown by the same

Fig. 6. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). Coarsest and nest meshes used for the convergence study.



Fig. 7. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). Evolution on time of the cantilever horizontal displacement ( (a), and uid front b).

Fig. 8. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). ( ) solid ( )a Maximum deection obtained with the six dierent meshes. b Percentage error computed
with to meshrespect the nest solution.

Fig. 9. Dam anbreak impact against elastic barrier (𝜏0 = 100 Pa). Errors of velocity ( ) ( )a and pressure b elds at the non-linear iterations at four time instants.

FIC-stabilized PFEM method to reach the convergence in Newtonian u-
ids problems [49], where generally the convergence was reached after 
5 iterations. This conrms the eciency and generality of the proposed 
stabilized method.

Note that the non-linear convergence has also eects on the mass 
preservation properties of the numerical strategy. In this specic case, 
the overall mass variation after 0.5 s is 1.196% of the initial mass. In 
particular, the non-linear computation produces an increment of mass 
equal to 1.734%, whereas the remeshing procedure induces a loss of 
0.538%. This can be considered a small value for such an unsteady and 
non-linear problem. Furthermore, this magnitude of mass variation is 
analogous to the one shown in [49] for Newtonian uids analysis. This 
is a further conrmation of the validity of the FIC-stabilized Lagrangian 
formulation for treating also non-Newtonian uids.

5.1.3. Effect of regularization parameter m
As already explained in Section 2.1 and illustrated in Fig. 1, the Pa-

panastasiou’s regularization parameter m aects the accuracy of the ap-

Fig. 10. Dam anbreak impact against elastic barrier (𝜏 0 = 100 Pa). Evolution on
time dierentof ofthe horizontal deection the elastic barrier obtained for four
values regularizationof the Papanastasiou’s parameter m.



Fig. 11. Dam anbreak impact against elastic barrier (𝜏0 = = 1 =100 Pa). Yielded elements are plotted with black color. Results for 𝑚 and 𝑚 1000.

Fig. 12. Dam break rigidimpact against a barrier (𝜏0 = =100 Pa, 𝑚 1000).

proximation of the Bingham curve. In particular, higher values of m are 
needed to approximate well the rigid behavior. However, the parameter 
m also aects the quality of the algebraic system. In fact, if a big reg-
ularization parameter is used, large values of viscosity are introduced 
into the linear system and this may deteriorate its conditioning. Hence, 
m cannot be chosen as large as desired. With the aim of analyzing the 
eect of the regularization parameter on the numerical results, the dam 
break problem is solved with four dierent values of m, spanning from 
0.1 to 1000. Fig. 10 collects the results obtained with the four tested 
values of m.

The showsgraph that the solutions obtained with 𝑚 = 100 and 𝑚 =

1000 are almost identical, are exhibitedwhile some discrepancies for𝑚 =

0 1. . highlyHowever, it is worth to note that the eect of m depends on
the test thenumerical taken consideration.in In this specic test, uid
is suering rates duringfrom large strain the whole analysis and this

explains the reduced eect of the regularization parameter. Indeed, the 
role of m is crucial for uids close to the state of rest or, more generally, 
when the shear rate is small, as in the example that will be analyzed in 
Section 5.3.

The regularization parameterm also aects the demarcation between
the yielded un-yielded ,and zones. For smaller values of m an higher
strain rate is required to reach the yield value 𝜏0 . This is conrmed by 
the results plotted in Fig. 11 that show the yielded elements (drawn in 
black) obtained for 𝑚 = 1 and 𝑚 = 1000 at four time instants.

As expected, the yielded regions obtained with 𝑚 = 1 are smaller
than globally,the ones obtained with 𝑚 = 1000. Despite that, the dier-
ences thebetween two analyses are reduced.

To show the potential of the proposed formulation to design pro-
tection barriers, the problem is also solved considering the obstacle as 
rigid. In Fig. 12 three snapshots of the simulation are given.



Fig. 13. Dam break impact against elastic barriera (mesh size ℎ . 𝑚= 0 002 ).
Evolution on of oftime the displacementmaximum horizontal the barrier for
four values of 𝜏 0 .

Fig. 14. Dam break against an elastic barrier (𝜏0 = 0 Pa, ℎ = 0.002 m). Evolution 
on time of the maximum horizontal displacement of the barrier. Comparison to 
Walhorn et al. [27], Idelsohn et al. [28] and Meduri et al. [41].

By comparing Fig. 12 and the left column of Fig. 11, it arises that 
with the rigid barrier the stream arises an higher altitude and a reduced 
horizontal runout than the case with exible membrane. Concerning the 
yielded elements, a similar pattern is obtained.

5.1.4. Effect of 𝜏 0
The has beennest mesh used for testing the eect of the yield stress

𝜏 0 on the numerical results. In Fig. 13 the horizontal deection of the 
elastic cantilever obtained for four values of 𝜏 0 is plotted. The results 
show that higher values of 𝜏 0 delay the collision of the uid stream 
against the elastic object and reduce its inertial force. As a consequence, 
the maximum horizontal displacement of the cantilever also reduces for
increasing values of 𝜏 0.

The case of 𝜏0 = 0 Pa corresponds to the Newtonian problem already 
analyzed in [23]. In Fig. 14, the time evolution of the horizontal dis-
placement of the top of the elastic membrane obtained with ℎ = 0.002 𝑚 
is compared to the results presented in [27,28,41].

The results show a agreement2D good to those in the literature, con-
rming solving prob-the theeciency of Unied formulation for FSI
lems.

5.1.5. 3D lateral effects
In eectorder to analyze the of onlateral containment the dam break

evolution, widththe theproblem consideringis solved in 3D channel
equal m). No-slipto obstaclethe theheight of (0.8 conditions are con-
sidered the meshfor all rigid meanwalls. sameThe size ℎ = 0.003 m
(4 elastic membraneelements along the width) has been used for the
2D 3D 11,050and the simulations, leading to triangular nite elements

Fig. 15. Dam anbreak against elastic barrier (mesh size mℎ .= 0 003 ). Evolution
on of oftime the displacement thehorizontal at top the threebarrier for dierent
values of yield stress. 2D and 3D results.

for the 2D problem and 801,597 tetrahedra for the 3D case. Fig. 15 col-
lects the results of the 2D and 3D non-Newtonian problems obtained for 
three dierent values of the yield stress, namely 𝜏0 = 25, 50, 100 Pa.

The results show that, dierently from the 3D example that will be 
presented in Section 5.3, the plane strain hypothesis is not valid for 
this non-Newtonian problem. The lateral containment reduces the ve-
locity of the uid ow and, consequently, its impact force against the 
solid membrane is reduced. As shown in the graphs of Fig. 15, the dis-
crepancy between the 2D and 3D results grows by increasing the yield 
stress.

In Fig. 16, the 3D results for 𝜏0 = 100 Pa are given for three time 
instants. The velocity contours are plotted over the uid and solid com-
putational domains.



Fig. 16. Dam anbreak against elastic barrier (𝜏 0 = 100 Pa). 3D results at three
time instants. Pictures locatedin left-hand thecolumn show section yz at 𝑥 = 

0 m = .148 . sectionPictures in right-hand column refer to the xy located at 𝑥
0 m.04 .

The transversal cut at x=0.148 m, represented in the left pictures of 
Fig. 16, shows clearly the resistance exerted by the lateral containment 
on the uid motion. Consequently, the deection of the 3D elastic mem-
brane is reduced and the horizontal distance reached by the uid stream 
is also limited.

5.2. Fresh contrete testsslump

The slump test is a standard laboratory experiment used to deter-
mine the so-called workability of fresh concrete. The test consists of
lling a conical container with concrete and measuring the evolution of 
its shape after the removal of the rigid container. The test ends when the 
fresh concrete reaches a static state. In these tests, the values of interest 
are the slump and the spread of the concrete. The former is the dier-
ence between the initial and the nal uid height, whereas the latter is 
the dierence between the initial and the nal diameter measured at the 
base of the cone [58]. Two standard and widely used slump tests, such 
as the so-called Abrams [11] and mini cone [12] tests, are analyzed in 
this section. The initial geometry of the slump is illustrated in Fig. 17.

Instead of an homogeneous material, the fresh concrete is composed 
by a suspension of solid grains in a uid matrix. From the computational 
point of view, this opens two possibilities, namely, either computing it 
as a one-phase uid material, or modeling it considering the interaction 
with the particles suspended in the uid. An overview regarding the 
dierent computational techniques for fresh concrete modeling has been 
made in [59]. In this work, the former approach is used. Furthermore,

Fig. 17. Initial cone shape for slump tests.

Table 2
Abram slump test. Geometrical and aterialm data.

Geometrical data dataMaterial

H0 [ ]m D0 [ ]m d0 [ ] [ /m 𝜌 kg m3] [ · ]𝜇 Pa s 𝜏0 [ ]Pa
0.3 0.2 0.1 2200 255 32

Fig. 18. Abram Velocityslump test. contours overplotted the deformed cong-
uration at three dierent time instants.

both withslump are null interactiontests modeled considering the the
container no-slip conditionsand for rigid planthe over which the fresh
concrete spreads. theThe regularization parameter m of Papanastasiou
model is set equal to 1000 in both cases.

5.2.1. Abram test
The Abram slump test is generally used for fresh concrete rather than 

cement pastes [58]. The geometry information and the material param-
eters are provided in Table 2.

The problem has been solved in 3D using tetrahedral meshes of three
dierent order convergentsizes in to verify the behavior of the method
and reliabilityto assess the of ofthe PFEM results the mesh.nest Specif-
ically, arethe mesh themean sizes used in simulations 0.015 0.01m, m
and m, and0.0075 corresponding to 15900, 54464, 129818 tetrahedra,
respectively.



Fig. 19. Abram slump test. Pressure plottedcontours over the central section
at three dierent time instants.

Fig. 20. Abram slump test. Evolution on time of the spreading diameter 
ob-tained for three dierent meshes. Experimental values from [14].

In Fig. 18 three representative snapshots of the simulation are pro-
vided. The velocity contours are plotted over the deformed congura-
tion of the uid at the time instants t = 0.5 s, t = 5.0 s and t = 40 s.

As shown, the material ows immediately when the container is re-
moved, and the whole process proceeds in an axisymmetric manner as 
expected. The top surface rst owns the maximum velocity shortly after 
the release (Fig. 18a), which however decreases as the spreading pro-
ceeds (Fig. 18b). Fig. 18c shows the deposit of the fresh concrete at the 
last instant of the numerical simulation (t=40 s). At this stage, the ma-
terial diameter is almost three times larger than the initial one and the 
material ow is very close to stop (the material velocity is smaller by 
three orders of magnitude than the velocity obtained at the initial phase 
of the test).

Fig. 19 shows the pressure contours of the section XZ for the same 
time instants considered in Fig. 18. The pictures show that the middle 
part of the ow always possesses the maximum pressure throughout the 
whole slumping procedure.

The graph of Fig. 20 shows the evolution on time of the spreading 
diameter obtained numerically with three dierent meshes and exper-
imentally using the 4C-Rhometer [67], as reported in [14]. Although 
there exists a certain discrepancy with respect to the experimental re-
sults, the 3D numerical simulation shows an acceptable agreement, even

Table 3
Mini slump test.cone Geometrical and material data.

Geometrical data dataMaterial

H0 [ ]m D0 [ ]m d0 [ ] [ /m 𝜌 kg m3] [ · ]𝜇 Pa s 𝜏0 [ ]Pa
0.05 0.07 4.018 18.01820.1 2252

when coarse use. userelatively meshes are in This validates not only the
of buta multi-phasesingle-phase approach for modeling this material,
also PFEM developed study.the three-dimensional framework in this

It is worth commenting about the small jumps shown in the numer-
ical curves of Fig. 20. These are due to the PFEM way of modeling the
uid advancement. With the PFEM, the uid front motion is determined 
by the creation of a new boundary element and not by the slip of the 
wall nodes (as shown in Fig. 4) and this produces the non-smoothness 
of the front evolution curve. See [22] for a detailed analysis of this and 
other issues related to the PFEM remeshing, such as the non-smoothness 
of the free-surface or the uid adherence/departure from/to the solid 
boundaries.

5.2.2. Mini cone test
The mini cone slump test [12] is generally used to determine the 

workability of cement pastes. Table 3 shows the information regarding 
the geometry and the material properties.

A total of 105187 tetrahedra has been used for the PFEM solution. 
Fig. 21 shows four time instants of the 3D simulation. To show more 
clearly the stoppage of the uid, a threshold of 0.0005 m/s is imposed to 
the velocity norm contours plotted in the gures. If the nodal ve-locity 
norm exceeds that limit, the red color is plotted. As illustrated, the 
slumping procedure is similar to that observed in the Abram test, 
however, due to the reduced viscosity of the cement paste, the slump is 
accelerated. In Fig. 22, the time evolution of the uid diameter of the 
material is plotted and compared to the expected nal diameter accord-
ing to the experimental test [67] (D = 0.2249 m) and to that obtained 
considering the axisymmetric approximation in [14] (D=0.220 m). The 
graph shows that the proposed computational method is capable to pre-
dict the total spread of the cement past with a very good accuracy. The 
graph also shows that, even if a Papanastasiou formulation cannot 
reproduce exactly the quiescent state, one can easily understand when 
the stoppage of the uid ow occurs, at least for the used value of the 
regularization parameter (𝑚 = 1000). In this specic case, it can be as-
sumed that the uid reaches a state of rest after around 5 s the releasing 
of the container.

5.3. Flow a aof bentonite solution on slope

In [13] a series of experimental results for the ow of a bentonite 
solution over an inclined plan is reported. In this work, two of these 
laboratory tests have been reproduced and called Case A and Case B. 
The schematic illustration of the test is shown in Fig. 23.

In [13] the bentonite solution has been characterized by two values 
of apparent yield stress, the biggest one, 𝜏l , for the loading process and 
the smallest one, 𝜏u , for the unloading process. In this time-independent 
model, the two cases have been analyzed separately. The experimental 
results are thus expected to lay between the two limit analyses. Also the 
case with a mean value of yield stress (𝜏𝑚 = 0.5𝜏 + 0.5𝜏𝑙 ) has been 
studied. The regularization parameter 𝑚 = 1000 has been used in all the 
analyses. In Table 4 the initial geometrical data and the material param-
eters are given for both tests.

Case CaseA and B have been studied for the three dierent values
of yield stress (𝜏u , 𝜏l and 𝜏m) and assuming plane strain conditions. In
addition, strainwith the the theaim of verifying validness of plane as-
sumption, the most viscous , has been studiedproblem, Case A also con-
sidering geometry experimentalthe actual 3D of the test (width of 0.34
m) for 𝜏m. beenIn all the cases, no-slip conditions have considered for
the rigid walls.



Fig. 21. Mini slump test. results instants. plotted valuescone 3D for four time The contoursnodal velocity norm are over the deformed congurations. For higher
than reader0.0005 plotted. interpretation references legend,m/ ,s the red color is (For of the to colour in this gure the is referred the thisto web version of article.)

Fig. 22. Mini cone slump test. Time evolution of material diameter. Comparison 
to the expected nal diameter according to the experimental test [67].

As in [13], the ow evolution has been studied according to two 
dimensionless variables, the dimensionless front position x∗ and the di-
mensionless time t∗. These variables are computed, respectively, as

𝑥∗ = ∕𝑋 𝐻0 (18)

where X is isthe front wave location, which null at the initial time
instant, and

𝑡∗ = 𝑡

𝑔 𝐻∕ 0 (19)

where g=9.81 m/s2 is the gravity acceleration.

Fig. 23. Flow solutionof a bentonite over a slope. Initial geometry.

Table 4
Flow solutionof a bentonite over a slope. Geometrical and material data.

Geometrical data dataMaterial

L0 [ ]m H0 [ ] [m 𝜃 0] [ /𝜌 kg m3] [ · ]𝜇 Pa s 𝜏 − 𝜏𝑙 [ ]Pa
Case A 0.3024 0.0756 15 1085.1 0.635 21.1 - 165
Case B 0.2928 0.0732 15 1085.1 0.555 14 - 50

The dimensionless time evolution of the dimensionless front position x∗ 

of Case A and Case B is plotted in Fig. 24a and Fig. 24b, respectively. The 
graphs show that, with the exception of the initial phase of theow of 
Case B, the experimental results are globally bounded by the two limit 
cases given by 𝜏0 = 𝜏𝑙 and 𝜏0 = 𝜏 . Furthermore, a very good accordance 
between the 3D and 2D results of Case A is obtained for

Fig. 24. Flow solutionof a bentonite over Evolutiona slope. on dimensionless time t∗ of the dimensionless front position x∗. Numerical results for 𝜏0 = 𝜏 , 𝜏 𝑙 , 𝜏𝑚
and experimental results.



Fig. 25. Flow solutionof a bentonite over a slope. Case A, 3D simulation with 𝜏0 = 𝜏𝑚 . Velocity contours plotted over the uid ow.

Fig. 26. Flow solutionof a bentonite over congurationa slope. Final for the
3D simulation of Case A with 𝜏0 = 𝜏𝑚.

𝜏0 = 𝜏𝑚 . showsThis that the lateral boundaries are suciently far to not
aect centralthe theuid motion at zone of ow,the and the problem
can studied a highlybe with 2D model reducing the computational cost.

The numerical results of the 3D analyses of Case A are plotted forve 
time instants in Fig. 25, from the vertical view, while Fig. 26 shows the 
3D view of the uid at 𝑡 = 0.5𝑠.

The eect of regularization parameter m is analyzed for the Case A 
and 𝜏0 = 𝜏𝑚. Three dierent values of m have been analyzed, namely 1, 
100, 1000. In Fig. 27 the free-surface position obtained for the three 
analyses at four time instants is plotted. The pictures show that the 
solution obtained with 𝑚 = 100 and 𝑚 = 1000 are almost identical. On the 
other hand, for 𝑚 = 1 the uid spread is sensibly larger than the other 
two cases. After 1 s of analysis the uid is still owing, whereas it is 
practically stopped for 𝑚 = 100 and 𝑚 = 1000. This analysis shows clearly 
that, in problems dominated by low shear rates, the regulariza-tion 
parameter of the Papanastasiou model is of paramount importance to 
reproduce accurately the rigid behavior of the Bingham model. In these 

cases, a large value of m (e.g. m ≥ 100) is recommendable.
5.4. Impact object bentoniteof a falling over a solution flow

The problem studied example (3D in the previous Case A with 𝜏0 =

𝜏𝑚) considering impact a densityis here analyzed the of solid block of
𝜌 = 200 Kg/m 3, modeled as an hypoleastic material (Young modulus
𝐸 = 107MPa and Poisson ).ratio 𝜈 = 0 The physical phenomena repro-
duced by may be of ofthis numerical simulation representative those
natural dynamic thishazards triggered by impacts. The purpose of ex-

Fig. 27. Flow solutionof a bentonite over contoursa slope. Fluid at four time
instants obtained for 𝑚 = 1, 100 1000, .

ample is to show that the proposed computational framework is capa-ble 
of dealing with complex 3D dynamic uid-solid interactions. The solid 
block has a parallelepiped shape, with the base 𝑑 = 0.1 m, height ℎ = 0.05 
m and width 𝑤 = 0.15 m, and is falling from an height 𝑧 = 0.2 m, as 
represented in Fig. 28.

The initial mesh used for the computation is composed by 172729 
and 12947 uid and solid elements, respectively. Three time instants of 
the 3D simulation are illustrated in Fig. 29 by showing only the central 
vertical cut of the uid and solid domains. The impact between the solid 
block and the uid ow occurs at around 𝑡∗ = 2 (corresponding to t =



Fig. 28. Impact of a a geom-falling object over bentonite solution ow. Initial
etry.

Fig. 29. Impact of ofa afalling object over bentonite solution ow. Central cut
uid solid. uidand Velocity norm contours overplotted the conguration.

0.175 s). Fig. 29a shows that the impact induces a clear shear band in 
the uid ow and a sudden acceleration at its frontal part. This is also 
conrmed by the graph of Fig. 30, which compares the evolution on 
time of the front position obtained with the uid analysis presented in 
the previous section, and this FSI problem.

Fig. 31 gives two dierent views of the nal conguration of the FSI 
problem to show more clearly the eect of the solid impact on the ow.

6. Conclusions

This Lagrangian forwork aaims to present method the 3Dmodeling
of Fluid-Structure free-surfaceInteraction (FSI) problems with Bingham

Fig. 30. Impact of a afalling object over bentonite solution ow. Dimensionless
time t∗ evolution positionof the dimensionless front x∗.

uids. The formulation uses the Particle Finite Element Method (PFEM) 
to deal with materials that suer from large deformations and to detect 
the contact interface between the uid and the elastic structures. The
uid parts of the domain are computed according to a Papanastasiou 
model that has been implemented into a stabilized Velocity-Pressure 
strategy [49], whereas for solids an hypoelastic model is used. The FSI 
problem is solved monolithically in the Unied formulation spirit [23].

The beenaccuracy, versatility and robustness of the method have
shown by simulating several 2D and 3D problems involving dierent
types of uid ow regimes uid-solid interactions.and

First, a aseries of Bingham uid dam break against deformable mem-
brane has been considering a a geometry. Thestudied, both 2D and 3D
numerical totest has been used analyze nu-several crucial issues of the
merical formulation. behaviorFirst, the convergent with mesh rene-
ment problem.has been shown for both the uid dynamics and the FSI
Then, has been studiedthe non-linear convergence of the method for
the mesh. the pressurenest tested It has been shown that eld exhibits
a velocityslower convergence than the one. In the worst case, the pres-
sure reached the theconvergence is after 10 iterations, while, for rest of
cases, 6 resultsiterations are enough to converge. These are reasonable
considering problemthe high non-linearity of this FSI and prove the ef-
fectiveness proposedof the stabilized non-Newtonianmethod for uid
analysis. parameterThe eect of the regularization m has beenalso an-
alyzed. a certainIn this specic case, the eect ofm is limited, although
discrepancy theis shown with respect to yielded surface identication
obtained for formulationdierent robustnessvalues of m. The of the
has been tested considering dierent values of the yield stress 𝜏0. As 
expected, increasing 𝜏0, the uid impacts later the elastic barrier and 
with a lower impact force. For null yield stress, the numerical results of 
the Unied formulation have been shown to be in accordance with those 
available in the literature [23]. Finally the eect of lateral con-tainment 
has been studied by solving the same problem in 2D and in 3D for di
erent values of yield stress. It has been shown that the plane strain 
hypothesis cannot be used to approximate the solution obtained with the 
considered 3D geometry. Furthermore, it has been shown that
the discrepancy thebetween 2D 3Dand results increasinggrows by 𝜏0.

Then, two standard fresh concrete slump tests, such as the Abram
and mini cone, have been studied considering their real 3D geometries.
A agreement experimental results hasgood between the numerical and
been The has beenobtained for both tests. Abram slump test also ana-
lyzed dierent tetrahedral convergenceusing meshes, theand behavior
of the veried.numerical results has been

In the following analysis, the ow of a bentonite solution over an 
inclined plane has been studied for two dierent uid compositions and 
initial geometries. The two tests have been taken from [13], where the 
minimum and maximum values of yield stress are given for each exper-
imental test. Both limit situations have been studied. It has been shown



Fig. 31. Impact of ofa a viewsfalling object over bentonite solution ow. Two the nal conguration.

that the theexperimental results are bounded by numerical results ob-
tained with two withthe limit ofvalues yield stress, the exception of
the the less case. therst instants of viscous Moreover, validity of plane
strain hypothesis has been most viscous problemassessed by solving the
with andthe 3D geometry by showing betweenthe accordance the 2D
and for3D solutions. As the the therst example, eect of regularization
parameter has been studied. In this case. that is characterized by lower
shear aectsrates than the previous one, the parameter m more the
numerical values parameterresults. For low of the regularization (e.g.
m< 100), the model cannot reproduce accurately the uid stoppage. On
the theother has been shownhand, for m≥100, it that state of rest can
be easily numericalrecognized from the results.

The has been studiedsame bentonite solution ow then under the
impact aof falling solid object. This situation can be considered repre-
sentative impactsof or bylandslides avalanches triggered the dynamic
of solid objects. The has demonstratedproposed numerical method to
be of bycapable dealing interactionwith such a complex reproducing
the sudden the theshear band and acceleration of uid ow byinduced
impact of the object.
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Appendix A. Fully linearized solution schemeform and

At each computational step, the linear momentum (Eq. (1)) and the 
continuity (Eq. (2)) equations are solved iteratively for the nodal incre-
ments of velocity and the pressures, respectively. The following enu-
meration describes the solution strategy for a generic time step [𝑛𝑡; 𝑛+1𝑡] 
of duration Δt (subscripts ’s’ and ’f’ refer to solid and uid elements, 
respectively)

1. At each non-linear iteration i:
2. Compute nodal velocitythe increments 𝚫�̄�:
(a) 𝑲 𝑖𝚫�̄� 𝑹= 𝑖(�̄�𝑖, �̄�𝑖 )

(b) where 𝑲𝑖 = 𝑲𝑚(�̄�𝑖, 𝒄𝑓,𝑠) + 𝑲𝜌(�̄�𝑖)

3. Update nodal velocities: 𝑛+1�̄�𝑖+1 = 𝑛+1�̄�𝑖+ 𝚫�̄�

4. Update nodal coordinates: 𝑛+1 �̄�𝑖+1 = 𝑛+1 �̄�𝑖 + �̄�(𝚫�̄�)

5. Compute nodalthe pressures �̄�𝑖+1: 𝑯�̄�𝑖+1 = 𝑭 𝑝(�̄�
𝑖+1, �̄�𝑖)

(a) where 𝑯 =


1

Δ𝑡
M1 +

1

Δ𝑡2
M2 + +𝐋 𝐌𝑏



(b) and 𝑭 𝑝 =
M1

Δ𝑡

𝑛 �̄� +
M2𝑓

Δ𝑡2


𝑛 �̄�+ 𝑛 ̄̇𝒑Δ𝑡


+𝐐𝑇 �̄�𝑖+1 + 𝒇 𝑝

6. Compute the Cauchy stresses: 𝝈 𝑖+1

7. Check the convergence:
Δ�̄�𝑖+1
𝑛�̄�

≤ 0.0001,
�̄�𝑖+1 − �̄�𝑖

𝑛�̄�
≤ 0.0001

8. If condition to6 fullled,is not return 1 .with 𝑖 𝑖← + 1

with

𝑅𝑖
𝐼𝑖

= ∫Ω

𝑁𝐼 𝜌𝑓,𝑠𝑁𝐽𝑑Ω ̄̇𝑣𝑖
𝐽 𝑖

+ ∫Ω

𝜕𝑁𝐼

𝜕𝑥 𝑗

𝜎 𝑖
𝑖𝑗
𝑑Ω − ∫Ω

𝑁𝐼
𝑛+1𝑏𝑖𝑑Ω

𝑲𝑚
𝐼𝐽

= ∫Ω

𝑩𝑇
𝐼
Δ𝑡𝒄𝑓,𝑠𝑩𝐽 𝑑 , Ω 𝑲

𝜌

𝐼𝐽
= 𝑰 ∫Ω

𝑁𝐼

2𝜌𝑓,𝑠

Δ𝑡
𝑁𝐽𝑑Ω

𝑀1𝐼𝐽 
= ∫Ω

1

𝜅𝑓,𝑠
𝑁𝐼𝑁𝐽𝑑 , 𝑀Ω 2𝐼𝐽 

=∫Ω

𝜏
𝜌𝑓

𝜅𝑓
𝑁𝐼𝑁𝐽𝑑 , 𝜏Ω =


8𝜇

ℎ2
+
2𝜌𝑓

𝛿

−1

𝐿𝐼𝐽 = ∫Ω

𝜏(∇∇∇𝑇𝑁𝐼 )∇∇∇𝑁𝐽 𝑑 , 𝑀Ω 𝑏𝐼𝐽 
= ∫Γ𝑡

2𝜏

ℎ𝑛

𝑁𝐼𝑁𝐽 𝑑 ,Γ

Q𝐼𝐽 = ∫Ω

B𝑇
𝐼
m𝑁𝐽𝑑Ω

𝑓𝑝𝐼
= ∫Γ𝑡

𝜏𝑁𝐼


𝜌𝑓

𝐷𝑣𝑛

𝐷𝑡
−

2

ℎ𝑛
(2𝜇𝑑𝑛 − 𝑡𝑛 )


𝑑Γ − ∫Ω

𝜏∇∇∇𝑇𝑁𝐼𝒃𝑑Ω

where NI are the linear shape functions and h and 𝛿 are characteristic 
distances in space and time [49], and for 3D problems:

𝒄𝑓 =














𝜅𝑓 +
4𝜇

3Δ𝑡
𝜅𝑓 −

2𝜇

3Δ𝑡
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Δ2𝜇 𝑡

3
0 0 0

𝜅𝑓 −
Δ2𝜇 𝑡

3
𝜅𝑓 +

4𝜇

3Δ𝑡
𝜅𝑓 −

2𝜇

3Δ𝑡
0 0 0

𝜅𝑓 −
2𝜇

3Δ𝑡
𝜅𝑓 −

2𝜇

3Δ𝑡
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4𝜇

3Δ𝑡
0 0 0

0 0 0
𝜇

Δ𝑡
0 0

0 0 0 0
𝜇

Δ𝑡
0

0 0 0 0 0
𝜇
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𝜅𝑠+
4𝐺

3
𝜅𝑠 −

2𝐺

3
𝜅𝑠 −

2𝐺

3
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𝜅𝑠−
2𝐺

3
𝜅𝑠 +

4𝐺

3
𝜅𝑠 −

2𝐺

3
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3
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3
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3
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0
𝜕𝑁𝐼

𝜕𝑦 
0
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𝜕𝑁𝐼

𝜕𝑧 
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𝜕𝑦 
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0

𝜕𝑁𝐼
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0

𝜕𝑁𝐼
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𝜕𝑁𝐼
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