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ABSTRACT

As the scale and nonlinearity of optimization problems continue to
increase, traditional deterministic solution strategies are becoming
increasingly flawed in the face of the exponential growth of search
space dimensions and multimodal objective functions. Metaheuristic
algorithms, with their probability-driven global search capabilities and
local development capabilities, have gradually become an essential tool
for solving complex optimization tasks. We propose a Freshwater Snail
Optimizer (FSO), inspired by the social behavior of water snails in terms
of movement and collision, as a metaheuristic algorithm. FSO combines
the floating of water snails’ air chambers, movement in the water, and
population collisions and divides them into groups during initialization to
balance exploration and development, achieving gratifying optimization
results, especially in high-dimensional problems. We utilized CEC 2017
and CEC 2022 to qualitatively analyze FSO in various problems, and
employed the Friedman test and Wilcoxon rank sum test for statistical
testing. Experimental results show that our proposed FSO achieved 32
first-place results on 41 problems compared with 9 classic algorithms,
and 27 first-place results when compared with 9 emerging algorithms
that appeared in the past two years. FSO has also achieved the first com-
parison results in six engineering optimizations on multiple occasions,
proving that FSO possesses well optimization capabilities and practicality
for real-world problems. The source code accompanying this article has
been released at: https://github.com/leogalaxy0603/Freshwater-Snail-
Optimizer (accessed on 12 October 2025).
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1 Introduction

Optimization problems are common in various fields, including engineering design, data analysis,
and decision science, and their solution methods have a direct impact on system performance [1].
This is usually described formally through mathematical modeling, which involves giving an objective
function f (x) and solving for the decision variable x that minimizes or maximizes f (x) under
constraints. The general Fform can be expressed as finding x∗ = arg minx∈� f (x) or arg maxx∈� f (x)

in the feasible domain �. The properties of the objective function f (x) are crucial in optimization
theory, and different properties will significantly affect the selection of optimization strategies and
the effectiveness of the algorithm. Differentiability determines whether gradient information can be
used to guide the search. Suppose f (x) is differentiable in the domain, and the gradient is easily
calculable. In that case, algorithms based on first-order or second-order derivative information, such
as gradient descent [2] and Newton’s method [3], can be employed. These traditional algorithms
have the advantage of fast convergence when the objective function is smooth and unimodal without
local optimum, and the optimal solution can be found by setting the derivative to zero. However,
when f (x) is a piecewise function, a discontinuous function, or other non-differentiable function
or the gradient calculation cost is high, the gradient method is challenging to apply. In this case,
heuristic or meta-heuristic algorithms that do not rely on derivatives are usually required [4]. In
addition, convexity and multimodality have a profound impact on the difficulty of optimization and
algorithm selection. Convex functions have a single global optimal solution and no local minima.
When the objective function is convex and smooth, the gradient method, conjugate gradient method,
or Gauss–Newton method can efficiently find the global optimum and usually converge quickly
[5]. However, for non-convex functions such as multi-peak and multi-modal functions, there may
be multiple local optimal solutions to the optimization problem. Traditional gradient algorithms
are prone to fall into local extreme points due to the nature of greedy descent [6], and cannot
guarantee to find the global optimum. Currently, a global search strategy is necessary to address this
issue. Metaheuristic algorithms have a greater probability of jumping out of the local extreme point
trap through random perturbations and diversified searches [7]. This also reflects the outstanding
advantages of metaheuristic algorithms. They have few requirements on the objective function and
do not require strict conditions such as convexity, differentiability, or continuity. They are also highly
adaptable to discrete variables, nonlinear constraints, etc.

In general, we refer to the collective intelligent behavior that emerges from the aggregation of
simple biological or non-biological individuals as Swarm Intelligence (SI) which was first proposed by
Gerardo and Wang in 1989 when describing the collective intelligence phenomenon of cellular robots
[8]. Since the 1990s, a large number of intelligent algorithms inspired by animal behavior in nature
have emerged, becoming an important branch of meta-heuristic algorithms. This type of algorithm
primarily simulates the complex and coordinated behaviors exhibited by the mutual influence between
individuals in large-scale groups, continuously improving the adaptability of the population to its
environment. As a result, it can approach an approximate optimal solution to the problem being
solved, as shown in Fig. 1. According to current research, the theoretical basis of metaheuristic
algorithms primarily encompasses mathematical, biological, and sociological foundations. In terms
of mathematical basis, researchers have tried to clarify the intelligence emergence, evolution and
self-organization laws and characteristics of metaheuristic algorithms [9] from the perspectives of
random processes [10], Markov chains [11], convergence analysis [12], etc.; in terms of biological basis,
drawing on various group evolution phenomena and mechanisms contained in nature, researchers have
explored new theories and models of evolutionary computing from the perspectives of survival of the
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fittest, natural selection, biological evolution, genetic laws, human brain simulation, biological loss,
immune evolution, etc. [13]. For example, the genetic algorithm (GA) [14] and differential evolution
algorithm (DE) [15], both based on Darwin’s ’theory of evolution’, search for the optimal solution
through crossover, mutation, and greedy selection. The proposed method is based on the idea of
immune evolution. In terms of sociological foundations, scholars have drawn on various collective
intelligence phenomena that have emerged in sociological biology and even human society, such as
collective intelligence, group competition, group games, group collaboration, etc., to provide new
theories and new approaches to understand, analyze and regulate the emergence and evolution of
collective intelligence.

Figure 1: Swarm intelligence algorithm framework

For example, particle swarm optimization (PSO), which is inspired by the flying foraging behavior
of bird flocks and biological group games and collaboration [16], was proposed by Eberhart and
Kennedy in 1995 and is one of the most widely used metaheuristic algorithms to date; the ant
colony algorithm (ACO) proposed by Blum [17] is inspired by the pheromone trails left by ant
colonies when foraging, and is good at solving discrete path optimization problems [18]; the Firefly
Algorithm (FA) proposed by Yang and Slowik [19] is based on the mechanism that fireflies attract
each other through the brightness of their flashes, and can solve continuous optimization problems;
the Cat Swarm Optimization (CSO) proposed by Chu et al. [20] uses the behavior of cat groups in
the process of searching for food to perform global search and local optimization; the Imperialist
Competitive Algorithm (ICA) [21], based on collective intelligence and group competition, was pro-
posed by Atashpaz et al. in 2007 based on the competition between countries and optimizes through
national competition and mergers; Brain Storm Optimization (BSO) proposed by Shi [22] simulates
the process of human brainstorming meetings, in which members conduct free divergent thinking
and collective discussions around a topic, promoting population diversity and global exploration;
Teaching-Learning-Based Optimization (TLBO) proposed by Rao et al. [23] imitates the role division
and knowledge dissemination in the human teaching-learning process, so that the algorithm can use
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the ’teachers’ to guide the global search in the early stage, and use mutual learning among students
to enhance local development in the later stage. In addition, after 2016, a series of new animal
behavior algorithms have emerged, including Grey Wolf Optimizer (GWO) [24], Whale Optimization
Algorithm (WOA) [25], Snake Optimizer (SO) [26], Kirchhoff’s law algorithm (KLA) [27], as well as
Newton Metaheuristic Algorithm (NMA) [28] and Quantum Snowflake Algorithm (QSA) [29] based
on natural physical phenomena and mathematical laws. Each algorithm draws inspiration from nature
to improve its optimization effect in different ways.

In metaheuristic optimization, “exploration,” and “exploitation” are important concepts for
measuring search strategies, which correspond to global search capabilities and local search capa-
bilities, respectively [30]. Exploration refers to the ability of the algorithm to search the solution
space extensively, that is, to use a variety of solutions to try to discover areas that have not yet been
explored, aiming to avoid the local optimal trap; exploitation refers to the ability of the algorithm to
deeply explore the area near the current excellent solution, and to quickly improve the quality of the
solution by performing a local fine search on the existing good solutions. Ideally, the algorithm should
strike a balance between exploration and exploitation, with sufficient exploration to avoid missing
the area where the global optimal solution is located, and sufficient exploitation to use the currently
discovered excellent solutions to converge towards a better direction. If too much emphasis is placed
on exploitation, the algorithm may stay in a local optimal state and be unable to jump out, falling
into the local optimal state, resulting in premature convergence; on the contrary, too much emphasis
on exploration may cause the algorithm to wander in the solution space, converge slowly, and find it
difficult to find a high-quality solution in time. The ‘no free lunch’ theory [31] holds that no heuristic
method can always have a good solution for all possible problems. Among the numerous algorithms,
swarm intelligence [32] and biological foraging [33] remain the primary design prototypes. However,
the mechanisms underlying different biological behaviors vary, and there are still many undiscovered
natural inspirations that can be utilized, providing a rich source of inspiration for further innovation.
The main research contents and contributions of this paper are as follows:

• A new bio-inspired Freshwater Snail Optimizer (FSO) is proposed to simulate the mobility and
social behavior of freshwater Snail;

• The FSO algorithm simulates floating, crawling, and collision. Floating behavior helps global
exploration, crawling behavior helps local development, and innovatively proposed dynamic
explorer-exploiter Initialization Strategy and free step movement model based on collision
behavior;

• We compared FSO with 18 algorithms on two CEC benchmark test functions (CEC 2017, CEC
2022) and performed with Friedman test and Wilcoxon rank sum test. The results show that
FSO has good optimization ability and robustness;

• The effectiveness and practicality of FSO are verified through six engineering-constrained
optimization problems.

The rest of this paper is organized as follows. Section 2 introduces the proposed FSO algorithm.
Section 3 performs benchmark tests using CEC 2017, and CEC 2022, as well as a performance analysis
on FSO. Section 4 discusses the optimization of engineering problems. Finally, conclusion and future
prospects.
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2 Freshwater Snail Optimizer (FSO)
2.1 Inspiration

Freshwater snails are widely distributed in aquatic ecosystems such as rivers and lakes and play an
important role in material circulation and balance maintenance. They exhibit unique adaptive behav-
iors in the natural environment, providing a rich source of inspiration for optimization algorithms.

2.1.1 Movement by Buoyancy

Freshwater snails can control their buoyancy by adjusting the gas content in their air chambers
(similar to lung sacs) to change their specific gravity [34]. In water, they inhale or release gas to make
their body density lower or higher than that of water, allowing their bodies to float to the surface
or sink to the bottom. This physiological regulation mechanism will enable snails to float or remain
attached to the benthic environment. When the surrounding environment is scarce or the conditions
are unfavorable, they loosen their attachment to the substrate, float up, and drift with the water flow
to move to new areas in search of food or oxygen. This drifting behavior significantly expands the
range of activities of water snails [35] which shown in Fig. 2.

Figure 2: Freshwater snail movement by buoyancy (Planorbis planorbis). Source: Photograph by Uccio
D’Agostino, Wikimedia Commons, CC BY 4.0

2.1.2 Crawl

Water snails can also cling to and crawl on surfaces [36]. When they find a suitable habitat surface,
such as water plants, rocks, or the wall of a water tank, they will use their ventral feet to cling to it
and crawl slowly with the help of the suction force generated by mucus [37], carefully searching for
food and oxygen in a local area. Water snails can crawl on a variety of surfaces [38], including bottom
sediments, plant surfaces which shown in Fig. 3, and even tension membranes under the water surface,
thereby making full use of environmental resources at a microscopic scale.
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Figure 3: Freshwater snail (Lymnaea stagnalis) crawling on a reed stem underwater. Source: Photo-
graph by Kk, Wikimedia Commons, CC BY–SA 3.0

2.1.3 Collision Aggregation Behavior

Most organisms living under natural conditions tend to be distributed in clusters or clumps,
and freshwater snails follow this rule both in the wild and in laboratory conditions. Studies have
shown [39] that freshwater snails are highly social and will adjust their aggregation areas based on
external environmental factors such as resource distribution and water flow conditions and behavioral
conditions driven by internal conditions, as shown in Fig. 4, and prevent the disorderly increase of
aggregation areas through random collision behavior.

Figure 4: Aggregation behavior of freshwater snails (Planorbarius corneus). Source: Photograph by
Claus Ableiter, Wikimedia Commons, CC BY SA 3.0

2.2 Mathematical Models
This section provides a detailed introduction to the mathematical model of FSO proposed in

this paper. FSO is divided into three types of movement: “floating (exploration stage)-crawling
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(exploitation stage)-collision”. Although FSO uses sine and cosine formulas to replace water flow
fluctuations in the update, its simulation method is only related to the position of freshwater snails and
the upper and lower limits of the problem. This is fundamentally different from the PSO improved by
borrowing the sine and cosine ideas [40] and the hybrid SCA-PSO method [41]. In addition, FSO does
not involve the historical record of individual optimality. Table 1 lists the symbols and terms used.
In this algorithm, each freshwater snail individual represents a feasible solution, and each freshwater
snail has its position composed of dim variables.

Table 1: Parameters and their interpretations in the water-snail optimisation algorithm

Parameter Interpretation

A Buoyancy
Davg Average distance between water-snail individuals
ER Exploration ratio
gf Global guidance coefficient
gbestPos Global optimum position
Iter, maxIter Current and maximum iteration numbers
lf Local random-step coefficient
pop Water-snail population (all individuals)
popub Problem upper bound
poplb Problem lower bound
popexplorer, popexploiter Explorer and exploiter sub-populations
V best Mean value at the global best position
V Mean value at a colliding position
Wave Fluctuation induced by water flow
λ Free-step movement factor

2.2.1 Initialization

As a meta-heuristic algorithm, FSO first needs to initialize a set of random solutions, as shown
in Eq. (1):

pop = U(0, 1)popsize×D × (
popub − poplb

) + poplb (1)

where U(0, 1) represents a uniform distribution from 0 to 1, popsize is the population size, D is the
problem dimension, and popub and popub represent the upper and lower limits of the problem to be
optimized, respectively. The contradictory unity of exploration and development presents a difficulty
in both theory and practice: how to characterize and dynamically regulate the balance between the two
quantitatively. Therefore, in this paper, we divide the initialized pop into two parts: “exploration” and
“development”. In this paper, the number of explorers and developers is not fixed, but is dynamically
adjusted with the iteration process to achieve a smooth transition from “large-scale exploration” to
“fine development”, as shown in Eq. (2):

ERIter = ERinit − (
ERinit − ERfinal

) Iter
maxIter

(2)
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where ERinit = 0.5 is the initial explorer ratio, ERfinal = 0.1 is the final exploration, Iter is the current
iteration number, and maxIter is the maximum iteration number. In the Iter generation, the calculated
ERiter determines how many individuals in the current generation are marked as “explorers,” as shown
in Eq. (3):

EC = round
(
ERIter × popsize

)
(3)

2.2.2 Exploration Stage

In natural water bodies, freshwater snails rapidly adjust their buoyancy by modulating the gas
content of their pulmonary sacs. When the internal gas volume increases, buoyancy rises instantly,
lifting the individual from the benthic surface and allowing it to drift upward with the surrounding
flow. As the gas gradually diffuses, buoyancy decreases and the snail sinks again or is advected
downstream. Superimposed on the intrinsic periodic fluctuations of the flow field, this rise and sink
cycle produces a quasi-periodic floating-drifting trajectory that enables the snail to leave its original
position quickly, reach new waters, and thus markedly expand its activity range, as shown in Eq. (4):

popi(iter + 1) = A · (
gbestPos − popexplorer

) + Wave · (
gbestPos − snailBestPosi

)
(4)

where gbestPos is the global optimal position of the freshwater snail, snailPbestPosi is the individual
optimal position of the water snail, A and Wave are the buoyancy and the fluctuation affected by the
water flow, as shown in Eqs. (5) and (6):

A = Arand · eβ Iter
maxIter (5)

where Arand ∈ (0, 1) is a random number, and β = 7 is an exponential decay rate, which controls the
decay speed of buoyancy with iteration.

Wave =

⎧⎪⎪⎨
⎪⎪⎩

sin
(

2π
‖gbestPos − snailPbestPosi‖2

popub − poplb

)
, if rand ≤ 0.5,

cos
(

2π
‖gbestPos − snailPbestPosi‖2

popub − poplb

)
, if rand > 0.5.

(6)

where ‖gbestPos − snailPbestPosi‖2 is the Euclidean distance between the global optimal solution and
the personal optimal solution, popub and poplb are the upper and lower bounds of the search space; sin
and cos are functions of periodic fluctuations. For ease of understanding, the schematic diagram of
this stage is shown in Fig. 5.

Figure 5: The process of exploring the floating of freshwater snails
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2.2.3 Exploitation Stage

Compared with floating and drifting, the crawling behavior of freshwater snails corresponds to
the development process in the optimization algorithm. When a snail finds an area rich in resources
or suitable for survival, it will use its ventral foot to firmly attach to the nearby substrate and crawl
slowly to explore the area in detail to maximize the intake of resources. Each snail remains attached
and applies a small perturbation or incremental adjustment to the current solution to search for a
better neighborhood solution in the solution space, as shown in Eq. (7):

popi(iter + 1) = snailPbestPosi + lf · r + gf · (
gbestPos − popexploiter

)
(7)

where lf is the local random step coefficient, gf is the global guidance coefficient, r ∈ (0, 1) is a random
number, lf and gf are as shown in Eqs. (8) and (9):

lf = 0.1 ·
(

1 − Iter
maxIter

)
(8)

gf = 0.2 · Iter
maxIter

(9)

For ease of understanding, a schematic diagram of the development phase is shown in Fig. 6.

Figure 6: The process of exploiting the crawling of freshwater snails

2.2.4 Free-Step Movement by Collision Aggregation Behavior

Freshwater snails are highly social, and the degree of group aggregation is determined by random
collisions during population movement [42]. The number of collisions between freshwater snails is
determined by the density or number of freshwater snails per unit area N and the relative speed Vr.
During this period, any freshwater snail will sweep out a strip path that becomes a free-movement
path. Inspired by this, we propose a free-step movement factor λ.

Due to every solution trying to approach the global optimum in iteration, factors may overlap or
approach the limit during the movement. Then, within the time T , the width between individuals is D,
as shown in Eq. (10):

d =
√√√√ dim∑

k=1

(
popik − popjk

)2
(10)
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If d < threshold, it means that a collision has occurred between the two particles. In this paper,
threshold = 0.5, designed by sensitivity test which contains 6 benchmark functions of CEC 2017
(which will be introduced in detail in Section 3.3.2), namely benchmark functions 1, 4, 10, 11, 20, and
21. We performed 1500 iterations on each function, with a dimension of 30 and a population size of
50. To prevent the colliding particles from falling into the local optimum, it is necessary to determine
the distance relationship between the colliding particles and the global optimum, as shown in Eq. (11).
To avoid the distance difference being too large or too small, we use the average distance calculation.

Davg =
∑

m∈Colpop

∥∥popm − gBest
∥∥

2
(11)

where m ∈ Colpop represents the number of collisions and ‖·‖2 represents the Euclidean norm.
Therefore, the free movement step factor λ can be expressed by Eq. (12):

λ = d
n

= X̄best

2Davg NV̄
(12)

where V̄best represents the average value of the global optimal particle, and V̄ represents the average
value of the collision particles. As the number of collisions increases, it also reflects that the interval
and speed between particles are gradually decreasing. At this time, they need to be corrected as shown
in Eq. (13), and the equations are rewritten as

λ = 1
2 β D N

(13)

β ≈ 4
π

(
1 + 0.4

( σ

V̄

)2)
(14)

λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V̄best

2Davg N V̄
, m < popsize,

1
2 β D N

, m > popsize.

(15)

where σ represents the variance of the velocity. Therefore, the particle update using the free movement
step factor λ will be expressed as Eq. (16), and the free-step movement factor λ varies as shown in
Fig. 7. To facilitate understanding of FSO, the pseudo code is shown in Algorithm 1.

popi = popi + λ · popi (16)
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Figure 7: FSO free-step factor λ variation curve

Algorithm 1 : Pseudocode of freshwater snail optimizer
1: Initialization: Initialize the population size Popsize, dimension D, initialize the population pop by

Eq. (1), initialize the velocity by Eq. (2).
2: Initialize individual optimal, global optimal, individual optimal value and global optimal value.
3: while Iter < Itermax do
4: for each pop do
5: Calculate the buoyancy coefficient A by Eq. (5).
6: if Vair > r1 then
7: Update the new freshwater snail position of pop by Eq. (8).
8: else
9: Update the new freshwater snail position of pop by Eq. (9).

10: end if
11: Evaluate the fitness value of new pop and compare it to the global optimum.
12: Calculate the number of collisions and the free step factor λ.
13: Update the new freshwater snail position of pop by Eq. (16).
14: end for
15: end while
16: Output: the global optimum gBest and gBestvel.

2.3 Time Complexity Analysis
The time complexity of the metaheuristic algorithm comes from its primary calculation process.

The time complexity analysis of the FSO proposed in this paper can be divided into the following
parts:
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(1) Initialization: It takes O
(
D × Popsize

)
time to generate Popsize individuals with D dimensions

during the initialization process.

(2) Exploration and exploitation phases: The time complexity of calculating A is O(1), and updating
the position of the water snail requires O

(
Popsize

)
. Therefore, the total time complexity for the

exploration and exploitation stages over maxGen iterations is O
(
maxGen × D × Popsize

)
.

(3) Calculation of free step length: The time complexity of calculating the number of collisions and
the average distance is O(1), and updating the position of the water snail is O

(
D × Popsize

)
.

(4) Fitness evaluation: Let E be the time required for a single function evaluation. During maxGen
iterations, each iteration evaluates the fitness of Popsize individuals, which takes O(maxGen ×
Popsize × E) time in total.

Therefore, the total time complexity of FSO is

Timecomplexity(FSO) = O(Init) + O(Explore&Exploit) + O(Free step strategy) + O(Calculate fitness)

= O(D × Popsize) + O(maxGen × D × Popsize)

+ O(D × Popsize) + O(maxGen × Popsize × E)

= O(maxGen × D × Popsize + maxGen × Popsize × E).

Although we increase the computation of A, the time complexity does not increase compared to
other metaheuristic algorithms [43]. As shown in Table 2, FSO exhibits comparable computational
complexity to classical algorithms like PSO and SCA, with O(maxGen × D × Popsize + maxGen ×
Popsize × E). The main difference lies in the specific operations within each iteration:

• FSO: Beyond the standard position update, one additional free-step-length computation and a
A update are performed. Both are vectorized across individuals and dimensions, so the per-
iteration cost remains O(N × D) with only a small constant factor increase, while yielding
stronger global exploration.

• PSO: Each particle performs a velocity update followed by a position update. The per-
iteration complexity is likewise O(N × D), but PSO lacks FSO’s adaptive step-size/exploration
mechanism.

• GWO: Encircling with three leaders (α, β, δ) induces roughly three groups of vector operations
per individual. The asymptotic complexity remains O(N × D), with a slightly larger constant
in practice.

• SCA: Position updates rely on trigonometric functions. Although still O(N × D) in theory, the
use of sin / cos typically raises the constant factor.

Table 2: Computational complexity comparison of different algorithms

Algorithm Initialization Main loop Total complexity

FSO O(N × D) O(T × N × D) O(T × N × D + T × N × E)

PSO O(N × D) O(T × N × D) O(T × N × D + T × N × E)

GWO O(N × D) O(T × N × 3D) O(T × N × D + T × N × E)

SCA O(N × D) O(T × N × D) O(T × N × D + T × N × E)
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The key advantage of FSO is that while maintaining the same order of complexity, the A
mechanism provides better solution quality without significant computational overhead.

2.4 FSO Convergent Proof
To analyze the convergence properties of the FSO algorithm, we convert to the optimization

process as a discrete-time Markov chain. Let Xt = {X (t)
1 , ..., X (t)

popsize} denote the population state at
iteration t, where X (t)

i ∈ S ⊆ R
D represents the position of the i-th individual in the D-dimensional

search space. The state space of the entire population is defined as � = Spopsize. The Eq. (17) shows the
state transition of FSO satisfies the Markov property.

P(Xt+1|X0, ...,Xt) = P(Xt+1|Xt) (17)

This property indicates that the future state depends only on the current state, independent of the
historical trajectory.

2.4.1 Transition Probability

The overall transition probability kernel of the FSO algorithm can be decomposed as a composi-
tion of three phase-specific kernels in Eq. (19):

P(Xt,Xt+1) = Pexp ◦ Pexpl ◦ Pcol (18)

where Pexp, Pexpl, and Pcol correspond to the exploration, exploitation, and collision-aggregation phases,
respectively.

2.4.2 Convergence Analysis

We establish the global convergence property of the FSO algorithm through the following
theorem.

Theorem 1 (Global Convergence). The Markov chain {Xt}∞
t=0 generated by the FSO algorithm converges

almost surely to the global optimal solution set S∗.

Proof: To establish global convergence, we verify three essential properties of the Markov chain:

(i) Irreducibility. The stochastic nature of the exploration phase ensures that any state in the search
space can be reached from any other state with positive probability. Specifically, for any X ,Y ∈ �,
there exists a positive integer n such that:

P n(X ,Y) > 0 (19)

This property guarantees that the algorithm maintains global search capability throughout the
optimization process.

(ii) Aperiodicity. The collision mechanism introduces self-loop transitions with probability P(d ≥
threshold) > 0, ensuring that the chain is aperiodic. This prevents the algorithm from being trapped
in cyclic behaviors.

(iii) Monotonicity. The elite preservation mechanism through gbestPos ensures monotonic
improvement. We define the Lyapunov function as Eq. (20):

V(Xt) = min
i=1,...,popsize

f (X (t)
i ) − f ∗ (20)
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where f ∗ denotes the global optimal value. This function satisfies the contraction property by Eq. (21):

E[V(Xt+1)|Xt] ≤ ρ · V(Xt) (21)

with contraction factor Eq. (22):

ρ = 1 − ERIter

popsize
· Pimprovement < 1 (22)

where ERIter is the explorer ratio at iteration Iter, and Pimprovement represents the probability of finding an
improved solution. �

2.4.3 Convergence Rate Analysis

The dynamic adjustment of the explorer ratio plays a crucial role in balancing exploration and
exploitation:

ERIter = ERinit − (ERinit − ERfinal)
Iter

maxIter
(23)

This linear decrease from ERinit = 0.5 to ERfinal = 0.1 ensures a smooth transition from global
exploration to local exploitation. Under this scheme, the convergence rate can be characterized as
Eq. (24):

‖Xt − X ∗‖ ≤ O(ρ t) (24)

indicating geometric convergence to the optimal solution.Therefore, The convergence analysis reveals
that the FSO algorithm achieves global convergence through the synergistic interaction of its three
phases:

• The exploration phase maintains global search capability by ensuring irreducibility of the
Markov chain;

• The exploitation phase accelerates local convergence through adaptive step size control;

• The collision-aggregation mechanism balances population diversity and convergence speed
while ensuring aperiodicity.

Therefore, with the recommended parameter settings, our proposed FSO satisfies Eq. (25):

lim
t→∞

P(Xt ∈ Nε(X ∗)) = 1 (25)

where Nε(X ∗) denotes the ε-neighborhood of the global optimal solution. This result establishes the
almost sure convergence of the FSO algorithm to the global optimum.

3 Experimental Analysis

All experimental results in this article are from a ROG laptop equipped with an Intel (R) Core
(TM) i9-14900HX processor, 32 GB memory, and 64-bit Windows 11 operating system. The software
used in the experiment is MATLAB R2023b. The experimental results are analyzed based on the
optimal value of each run, and the optimal average (Avg.) and standard deviation (Std.) are analyzed.
The bold parts in all tables in this section represent the optimal results of that row.
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3.1 Benchmark Test Sets
We will compare the proposed FSO algorithm with various other algorithms on the benchmarks

of CEC 2017, and CEC 2022, which testing in 50 dimensions in CEC 2017, 10 and 20 dimensions in
CEC 2022.

3.2 Parameter Settings
In the experiment, the maximum population size popSize = 50 of each algorithm, and the

maximum number of evaluations is maxGen = 1500 and maxGen = 3000 in 50-dimension. Each
algorithm is run 20 times independently, and the comparison algorithm parameter settings are shown
in Tables 3 and 4. All independent experimental results were statistically tested using the Wilcoxon
rank sum test. “+” indicates that FSO is significantly better than the comparison algorithm, and “≈”
indicates that there is no significant difference between FSO and the comparison algorithm.

Table 3: Parameter settings for the classic metaheuristic algorithms

Algorithm Parameter(s)

AOA α = 5, μ = 0.499, MOPmax = 1, MOPmin = 0.2
COA I ∈ {1, 2}
RSO x = 1, y = 5
GWO ae ∈ [2, 0]
PSO c1 = c2 = 0.5
SCA a = 2
BH None
WOA ae ∈ [2, 0]
MFO b = 1

Table 4: Parameter settings for the emerging metaheuristic algorithms

Algorithm Parameter(s)

GGO None
GOOSE coe = 0.17
HO β = 1.5
SGA T = 1
PKO BF = 8, PEmax = 0.5, PEmin = 0
PO β = 1.5
SCHO ct = 3.6, u = 0.388, m = 0.45, ε = 0.003, n = 0.5, α = 4.6, β = 1.55, p = 10, q = 9
NRBO DF = 0.6, Flag = 1
NOA prp = 0.2, pα2

= 0.4, s = 0.05

3.3 Experimental Results and Analysis
We designed two sets of comparative experiments. The first set compared the proposed FSO with

nine classic algorithms, including AOA [44], COA [45], RSO [46], GWO, PSO, SCA [47], BH [48],
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WOA, and MFO [49]. The second set compared the proposed FSO with nine new algorithms published
in the past year, including GGO [50], GOOSE [51], HO [52], SGA [53], PKO [54], PO [55], SCHO [56],
NRBO [57], and NOA [58].

We first marked CEC 2017 (50 dimensions), and CEC 2022 (10 and 20 dimensions) with the classic
algorithms. Then, we used CEC 2017 (50 dimensions), and CEC 2022 (20 dimensions) to compare with
the new algorithms and perform related data analysis in parallel.This hierarchical approach allows us
to assess both the fundamental optimization capabilities and the scalability of FSO in challenging
search spaces.

3.3.1 CEC 2017 Benchmark Test Experiment Results and Analysis

The CEC 2017 benchmark test set [59] contains 29 real-valued continuous optimization problems,
including 2 unimodal functions (F1∼F3, without F2) with a single global optimal solution, which aims
to examine the global search ability of the algorithm; 7 multimodal functions (F4∼F10) with multiple
local optimal solutions, which challenge the algorithm’s ability to find the global optimal solution
and escape from the local optimal solution; 10 hybrid functions (F11∼F20) that combine unimodal
and multimodal characteristics to test the algorithm’s adaptability in complex search spaces; and 10
composition functions (F21∼F30) that are used to evaluate the algorithm’s global search and local
development capabilities, which are composed of multiple unimodal or multimodal functions.

As shown in Table 5, FSO achieved the best results in 24 of the 29 test functions, and only
slightly lagged behind the current optimal algorithm in F3, F10, F19, F20, and F30, but the the
gap with the optimal value remained at a minimal level. Meanwhile, the standard deviation of FSO
on most functions is also at its lowest or second-lowest level, indicating that the algorithm not only
possesses a strong global search capability but also exhibits excellent stability and reproducibility in a
high-dimensional search space. Overall, the experimental results demonstrate that FSO has excellent
adaptability and robustness in high-dimensional, complex optimization problems, providing strong
support for its promotion and application in larger-scale, more complex engineering optimization
tasks.

In the comparison of emerging algorithms, as shown in Table 6, FSO demonstrated significant
advantages in the 50-dimensional CEC 2017 test, particularly in the context of multi-dimensional,
complex optimization problems, showing its excellent global search ability and optimization efficiency.
In the 50-dimensional benchmark test, FSO only achieved suboptimal or inferior place in the optimal
mean in the test functions of F1, F3, F9, F10, F11, F12, F13, F15, F18, F19, and F30. In the vast
majority of other benchmark tests, FSO’s optimization performance surpassed other metaheuristic
algorithms proposed in the past year. This result fully demonstrates the excellent performance and
stability of FSO in high-dimensional optimization tasks. In addition, FSO’s advantage in the STD
evaluation indicator is even more prominent. In 14 benchmark tests, FSO successfully won first place.
As a new metaheuristic optimization algorithm, FSO exhibits good robustness and state-of-the-art
(SOTA) performance compared with other emerging algorithms.
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The Friedman test [60] is a nonparametric statistical method that can effectively eliminate the
uncertainty associated with sample distribution assumptions. FSO consistently ranks first in the 30,
and 50-dimensional scenarios of the CEC 2017 problem set, with mean ranks of 1.65, and 1.24,
respectively. As shown in Fig. 8, compared with the classical algorithm group, COA (3.21), which
ranked second in the 30-dimensional experiments, was pulled away by FSO by about 1.57 ranks, and
the relative advantage increased by about 49%; in the 50-dimensional case, the mean rank of FSO
further dropped to 1.24, and the advantage over the second-ranked GWO (3.13) expanded to about
60%. At the same time, AOA and RSO are both stable at the end, about 9.38 and 8.97 respectively,
indicating that these algorithms have a significant degradation trend in high-dimensional optimization
problems, while FSO’s performance is not negatively affected by the increase in dimension, but shows
more outstanding scalability and robustness. Further comparison of FSO with the nine emerging
metaheuristic methods proposed in recent years shows, the mean rank of FSO is 1.62, which is again
far ahead of the following ranked HO (3.45) by about 53%, and the gap with GGO and NOA is 4 to
6 times, highlighting the absolute competitiveness of FSO in emerging algorithms.

Figure 8: Friedman mean of ranks in CEC 2017. FSO and classic algorithms (a), FSO and emerging
algorithms (b)

3.3.2 Parameter Sensitivity Analysis

The setting of key parameters has a crucial impact on the algorithm’s optimization capabilities. To
systematically evaluate the effect of the Threshold parameter, which used to detect swarm collisions
in FSO, on search behavior, we conducted a parameter sensitivity analysis on F1, F3, F10, F11, F20,
and F21 Benchmark Functions from the CEC 2017. We used the CEC 2017 benchmark function
to conduct 20 independent experiments on F1, F3, F10, F11, F20, and F21 in 50 dimensions, with
1500 iterations per experiment for each Threshold ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The experimental results
in Table 7 show that F1 is most sensitive to Threshold, showing a clear U-shaped response. When
Threshold = 0.5, FSO achieves the optimal average fitness of 1.3710 × 105, which achieves 10.6%
improvement compared with Threshold = 0.1 in F1. The mean differences between the functions F3
and F11 are less than 5%, indicating that the algorithm is robust to threshold settings for this problem.
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The F10 monotonically degrades with increasing Threshold, suggesting that a smaller threshold is
more conducive to maintaining the necessary exploration for this problem. The mean changes of F20
and F21 are insignificant, and their standard deviations are below 100. Fig. 9 shows the parameter
sensitivity curves. When Threshold = 0.5, the optimal compromise is achieved and the combined
average fitness of the six functions drops to 2.9762 × 104, with a corresponding standard deviation
of 6.3686 × 103, the lowest among the five settings. The coefficient of variation is approximately
0.214, lower than the 0.269 for Threshold = 0.1 and the 0.245 for Threshold = 0.9, indicating that
Threshold = 0.5 not only can improve expected performance but also maintains robustness. This
indicates consistent with the mechanism by which the threshold regulates the intensity of exploration
and exploitation in FSO, which a too small Threshold makes collision judgments overly sensitive,
leading to premature clustering and maturation. A too large Threshold delays clustering signals,
searching excessively randomly, and hindering convergence. A moderate Threshold = 0.5 promotes
efficient exploitation while maintaining necessary exploration, and is adopted as the default setting.

Table 7: Sensitivity analysis of population collision threshold parameters

Function Value Threshold = 0.1 Threshold = 0.3 Threshold = 0.5 Threshold = 0.7 Threshold = 0.9

F1
avg 153,454.9525 149,892.1132 137,104.9981 145,984.0041 158,110.6224
std 46,897.87457 36,330.96214 33,244.97299 43,263.67516 43,462.14878

F3
avg 30,123.99887 30,031.54164 30,506.52146 30,599.96759 31,709.74248
std 4770.285316 5362.594123 4191.344367 6275.674787 4953.816526

F10
avg 4823.357258 4988.838200 5018.760349 4862.691797 4877.457415
std 519.4766093 679.8720887 670.7003784 556.8173946 670.8722559

F11
avg 1205.91333 1202.249371 1207.48284 1218.398523 1211.519482
std 27.67435429 30.25022353 21.35307236 29.76592176 25.78174926

F20
avg 2409.237731 2408.688707 2369.021416 2360.910214 2400.810912
std 101.1864141 69.24262517 63.86584283 95.63303205 61.08272572

F21
avg 2365.202234 2363.637659 2368.772509 2372.459103 2372.472829
std 17.07739186 12.46630887 19.39137064 15.94973207 17.33533622

3.3.3 CEC 2022 Benchmark Test Experiment Results and Analysis

The CEC 2022 benchmark test set [61] further expands the diversity and complexity of optimiza-
tion problems. The problems in the test set are designed with consideration of the complexity of the
real world, aiming to improve the algorithm’s performance when dealing with complex scenarios in
practical applications. They include 1 unimodal function (F1), 4 Basic Functions (F2–F5), 3 Hybrid
Functions (F6–F8), and 4 Composition Functions (F9–F12).
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Figure 9: Comparison of different Threshold values

Table 8 shows the results of the FSO algorithm in the CEC 2022 10-dimensional test. FSO shows
strong overall competitiveness. It achieves the best mean performance on all test functions except F7
and F10 and exhibits low standard deviation in most cases, indicating that the algorithm possesses
good stability and robustness in the search process. Although the standard deviation performance on
some test functions such as F4, F7, F8, F10, and F11 is not optimal, in general, the FSO algorithm
can balance global exploration and local development capabilities in a relatively balanced manner,
effectively avoiding premature convergence problems, and achieve efficient solutions to complex,
multi-peak and non-convex problems. In the 20-dimensional test, as shown in Table 9, although the
FSO algorithm failed to achieve the best results on a few functions, such as F1, F7, F9, F10, and F11,
its performance still maintains an overall advantage and can show relatively stable search performance
in most high-dimensional problems.

In Table 10, compared with the emerging published optimization algorithms in the CEC 2022
20-dimensional test results, the FSO algorithm achieves relatively excellent mean and volatility
indicators in most test functions, indicating that it possesses high robustness and adaptability in
multidimensional, complex optimization problems.

Fig. 10 shows the exploration and exploitation utilization rate, population diversity, and conver-
gence curve of FSO at CEC 2022. Population diversity [62] is a core element for maintaining the search
space coverage capability. Its main function is to prevent the algorithm from falling into the local
optimal solution too early. Higher population diversity can ensure that the distribution of candidate
solutions covers a wider area during the search process, thereby giving the algorithm stronger global
search capabilities in the early stages. The population diversity calculation uses the moment of inertia
Ic for calculation, as shown in Eqs. (17) and (18):
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Figure 10: (Continued)

https://www.scipedia.com/public/Liu_et_al_2025 27

https://www.scipedia.com/public/Liu_et_al_2025


G-Y. Liu, J-S. Pan, S-C. Chu, R-Y. Wang, B-X. Yang, Y. Yu and S. Mirjalili,

Freshwater snail optimizer: a bio-inspired optimizer

for engineering design problems,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.41, (4), 84

200 400 600 800 1000 1200 1400
Iteration

2000

2500

3000

3500

4000

4500

Po
pu

la
tio

n 
di

ve
rs

ity

The Population Diversity of CEC2022-F8

FSO-10D
FSO-20D

200 400 600 800 1000 1200 1400
Iteration

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

The Exploration and Exploitation Rate of CEC2022-F8

Exploration-10D
Exploration-20D
Exploitation-10D
Exploitation-20D

0 500 1000 1500
Iteration

2300

2400

2500

2600

2700

2800

2900

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F8-10D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

3000

4000

5000

6000

7000

8000

9000
10000
11000

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F8-20D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

104

B
es

t f
itn

es
s 

so
 f

ar

Compared with new algorithms in CEC2022-F8-20D

FSO NOA SGA
SCHO HO GOOSE
GGO NRBO PO
PKO

200 400 600 800 1000 1200 1400
Iteration

2000

3000

4000

5000

6000

Po
pu

la
tio

n 
di

ve
rs

ity

The Population Diversity of CEC2022-F9

FSO-10D
FSO-20D

200 400 600 800 1000 1200 1400
Iteration

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

The Exploration and Exploitation Rate of CEC2022-F9

Exploration-10D
Exploration-20D
Exploitation-10D
Exploitation-20D

0 500 1000 1500
Iteration

2600

2700

2800

2900

3000

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F9-10D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

2500

3000

3500

4000

4500

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F9-20D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

2500

3000

3500

4000

4500

B
es

t f
itn

es
s 

so
 f

ar

Compared with new algorithms in CEC2022-F9-20D

FSO NOA SGA
SCHO HO GOOSE
GGO NRBO PO
PKO

200 400 600 800 1000 1200 1400
Iteration

2000

2500

3000

3500

4000

4500

5000

Po
pu

la
tio

n 
di

ve
rs

ity

The Population Diversity of CEC2022-F10

FSO-10D
FSO-20D

200 400 600 800 1000 1200 1400
Iteration

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

The Exploration and Exploitation Rate of CEC2022-F10

Exploration-10D
Exploration-20D
Exploitation-10D
Exploitation-20D

0 500 1000 1500
Iteration

3000

3500

4000

4500

B
es

t f
itn

es
s 

so
 f

ar
Compared with classical algorithms in CEC2022-F10-10D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

3000

4000

5000

6000

7000

8000

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F10-20D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

3000

4000

5000

6000

7000

8000

B
es

t f
itn

es
s 

so
 f

ar

Compared with new algorithms in CEC2022-F10-20D

FSO NOA SGA
SCHO HO GOOSE
GGO NRBO PO
PKO

200 400 600 800 1000 1200 1400
Iteration

2000

2500

3000

3500

4000

4500

Po
pu

la
tio

n 
di

ve
rs

ity

The Population Diversity of CEC2022-F11

FSO-10D
FSO-20D

200 400 600 800 1000 1200 1400
Iteration

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

The Exploration and Exploitation Rate of CEC2022-F11

Exploration-10D
Exploration-20D
Exploitation-10D
Exploitation-20D

0 500 1000 1500
Iteration

3000

3500

4000

4500

5000

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F11-10D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

4000

6000

8000

10000

12000

14000

16000

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F11-20D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

4000

6000

8000

10000

12000

B
es

t f
itn

es
s 

so
 f

ar

Compared with new algorithms in CEC2022-F11-20D

FSO NOA SGA
SCHO HO GOOSE
GGO NRBO PO
PKO

200 400 600 800 1000 1200 1400
Iteration

2500

3000

3500

4000

4500

5000

5500

6000

6500

Po
pu

la
tio

n 
di

ve
rs

ity

The Population Diversity of CEC2022-F12

FSO-10D
FSO-20D

200 400 600 800 1000 1200 1400
Iteration

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

The Exploration and Exploitation Rate of CEC2022-F12

Exploration-10D
Exploration-20D
Exploitation-10D
Exploitation-20D

0 500 1000 1500
Iteration

2900

2950

3000

3050

3100

3150

3200

3250

3300

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F12-10D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

3000

3200

3400

3600

3800

4000

4200

B
es

t f
itn

es
s 

so
 f

ar

Compared with classical algorithms in CEC2022-F12-20D

FSO PSO SCA
WOA GWO AOA
COA RSO MFO
BH

0 500 1000 1500
Iteration

3000

3200

3400

3600

3800

4000

4200

4400

B
es

t f
itn

es
s 

so
 f

ar

Compared with new algorithms in CEC2022-F12-20D

FSO NOA SGA
SCHO HO GOOSE
GGO NRBO PO
PKO

Figure 10: FSO population diversity curve, exploration-exploitation utilization rate curve and conver-
gence curve at CEC 2022

Ic(t) =
√√√√popsize∑

i=1

D∑
d=1

(
xid(t) − cd(t)

)2
(26)

cd(t) = 1
D

popsize∑
i=1

xid(t) (27)

where xid(t) is the value of the i-th decision variable in the t-th generation, and cd(t) is the center coor-
dinate of the population in the d-th dimension of the t-th generation. The exploration-development
rate [63] is a key indicator that describes the algorithm’s resource allocation between global search
(exploration) and local search (development). A high exploration rate means that the algorithm tends
to use larger-scale or higher-intensity perturbation operators in each generation, making the search
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path more random and globally comprehensive; a high development rate means that the algorithm
focuses more on utilizing the local information around the current high-quality candidate solution.
The exploration and development rate calculations are shown in Eqs. (19) to (21).

Exploration(%) = Div(t)
Divmax

× 100% (28)

Exploitation(%) = |Div(t) − Divmax|
Divmax

× 100% (29)

Div = 1
D

D∑
d=1

1
N

Popsize∑
i=1

∣∣median
(
popd(t) − popid(t)

)∣∣ (30)

As shown in Fig. 10, the FSO has multiple advantages for the unimodal problem. The population
diversity curve shows that the algorithm can maintain a fairly high solution space coverage in the
early stage in both 10-dimensional and 20-dimensional scenarios. Then the diversity slowly decays
monotonically rather than converges abruptly, indicating that FSO avoids premature convergence
in the global exploration stage and gradually concentrates on the optimal solution space in the
middle and late stages. Compared with 10-dimensional, the decay rate of 20-dimensional diversity
is slower, which means that the algorithm can adapt to the longer exploration cycle required for
high-dimensional search. The exploration-exploitation rate further quantifies this adjustment process.
The initial exploration rate is close to 90% and the exploitation rate is close to 10%, which is
consistent with the exploration-exploitation clustering strategy designed in this paper. As the iteration
proceeds, the two lines cross linearly. At 900 iterations, the exploitation rate exceeds 60% in both
10 and 20 dimensions, indicating that FSO employs a progressive strategy of first conducting an
extensive search and then refining the profile. At the same time, in the high-dimensional case, the
exploration-dominated stage is extended to ensure sufficient information collection. In the comparison
of convergence trajectories in the 10-dimensional case, FSO compressed the target value by two orders
of magnitude in less than 50 iterations and approached the numerical limit after 300 iterations, while
algorithms such as PSO and GWO remained in the 103 ∼ 104 range until 1500 iterations, and WOA and
BH showed a long-term platform phenomenon, highlighting that classical algorithms are prone to fall
into local optimality or limited convergence rate; after the dimension increased to 20, the performance
of most classical methods further deteriorated, and most curves showed premature stagnation near 104,
while FSO, although its decline rate slowed down slightly in the early high-dimensional period, still
maintained monotonic decay and entered the second position after 1400 iterations, and continued to
retain room for decline; in the same 20-dimensional setting, the convergence comparison of nine new
algorithms proposed in the past year showed that except for PO, which briefly approached FSO within
600 iterations, the other methods fell into local optimality in the range of 104 ∼ 105, while FSO, after
1000 iterations, continued to slowly decrease until it fell below the 103 level, eventually maintaining a
significant advantage over the algorithm.

Fig. 11, in the comparison between our proposed FSO and nine classic algorithms, including
AOA, COA, RSO, GWO, PSO, SCA, BH, WOA, and MFO, FSO won the first place with a significant
advantage in both the 10-dimensional and 20-dimensional experiments, and its Friedman mean
ranking was 1.75 and 1.67, respectively. Compared with the second place, FSO achieved a relative
advantage of about 57.1% and 49.9%, respectively. Fig. 12 shows the Friedman mean ranking results of
FSO and the emerging nine new algorithms. FSO also ranked far ahead of other algorithms in the CEC
2022 20D experiment. Compared with HO and PO, which followed closely, FSO has an improvement

https://www.scipedia.com/public/Liu_et_al_2025 29

https://www.scipedia.com/public/Liu_et_al_2025


G-Y. Liu, J-S. Pan, S-C. Chu, R-Y. Wang, B-X. Yang, Y. Yu and S. Mirjalili,

Freshwater snail optimizer: a bio-inspired optimizer

for engineering design problems,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.41, (4), 84

of 59.5%, further demonstrating that FSO not only has an advantage in the classic comparison but
also maintains a leading position in technology ahead of the emerging algorithms.

Figure 11: Friedman mean of ranks in CEC 2022 compared with classic algorithms. 10D Friedman
mean of ranks (a), 20D Friedman mean of ranks (b)
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Figure 12: Friedman mean of ranks in CEC 2022 compared with emerging algorithms
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4 Application of FSO in Engineering Optimization Problems

In this section, we compare FSO with seven algorithms, namely SCA, PSO, AOA, BH, SO, DOA
[64], and RSO, among which SO and DOA are SOTA algorithms proposed in recent years. We conduct
comparative tests on six actual engineering applications to demonstrate the optimization ability of
FSO in actual engineering problems. The six engineering constraint optimization problems we use are
as follows:

• Tension/compression spring design [65]

• Welded beam design [66]

• Pressure vessel design [67]

• Weight minimization of a speed reducer [68]

• Gear train design problem [69]

• Three-bar truss design problem [70]

The platform used in this experiment is equipped with an Intel(R) Core(TM) i9-14900HX
processor with a central frequency of 2.2 GHz, 32 GB of memory, a 64-bit Windows 11 system, and
the MATLAB 2023b experimental platform. In the experiment, the maximum population size is 100,
the maximum number of iterations is 1500.

4.1 Tension/Compression Spring Design
The design problem of tension/compression springs is usually regarded as a classic nonlinear

constrained engineering optimization problem. This problem has significant multimodal and non-
convex characteristics due to the strong nonlinear coupling between the objective and the constraints.
Its core task is to minimize the deadweight of the spring structure while satisfying several mechanical
and geometric constraints [71], as shown in Fig. 13. Let the vector xi = [d, D, N]T , i = 1, 2, 3, where
d represents the wire diameter, D represents the average coil diameter, and N represents the number
of effective coils. In addition, to ensure the safety and functional performance of the spring during
service, the upper limit of shear stress c1(x), the lower limit of burst (impact) frequency c2(x), and the
minimum deflection c3(x) constraint functions are added.

Figure 13: Tension/compression spring design problem

Minimize:

min
x

(x3 + 2) x2 x2
1

Subject to:

c1(x) = 1 − x2
3 x1

71785x4
1

≤ 0, c2(x) = 4x2
2 − x1x2

12566 (x2x3
1 − x4

1)
+ 1

5108x2
1

≤ 0,

c3(x) = 1 − 140.451x2
1

x2 x3

≤ 0, c4(x) = x1 + x2

1.5
− 1 ≤ 0.
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Variable range:

0.05 ≤ x1 ≤ 2.00, 0.25 < x2 < 1.30, 2.00 ≤ x3 ≤ 15.00.

In numerical experiments on a tension/compression spring design problem, the FSO algorithm
demonstrated excellent convergence and stability. As shown in Table 11, the optimal objective value
obtained by FSO across multiple independent runs was 1.2694×10−2. FSO reduced the optimal values
of the SCA, RSO, AOA, BH, DOA, SO, and PSO by approximately 0.46%, 2.65%, 3.81%, 4.24%,
9.05%, 28.58%, and 58.45%, respectively. The FSO solution was d = 0.054425, D = 0.426119, and
N = 8.17945. This means that while satisfying the constraints, a small wire diameter and a medium
coil diameter are selected, and the number of effective turns is kept within a moderate range. This is
consistent with the structural relationship that spring weight increases with increasing N.

Table 11: Optimal design variables and best objective value for the tension/compression spring problem

Algorithms
Tension/compression spring design

Best value
x1(d) x2(D) x3(N)

FSO 0.054425 0.426119 8.17945 1.26941E−02
SCA 0.051400 0.348398 11.96288 1.27531E−02
PSO 0.081640 0.907702 7.68668 3.05490E−02
AOA 0.050000 0.312115 15.00000 1.31973E−02
BH 0.060184 0.595906 4.477879 1.32561E−02
SO 0.069064 0.936499 1.988497 1.77732E−02
DOA 0.153698 1.300000 15.00000 1.39573E−02
RSO 0.050000 0.392126 6.583604 1.30400E−02
Note: Bold values indicate the best performance for each test function.

4.2 Welded Beam Design Problem
The welded beam design problem is a classic problem in the field of structural optimization.

Its goal is to minimize the overall manufacturing cost of the welded beam by optimizing the design
variables under the premise of satisfying a series of constraints [72], as shown in Fig. 14. The design
variables of this problem include the weld thickness h, the steel bar length l, the beam height t, and the
beam thickness b. The main constraints include the bending stress θ , the shear stress τ , the beam end
deflection δ, the steel bar buckling load Pc, etc., which together determine the mechanical properties
and manufacturing cost of the beam.

Minimize:

min
x

1.10471x2
1 x2 + 0.04811x3 x4 (14.0 + x2)

Subject to:

c1(x) = τ(x) − τmax ≤ 0, c2(x) = σ(x) − σmax ≤ 0, c3(x) = δ(x) − δmax ≤ 0,

c4(x) = x1 − x4 ≤ 0, c5(x) = P − Pc(x) ≤ 0, c6(x) = 0.125 − x1 ≤ 0,

c7(x) = 1.10471x2
1 + 0.04811x3 x4 (14.0 + x2) − 5.0 ≤ 0.
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Figure 14: Welded beam design problem

Variable range:

0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4 ≤ 2.0.

In Table 12, FSO achieved an optimal objective value of 1.72784 across multiple independent
runs, significantly outperforming competing algorithms such as SCA (1.79602), PSO (3.07717), and
AOA (1.86225). SO’s result of 1.089 × 1024 was attributed to a significant penalty term triggered by
severe constraint violations. The solution of FSO, with h = 0.205166, l = 3.493986, t = 9.033529,
and b = 0.205890, aligns with the known structural characteristics of the problem, requiring symmetry
between thin welds and thin flanges while satisfying shear/bending strength constraints. This approach
reduces overall cost while meeting deflection and strength constraints.

Table 12: Optimal design variables and best objective value for the welded beam design problem

Algorithms
Welded beam design variables

Best value
x1(h) x2(l) x3(t) x4(b)

FSO 0.205166 3.493986 9.033529 0.205890 1.72784E+00
SCA 0.201029 3.823178 8.908540 0.212772 1.79602E+00
PSO 0.276355 3.295999 7.960959 0.422542 3.07717E+00
AOA 0.202010 3.464458 9.995854 0.203136 1.86225E+00
BH 0.224855 4.274271 8.518026 0.231543 1.97272E+00
SO 1.157178 1.871254 2.000000 2.000000 1.08900E+24
DOA 0.209560 3.365336 9.107217 0.219862 1.83610E+00
RSO 0.211171 3.745182 8.512591 0.244318 1.96005E+00
Note: Bold values indicate the best performance for each test function.

4.3 Pressure Vessel Design Problem
The pressure vessel design problem is a vital engineering optimization task. Its main goal is

to minimize the total cost of manufacturing cylindrical containers through reasonable design. The

https://www.scipedia.com/public/Liu_et_al_2025 33

https://www.scipedia.com/public/Liu_et_al_2025


G-Y. Liu, J-S. Pan, S-C. Chu, R-Y. Wang, B-X. Yang, Y. Yu and S. Mirjalili,

Freshwater snail optimizer: a bio-inspired optimizer

for engineering design problems,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.41, (4), 84

total cost includes material cost, molding cost and welding cost [73], as shown in Fig. 15. Let xi =
[Ts, Th, L, R]T , i = 1, 2, 3, 4, where Ts is the shell thickness, Th is the head thickness, R is the inner
radius, and L is the length of the cylindrical section ignoring the head. To fully consider the structural
performance and manufacturing cost of the container, it is also necessary to optimize and adjust the
shell thickness constraint c1(x), the head thickness constraint c2(x), the minimum volume constraint
c3(x) and the maximum length constraint c4(x) during the design process.

Figure 15: Pressure vessel design problem

Minimize:

min
x

0.6224x1 x3 x4 + 1.7781x2 x2
3 + 3.166x2

1 x4 + 19.84x2
1 x3

Subject to:

c1(x) = − x1 + 0.0193x3 ≤ 0, c2(x) = − x2 + 0.00954x3 ≤ 0,

c3(x) = −π x2
3 x4 − 4

3
x3

3 + 1 296 000 ≤ 0, c4(x) = x4 − 240 ≤ 0.

Variable range:

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

From Table 13, the FSO for pressure vessel design achieves high-level thickness variables
t = 0.844252 and b = 157.8897, satisfying both volume constraints and structural strength
requirements. Furthermore, the cylinder height h = 0.844252 and the hemispherical head radius
l = 0.424508 are both near the lower bound, significantly reducing material consumption and
manufacturing costs. The FSO achieves the lowest objective value of 6.04731×103 for this problem, still
achieving a cost reduction of approximately 0.66% compared to the suboptimal SCA, demonstrating
a more refined search near the boundary of the feasible region.

4.4 Weight Minimization of a Speed Reducer Problem
The reducer weight minimization problem is a classic and representative constrained optimization

benchmark in the field of mechanical transmission optimization. Its research goal is to coordinate
the structure and gear parameters [74], as shown in Fig. 16. Assumption xi = [b, m, z, l1, l2, d1, d2]T ,
i = 1, 2, 3, 4, 5, 6, 7, where b is the gear face width, m is the gear module, z is the number of pinion teeth,
l1 is the length of the shaft section between the first bearing, l2 is the length of the shaft section between
the second bearing, d1 is the diameter of the first shaft, and d2 is the diameter of the second shaft. To
ensure the reliability of the reducer under actual working conditions, the model also introduces 11
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inequality constraints, namely, limiting the bending stress of gear teeth c1(x), tooth surface contact
stress c2(x), the deflection constraints of the first and second transmission shafts c3(x) and c4(x), the
shear-bending composite stress constraints of the first and second shafts c5(x) and c6(x), the gear center
distance geometric constraint c7(x), the gear face width and module relationship constraint c8(x), the
face width lower limit constraint c9(x), the axis 
= 1 aspect ratio constraint c11(x) and the axis 
= 2
aspect ratio constraint c12(x).

Table 13: Optimal design variables and best objective value for the pressure vessel design problem

Algorithms
Pressure vessel design variables

Best value
x1(h) x2(l) x3(t) x4(b)

FSO 0.844252 0.424508 43.73671 157.8897 6.04731E+03
SCA 0.786103 0.414491 40.66118 200.0000 6.08720E+03
PSO 2.596780 16.22233 51.37895 140.4864 9.76839E+04
AOA 0.896261 0.411381 42.36283 200.0000 7.22279E+03
BH 1.678686 2.013314 48.50170 118.4676 1.81934E+04
SO 0.963410 0.476214 49.91763 99.0000 6.28333E+03
DOA 1.673597 2.023968 45.93828 135.4026 1.78275E+04
RSO 1.439973 0.627803 65.46044 10.0000 8.12869E+03
Note: Bold values indicate the best performance for each test function.

Figure 16: Weight minimization of a speed reducer

Minimize:
min

x
0.7854x2

1 x2
2 (3.3333x2

3 + 14.9334x3 − 43.0934) − 1.5084x1 (x6
2 + x7

2)

+ 7.4777 (x6
3 + x7

3) + 0.7854 (x4 x6
2 + x5 x7

2) .
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Subject to:

c1(x) = 27
x2

1 x2 x3

− 1 ≤ 0, c2(x) = 397.5
x2

1 x2
2 x3

− 1 ≤ 0,

c3(x) = 1.93 x3
2 x4

x6
2 x3

− 1 ≤ 0, c4(x) = 1.93x5
3

x4
2 x7

− 1 ≤ 0,

c5(x) =

(
745x4

x2 x3

)2

+ 16.9 × 106

100x6
3

− 1 ≤ 0, c6(x) =

(
745x5

x2 x3

)2

+ 157.5 × 106

852x7
3

− 1 ≤ 0,

c7(x) = x2 x3

40
− 1 ≤ 0, c8(x) = 5x2

2

x1

− 1 ≤ 0,

c9(x) = x1

12x2
2

− 1 ≤ 0, c10(x) = 1.5x6 + 1.9 − 1
x4

≤ 0,

c11(x) = 1.1x7 + 1.9 − 1
x5

≤ 0.

Variable range:

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

From the distribution of decision variables in Table 14, FSO tends to fix the modulus m and the
number of teeth z at the lower bound combination allowed by the problem to reduce the mass of the
meshing pair and, at the same time, by slightly increasing the face width b and the bearing diameter d2,
reduce material consumption under the premise of meeting the bending strength and contact fatigue
constraints. Statistical indicators further verify the robustness of FSO. FSO ranks first among the
eight compared algorithms. Compared with the Best result of 2.99547 × 103 of the second-ranked
DOA, FSO can still achieve an absolute improvement of 9.0 × 10−2. Compared with SCA, AOA, and
BH, its weight is reduced by 0.83%, 3.19%, and 4.50%, respectively.

Table 14: Optimal design variables and best objective value for the weight minimization of a speed
reducer

Algorithms
Weight minimization of a speed reducer

Best value
x1(b) x2(m) x3(z) x4(l1) x5(l2) x6(d1) x7(d2)

FSO 3.50003 0.7 17 7.356022 7.726576 3.350344 5.286855 2.99538E+03
SCA 3.526305 0.7 17 7.402812 7.913655 3.365822 5.296929 3.02062E+03
PSO 3.571946 0.706582 25.23448 7.658492 7.985637 3.346364 5.409497 1.08520E+08
AOA 3.6 0.7 17 7.986437 8.3 3.498114 5.288941 3.09386E+03
BH 3.558615 0.711569 17.21610 7.801354 7.961622 3.381829 5.298845 3.13633E+03
SO 3.6 2.6 3.6 3.6 3.6 3.086665 3.6 1.27061E+16
DOA 3.500432 0.700020 17.00247 7.300029 7.716003 3.350389 5.287161 2.99547E+03
RSO 3.536949 0.708461 25.59718 8.115698 7.637894 3.666141 5.275455 1.10403E+11
Note: Bold values indicate the best performance for each test function.
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4.5 Gear Train Design Problem
The gear train design problem is a simplified engineering optimization model with the core goal

of minimizing the transmission ratio. Its research goal is to accurately adjust the number of teeth of
each gear [75], as shown in Fig. 17. Let’s assumption xi = [T1, T2, T3, T4]T , i = 1, 2, 3, 4, correspond
to the number of teeth of the four gears A, B, D, and F in the gear train.

Figure 17: Gear train design

Minimize:

min
x

1
6.931

+ x2 x3

x1 x4

Subject to:

12 ≤ xi ≤ 60, i = 1, 2, 3, 4.

As shown in Table 15, the FSO algorithm achieves an optimal objective function value of
2.60422×10−16 for a classic four-stage gear train error minimization benchmark problem. While the SO
algorithm achieves a numerically lower objective function value of 1.38233 × 10−26, it is important to
note that when the optimization accuracy reaches the order of O(10−16), it far exceeds the accuracy
required for practical engineering applications. The FSO algorithm yields a tooth number vector
of approximately (n1, n2, n3, n4) = (31.79, 17.56, 12.96, 49.62) ≈ (32, 18, 13, 50), demonstrating the
effectiveness of the FSO optimization.

4.6 Three-Bar Truss Design Problem
The core task of the three-bar truss design is to minimize the weight of the truss while satisfying the

constraints of structural safety and service performance [76], as shown in Fig. 18. Let the vector x =
[x1, x2]T , where x1 and x2 represent the dimensionless cross-sectional area ratios of different members,
respectively, and the constraints are the axial stress limits c1(x), c2(x), and vertical deflection c3(x) of
the two groups of compression/tension members.
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Table 15: Optimal design variables and best objective value for the gear train design problem

Algorithms
Gear train design

Best value
x1(n1) x2(n2) x3(n3) x4(n4)

FSO 31.78686 17.55625 12.96305 49.62348 2.60422E−16
SCA 35.72559 16.64936 12.00000 38.76103 4.12202E−15
PSO 50.37303 22.60940 15.31228 48.04618 1.52410E−06
AOA 33.42441 12.88471 22.45663 60.00000 1.45447E−17
BH 33.38853 12.32445 23.00589 58.85797 3.86042E−23
SO 53.56361 12.00000 34.44703 53.48834 1.38233E−26
DOA 53.41485 13.08966 34.82841 59.15561 1.61112E−20
RSO 30.66056 12.00000 12.00000 32.42878 3.00811E−07
Note: Bold values indicate the best performance for each test function.

Figure 18: Three-bar truss design problem

Minimize:

min
x

(2
√

2 x1 + x2) L

Subject to:

c1(x) = P
√

2x1 + x2√
2x2

1 + 2x1x2

− σ ≤ 0, c2(x) = P x2√
2x2

1 + 2x1x2

− σ ≤ 0,

c3(x) = P

x1 + √
2 x2

− σ ≤ 0.

where L = 100 cm is the beam length, P = 2 kN/cm2 is the external load, and σ = 2 kN/cm2 is the
allowable stress of the material.
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As shown in Table 16, the FSO algorithm yielded the same optimal value as the BH and SO
algorithms, which is 2.63896×102. While guaranteeing that member stresses satisfy the restrictions, the
FSO solution, x1 = 0.788300 and x2 = 0.409311, strikes an ideal balance between material utilization
and structural weight. The PSO, RSO, and AOA algorithms, on the other hand, produce much larger
x2 values, which may result in redundant designs and increase material usage.

Table 16: Optimal design variables and best objective value for the three-bar truss design problem.

Algorithm
Three-bar truss design problem

Best value
x1 x2

FSO 0.788300 0.409311 2.63896E+02
SCA 0.791629 0.400003 2.63907E+02
PSO 0.760721 0.517676 2.66932E+02
AOA 0.778931 0.436972 2.64012E+02
BH 0.789210 0.406739 2.63896E+02
SO 0.788669 0.408266 2.63896E+02
DOA 0.791372 0.400938 2.63928E+02
RSO 0.731384 0.600909 2.64373E+02
Note: Bold values indicate the best performance for each test function.

Fig. 19 shows the runtime distribution of FSO and seven other algorithms for optimizing
engineering problems. Among the eight metaheuristic algorithms evaluated, FSO ranked third with a
total runtime of 2.38 s, slightly ahead of SCA’s 0.94 s and PSO’s 1.62 s, though SCA and PSO have a
slight advantage in runtime, their optimization results lag behind FSO, with FSO demonstrating the
best balance between solution quality and computational cost. Compared to SOTA algorithms such as
SO and DOA, despite FSO’s inferiority to SO on the Gear Train Design Problem, the optimization time
has halved for FSO. The result demonstrates the FSO algorithm’s superiority in search mechanism
design and convergence strategy.

Figure 19: Running time comparison of different optimization algorithms
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5 Conclusion

In response to the increasingly complex and highly nonlinear modern optimization scenarios
[77], we proposed a new metaheuristic algorithm named Freshwater Snail Optimizer (FSO). Through
the diversified solution space constructed by swarm initialization, the global search is expanded by
floating in the air chamber during the exploration process, and feasible solutions are scanned over an
extensive range in the solution space. During the development process, local development is carried
out in a small range by imitating the way water snails move in the water. To prevent the algorithm
from falling into the local optimum, we designed a free-step strategy by imitating the collision social
behavior of water snails to assist FSO in escaping the local optimum. To systematically verify the
optimization ability of FSO, we conducted a performance comparison and mechanism analysis, with
the CEC series benchmark evaluation serving as the core. The experimental design encompasses CEC
2017 50 dimensions and CEC 2022 (10, 20 dimensions) tests, providing a comprehensive examination
of dynamic indicators such as exploration-exploitation ratio, and convergence curve. The results
are ranked using the Friedman test at the statistical level. Comprehensively comparing nine classic
metaheuristic algorithms and nine new algorithms proposed in the past year, FSO showed significant
advantages in both the mean and variance of the optimal value, proving that FSO has good robustness,
consistency and the ability to balance exploration and development. It has repeatedly ranked first in
six engineering constraint optimization examples, fully demonstrating its excellent adaptability and
generalization potential for practical problems.

Kulkarni et al. [78] proposed the Snail Homing and Mating Search (SHMS) algorithm in their
paper, inspired by snails, the FSO algorithm proposed in this paper is significantly different from
SHMS in terms of biological abstraction and operator mechanism. FSO simulates the fluid dynamics
of freshwater snorkels that rely on lung sacs to adjust for floating and sinking. It performs global
exploration by superimposing exponential decay buoyancy and sine-cosine drift, and then completes
local exploitation and maintains population discreteness through adhesion, sliding, and collision with
the shell. SHMS is derived from the mucus nest-seeking and mate-selection behavior of terrestrial
snails, dividing individuals into ’snails’ and ’nests’, utilizing fixed-probability switching trajectories and
Lévy flight, and requiring adjustments to five constants, such as mucus attenuation and nest density.
In addition, the buoyancy adaptive mechanism of FSO enables fast early convergence and avoids
premature maturity in the later stage, whereas the convergence curve of SHMS is asymptotic Sigmoid,
and its ability to jump out of the local area is limited. Therefore, there are significant differences in the
metaheuristic algorithm design.

In the future, we will focus on three main lines: first, introduce surrogate-assisted technology and
deep transfer learning strategy to improve further the real-time response capability on ultra-high-
dimensional and dynamic multi-peak objective functions; second, expand FSO to multi-objective
and multi-task optimization framework to further enhance its optimization capability for multiple
problems and multiple objectives; third, combine binary mechanism to meet the algorithm’s needs in
feature selection on sparse data, so as to solve real-world problems better.
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