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Abstract. This paper inscribes itself in the ongoing doctoral work of the first author which aims at

adapting the immersed boundary conditions (IBC) technique to three-dimensional (3D) large eddy sim-

ulations (LES) of viscous hypersonic flows around complex vehicles. The work relies on a pre-existing

in-house IBC code, HYPERION (HYPERsonic vehicle design using Immersed bOuNdaries), originally

developed in two dimensions (2D) as a proof of concept that it is possible to use IBC in the presence of

strongly shocked flows [4].

As a first step towards the optimization of the 3D HYPERION, we discuss in this paper a novel MPI/Open

MP hybrid rasterization algorithm allowing for the detection of immersed cells in record time even for

very large problems.

We then consider the least-square-based reconstruction algorithm from HYPERION [4]. It was shown

in the original paper that the number of neighbors used in the reconstruction is directly related to the

condition number of the least-square matrix and an optimum can be found when the condition number

reaches an asymptote. In 3D configurations it is found that the number of neighbors has to be very high

to ensure the proper conditioning of the least-square matrix. If the computation is distributed on several

MPI processes (as is always the case in 3D for realistic return times), gathering the information from

that many neighbors can cause obvious communication issues - it amounts to covering large stencils with

unrealistically large MPI halos. We therefore introduce an algorithm designed for a hybrid MPI/OpenMP

environment based on migratable tasks and the consensus algorithm developed by [9] to remedy the

former shortcoming.

Finally, we discuss the premise of the implementation of LES capabilities in HYPERION. The last

milestone of the main author’s doctoral work is indeed to study the feasibility of embedding wall laws in

the IBC modeling and reconstruction algorithm to try and counteract the low accuracy of the near-wall

phenomena caused by the lack of body-fitted mesh.
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1 INTRODUCTION

Numerical simulations of hypersonic flows have been supplementing experimental wind-tunnel testing

for many years. Today flow simulations in the high-supersonic and/or hypersonic regimes are becoming

a common sight both in the academic and in the industrial worlds and in many domains [24, 38, 5, 15, 3].

One of the most important ingredients to obtain accurate results from such simulations is commonly

found to be the mesh. However, the cost of generating a body-fitted mesh around complex geometries

such as those used for hypersonic planes, blast-resistant building, etc. . . can be high, and it is still today

a trending topic to accelerate and improve the robustness of the process. In the context of computer-

aided end-to-end vehicle development, numerous computations have to be made, iterating on successive

designs, and the days taken to make the mesh for every iteration can amount to a non-negligible part of

the allotted project time. The present paper inscribes itself in the doctoral work of the first author and

follows the work of the second author [4] that aims at showing that it is possible to use an immersed

boundary technique to cut the mesh generation time, and produce a piece of software that is robust,

efficient and accurate enough to handle viscous hypersonic flows.

In this short study, we investigate how to enable massively parallel simulations with an immersed

boundary-based CFD code. Based on preliminary results from the code used in Bridel-Bertomeu study

[4], we propose to overcome two major obstacles on the path towards massive parallelism. The first

obstacle concerns the manipulation of the objects themselves, when immersed in a Cartesian mesh.

For extremely large Cartesian meshes and finely tesselated objects, the different ray-casting algorithms

mentioned in [4, 33, 23] prove to have too high an algorithmic complexity to be reasonably use in three-

dimensional simulations. The second obstacle we propose a solution to, in the present study, occurs

during the interpolation stage of the immersed boundary workflow. At each iteration of the fluid solver,

when the values to be set in the immersed ghost cells are to be computed, the multidimensional inter-

polation process requires data from, potentially, an elevated number of neighbors. In the context of a

partitioned mesh and distributed parallelism, accessing neighbors that are a few cell layers away can be

challenging and can cause an unacceptable overhead in computational time due to the increased number

of communications between neighboring processes.

With the two algorithms we will introduce, we will show that we finally make accessible massively paral-

lel simulations with HYPERION on thousands of distributed processes. This will lead to a discussion and

an investigation of the predictive capabilities of HYPERION in three dimensions. The investigation is

ongoing but some elements for implementing a large eddy simulation (LES) framework in HYPERION

will be discussed, and some preliminary results will be shown.

2 HYPERION IN A FEW WORDS

The code used in this study, i.e. HYPERION, solves the three-dimensional compressible Navier-Stokes

equations with source term. A dimensionless formulation is used to minimize the stiffness of the system

in high-Mach & high-Reynolds numbers regimes. Mathematically, the system can be written as follows

[32]:

Ut +Fx +Gy +Hz = Ev,x
x +Ev,y

y +Ev,z
z +S, (1)

where the subscripts indicate differentiation, U is the vector of conservative dimensionless variables
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and F (Ev,x), G (Ev,y) and H (Ev,z) represent the inviscid (viscous) fluxes in x−, y− and z−direction

respectively and S represents a volumic source term. Those vectors are defined as such:

U =













ρ

ρu

ρv

ρw

ρE













, F =













ρu

ρu2 + p

ρuv

ρuw

ρuE + pu













, G =













ρv

ρvu

ρv2 + p

ρvw

ρvE + pv













, H =













ρw

ρwu

ρwv

ρw2 + p

ρwE + pw













,

Ev,x =













0

τxx

τyx

τzx

τxxu+ τxyv+ τxzw−qx













, Ev,y =













0

τxy

τyy

τzy

τxyu+ τyyv+ τyzw−qy













,

Ev,z =













0

τxz

τyz

τzz

τzxu+ τzyv+ τzzw−qz













.

(2)

In the above dimensionless expressions, t denotes the time and x, y and z are the Cartesian coordinates.

ρ denotes density, u, v and w denote the x−, y− and z−direction velocity components respectively, E

denotes the specific total energy and p denotes the static pressure. τ is the viscous stress tensor and q the

heat flux vector. Here a simple perfect gas is considered and therefore the specific total energy can be

related to the other variables using:

E =
1

γ−1

p

ρ
+

1

2

�

u2 + v2
�

, (3)

where γ is the ratio of specific heats and if not specified otherwise we will take γ = 1.4 in the rest of this

study. As is often done for high-Mach number compressible flow solvers, we here use the freestream

speed of sound a∗∞ to nondimensionalize the velocity. The relations between the dimensionless and the

dimensional variables are therefore:

ρ =
ρ∗

ρ∗
∞

, p =
p∗

ρ∗
∞a

∗,2
∞

, [u,v,w] =

�

u∗

a∗∞
,

v∗

a∗∞
,
w∗

a∗∞

�

, [x,y,z] =

�

x∗

L
,
y∗

L
,
z∗

L

�

, t =
t∗

L/a∗∞
, (4)

where the starred variables denote dimensional variables and L is a reference length. With this formula-

tion, and assuming the fluid is Newtonian, has zero bulk velocity (Stokes’ hypothesis) and is only subject

to heat diffusion, the viscous stress tensor and the heat flux vector can be written as:
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τ = µ̂

�

−
2

3
(∇ ·v)I+∇v+(∇v)t

�

,

q =−
γµ̂

(γ−1)Pr
∇

�

p

ρ

�

,
(5)

where the scaled dimensionless dynamic viscosity µ̂ is defined by:

µ̂ =
Ma µ

Re
, (6)

with Ma the Mach number of the freestream and Re its Reynolds number. In this work, the dimensionless

dynamic viscosity µ is assumed to depend on the dimensionless temperature T = γp/ρ by Sutherland’s

law (see e.g. [39]):

µ =
1+

C

Tref

T +
C

Tref

T
3
2 , (7)

where C = 110.4 K and Tref is the freestream temperature (in K). A detailed account of common nondi-

mensionalization for the Euler and Navier-Stokes equations can be found, among others, in [32].

2.1 Cartesian fluid domain discretization

In this particular study, we use only Cartesian grids with constant grid spacings ∆x, ∆y and ∆z. Based

on such a mesh, the finite-volume method [26] is employed for space discretization of the compressible

Navier-Stokes equations (1). An exhaustive description of the technique adapted to Cartesian grids is

given in [4]: we shall only present here a few select details to expose the core of HYPERION.

2.1.1 Mixed finite-volume/finite-difference numerical scheme

In HYPERION, when solving numerically the Navier-Stokes equations (1), we mix a finite-volume flux-

balance formulation for the hyperbolic terms (Fx, Gy and Hz) and a finite-difference formulation of the

gradients involved in the parabolic terms (Ev
x,y,z) whereas the (optional) source terms are computed di-

rectly at the cell centers. The flux-balance is obtained with numerical fluxes computed at each face of

each cell using an approximate Riemann solver [37] relying on left- and right-interpolated values from

the neighboring cells. The mathematical expression of this mix formulation, as well as a selection of re-

constructions and Riemann solvers present in HYPERION will be discussed in the following paragraphs.

Considering that in the present case all cells are quadrangles, the flux-balance can be split by direction,

and the final mathematical expression of the space discretization used in HYPERION can be written in

cell c as:

dUc

dt
=−

F̂i+1/2, j,k − F̂i−1/2, j,k

∆x
−

Ĝi, j+1/2,k − Ĝi, j−1/2,k

∆y
−

Ĥi, j,k+1/2 − Ĥi, j,k−1/2

∆z

+Dx (E
v,x
c )+Dy (E

v,y
c )+Dz (E

v,z
c )+Sc

(8)
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where i, j and k are the indices of cell c along each direction, and i±1/2, j±1/2 and k±1/2 represent

the faces of the cell in each direction as well.

The vector F̂ (resp. Ĝ, Ĥ) is a numerical approximation of the inviscid physical flux F (resp. G, H) at

the faces of the cell of interest and can be expressed in a most general manner as:

F̂i±1/2, j,k = U

�

FL
i±1/2, j,k,F

R
i±1/2, j,k,U

L

i±1/2, j,k,U
R

i±1/2, j,k

�

, (9)

where U stands for a generic approximate Riemann solver while the superscripts L and R designate

respectively the left- and right-biased reconstruction of either F or U at the faces of the cell of interest.

A similar expression stands for Ĝi, j±1/2,k and Ĥi, j,k±1/2.

The derivatives involved in τττ and q are computed as follows for any variable ϕ in cell (i, j,k) and along

any dimension d ∈ {x,y,z}:

∂ϕi, j,k

∂d
= Dd

�

ϕi, j,k

�

, (10)

where Dd represents a centered finite-difference-like differentiation operator along dimension d. In this

study we use either a second- or a fourth-order operator, respectively denoted D
(2)
d and D

(4)
d . They are

defined as:

D
(2)
d (ϕi, j,k) =

ϕi+1, j,k −ϕi−1, j,k

2∆d
, (11)

and

D
(4)
d (ϕi, j,k) =

ϕi−2, j,k −8ϕi−1, j,k +8ϕi+1, j,k −ϕi+2, j,k

12∆d
. (12)

2.1.2 Reconstruction schemes

As mentioned in introduction to section 2, HYPERION is designed to provide numerical predictions of

viscous compressible flows. In particular, we are interested in hypersonic regimes where the Mach num-

ber and the Reynolds number are very high. In layman terms, the flow will therefore exhibit very strong

large scale discontinuities (shock & contact waves) as well as small scale viscous eddies - HYPERION

has to capture both. To do so, we turned to high-order reconstructions (to capture the smallest scales)

with good properties in the presence of discontinuities, especially that have a non-oscillatory property

preventing too strong over- and under-shoots in the vicinity of discontinuities.

The well-known family of WENO-Z schemes1 was added to HYPERION [29, 22, 21, 19] for their

robustness and their theoretical high-order. Satisfactory results were obtained in the hypersonic regime,

although the viscous small scales tended to be too dissipated.

This last comment pushed us to implement and use the newer generation of TENO [12, 20] schemes2 that

allow for better discrimination between the large discontinuous events and the small eddies produced by

1WENO stands for Weighted Essentially Non-Oscillatory.
2TENO stands for Targeted Essentially Non-Oscillatory.
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viscous turbulence. The interested reader is referred to the family of papers by Fu et al. for more details

[12, 13, 14, 10, 11], while we only recall below the 5th-order formulation that we make most use of.

U
L

i+1/2, j,k =

ω1 ×

�

U
L,1
i+1/2, j,k =

1

6

�

−Ui−1, j,k +5Ui, j,k +2Ui+1, j,k

�

�

+ ω2 ×

�

U
L,2
i+1/2, j,k =

1

6

�

2Ui, j,k +5Ui+1, j,k −Ui+2, j,k

�

�

+ ω3 ×

�

U
L,3
i+1/2, j,k =

1

6

�

2Ui−2, j,k −7Ui−1, j,k +11Ui, j,k

�

�

(13)

where ω1,2,3 are nonlinear weights. To define ωk we need to calculate the γk, a.k.a. the smoothness

indicators:

γk =

�

C+
τk

βk + ε

�q

(14)

where C is set to 1, q is hardcoded to 6, and ε is an input parameter typically kept very small ; in this

study we use 10−6. The per-stencil finite-difference operators βk are given by:

β1 =
1

4
(f j−1 − f j+1)

2 +
13

12
(f j−1 −2f j + f j+1)

2

β2 =
1

4
(3f j −4f j+1 + f j+2)

2 +
13

12
(f j −2f j+1 + f j+2)

2

β3 =
1

4
(f j−2 −4f j−1 +3f j)

2 +
13

12
(f j−2 −2f j−1 + f j)

2

(15)

and

τk =

�

�

�

�

βk −
1

6
(β2 +β3 +4β1)

�

�

�

�

, k = 1,2,3. (16)

Now we need to also define the scale-separator parameter χk (on which we rely most to discriminate

between the large-scale discontinuities and the small-scale eddies) and the sharp cut-off function δk (on

which we rely to handle large-scale discontinuities):

χk =
γk

∑3
j=1 γ j

,k = 1,2,3 (17)

δk = 0 if χk <CT otherwise δk = 1, k = 1,2,3, (18)

where CT is a very small value - here, 10−5. With all this, the nonlinear weights ωk can be defined as:

ωk =
ak

∑3
j=1 a j

, k = 1,2,3 (19)
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where

a1 =
6

10
δ1, a2 =

3

10
δ2, a3 =

1

10
δ3. (20)

Note that to deal with the large stencil close to the edges of the Cartesian domain, HYPERION uses

ghost cells - an illustration in two dimensions is provided on figure 1.

Figure 1: Illustration of the ghost cells layer (blue cells) around the Cartesian grid in HYPERION. The numbering

of the cells is also shown. Note that the three-dimensional Cartesian meshes are handled in the same fashion, with

index i in the X direction evolving the fastest, followed by j in the Y direction, then k in the Z direction.

2.1.3 Approximate Riemann solvers

Once the fields have been reconstructed at each face of each cell (see paragraph 2.1.2 above), the left/right

discontinuous problem (see equation (9)) is solved approximately using a Riemann solver. The most used

approximate solvers can be grouped in three large families: Flux Difference Splitting (FDS), Flux Vector

Splitting (FVS) and Flux Type Splitting (FTS) [37, 34]. In HYPERION we focus on two types of solvers

in particular, FDS solvers that work as a finite volume method to solve the Riemann problem and FVS

Riemann solvers that combine the qualities of the other two families by separating kinematic and acoustic

scales.

Several approximate Riemann solvers have therefore been implemented in HYPERION to serve different

purpose. In the present study, similarly to the need for a reconstruction able to handle large and small

scales simultaneously, the Riemann solver we were seeking had to have the ability to behave well in both

high and low-Mach regimes (see e.g. [31]) and to not trigger the well-known carbuncle instability[25]. A

series of tests and a bibliographic study lead us to opt in for a FVS solver constructed by Liou et al., the

AUSM+-up [27, 28] because of its robustness and its increased level of accuracy at all speeds. Presenting

the details of the mathematical implementations is out of the scope of this paper but the interested reader

is referred to the aforementioned papers.
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Figure 2: Immersed boundary method workflow - diagrams are shown in two dimensions but the extension to

three dimensions in straightforward. (a) Introduction of a tesselated object in the Cartesian mesh. (b) Detection

of the immersed cells (red), i.e. solid cells, at initialization. (c) Detection of the immersed boundary cells (blue),

i.e. solid cells with at least one fluid neighbor within the extent of the stencil, at initialization. (d) Detection of

the nearest facet to each immersed boundary cell, at initialization (e) Creation of the image points in the direction

normal to the nearest facet for each immersed boundary cell, at initialization. (f) Illustration of the neighborhood

(yellow) where fluid cells are queried for information to interpolate the values of the fields at the image points, at

each iteration of the fluid solver. (g) Illustration of the linear extrapolation from the image points to the immersed

boundary cells to fill the values allowing for the enforcement of the boundary condition at the wall of the immersed

object, at each iteration of the fluid solver.

2.2 Sharp immersed boundary conditions

To handle the presence of obstacles in the compressible flows, HYPERION uses a sharp immersed

boundary method (IBM) [33]. As mentioned in many papers, e.g. [23, 35], the sharp interface method

proves to be well suited for compressible flows because the boundary conditions at the immersed bound-

ary are taken into account directly rather than being computed indirectly via a forcing term or smoothed

with a distribution function. Originally, to handle boundary conditions at the edges of the domain, HY-

PERION uses ghost cells so there is no need to degenerate the reconstruction stencils at the edges. To

make use of the original data structures and logic of implementation as much as possible, we imple-

mented a ghost-cell based immersed boundary method as well. In the present study, we assume that the

immersed objects cannot move.

We will briefly introduce in this section the workflow for the initialization of the immersed boundary

method as it will serve as reference for future sections 3 and 4. Overall the workflow is fairly classical

[33, 6, 23, 35, 40, 41] and relies on six main steps:

• detection of the immersed cells, i.e. all the cells of the Cartesian mesh that find themselves inside

the immersed object - figure 2(b),
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• detection of the immersed boundary cells, that is immersed cells with at least one fluid neighbor

within the extent of the reconstruction stencil, and wherein we shall impose the right values to

enforce the boundary condition at the wall of the immersed object - figure 2(c),

• detection of the nearest facet to each immersed boundary cell in the sense of normal projection

distance - figure 2(d),

• computation of the images of each immersed boundary cell center with respect to their nearest

facet - figure 2(e),

• interpolation of the fluid variables at the image points - figure 2(f),

• linear extrapolation from the image points to the immersed boundary cells to enforce the boundary

condition at the wall of the immersed object - figure 2(g).

In HYPERION, since we assume that all immersed objects are immovable, the four first steps can be

done once during the initialization of the computation, whereas the last two steps, depending on the

instantaneous state of the fluid, are repeated at each fluid iteration.

Section 3 will present the novel algorithm used in HYPERION to make the detection of the immersed

cells (step 1) particularly inexpensive, even for three-dimensional objects and Cartesian meshes. Step 2

and 4 are quite straightforward and rely on simple geometrical notions ; to make step 3 efficient however

for large Cartesian meshes and finely discretized immersed objects, HYPERION builds a spatial-median

Bounding Volume Hierarchy (BVH) of the immersed objects to accelerate the ray-tracing-like queries

for nearest facets3. Step 5 relies on the ENO-like least-square interpolation algorithm developed by one

of the authors [4], and section 4 shall detail the strategy implemented in HYPERION to handle the large

interpolation neighborhood in a massive parallelism context. Finally, step 6 is straightforward as well

and the interested reader can find all the mathematical details in Bridel-Bertomeu [4].

3 A FAST RASTERIZATION ALGORITHM TO DETECT IMMERSED CELLS

To identify the solid cells, i.e. the cells of the Cartesian mesh that are found inside the immersed object,

the most common algorithm is a somewhat brute-force ray-casting algorithm (see e.g [18, 33]) that can

be described as follows.

From all cells in the Cartesian mesh a random ray is cast (see for example cells A and B in figure 3,

but the ray could go any direction) and the intersections between this ray and the facets of the body

are counted. If the number of intersections is odd, then the cell wherefrom the ray is cast is inside the

immersed body (for example cell B) whereas if the number of intersections is even, the originating cell

is outside the immersed body (for example cell A). The complexity of this algorithm is O (NcN f ), where

Nc is the total number of cells in the Cartesian mesh and N f is the total number of facets of the tesselated

immersed body.

For two-dimensional problems, such a complexity hardly becomes an issue. As an illustration, let us

nonetheless consider a three-dimensional worst case with a Cartesian mesh of 900× 900× 1300 cells

and an object with approximately 5× 105 facets, then the algorithm runs for more than 48 hours on a

mid-2017 Intel i7 processor with 4 OpenMP threads. Naturally if the Cartesian mesh is partitioned, then

3”Find Closest Point on (Tesselated) Surface” library developed by ingowald as a spin-off of the OSPRay project - see

github.com/ingowald/closestSurfacePointQueries
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A

B

Figure 3: Illustration of the tesselation of a two-dimensional curve and of the simple ray-casting algorithm for the

identification of immersed cells.

each partition handles its own set of rays and the time-to-completion drops to the order of magnitude of

tens of minutes, but it still is not a reasonable performance - especially if one thinks of the possibility of

having a moving object, for which the solid cells might change at each iteration of the fluid solver.

The technical name of the ”problem that consists in finding the solid cells” is point classification: in our

case, we want to classify the cell centers according to whether they are inside or outside some shell. Point

classification problems fall within the theory of computational geometry, which pushed the second author

to associate himself with David Eberly [36] from Geometric Tools4 to develop a better algorithm than

the aforementioned brute-force one - this section is dedicated to the presentation of this new algorithm.

The ray-casting algorithm simply needs the immersed object to be defined by the discretization of its

outermost shell - a segment-based tesselation in two dimensions or a triangle-based tesselation in three

dimensions. The new algorithm relies on a tesselation of the outermost shell and on the existence of

a tetrahedralization (triangulation) of the inside of the object in three (two) dimensions - this shift in

paradigm is illustrated on figure 4.

Once a proper tetrahedralization (triangulation) has been obtained, the algorithm has the following steps

- note that a description is provided in the three-dimensional case but the algorithm applies similarly in

two dimensions.

• Step 1 - for each tetrahedron, create its smallest axis-aligned bounding box (AABBs).

function compute tetrahedra AABB

for each tetrahedron t

v1, v2, v3, v4 := the four vertices of the t

t_min := v1

t_max := t_max

for each vertex v

for each dimension d

if coordinate d of v < coordinate d of t_min

4See https://www.geometrictools.com for more information about the company
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(a) (b)

Figure 4: Discretization of the immersed objects necessary (a) for the simple ray-casting algorithm and (b) for the

new point classification algorithm. The three-dimensional tetrahedralization required by the new algorithm has to

be generated beforehand and is not handled by HYPERION.

then

coordinate d of t_min := coordinate d of v

else if coordinate d of v > coordinate d of t_max

then

coordinate d of t_max := coordinate d of v

end if

end for each

end for each

end for each

end function

• Step 2 - each AABB is clipped/culled against the underlying Cartesian mesh to ensure that when

searching within the bounding boxes, the grid points are within range of the Cartesian mesh

bounds. Note that the ”underlying Cartesian mesh” can very well be a local piece of mesh in

the context of MPI partitioning, making this point classification inherently adapted to distributed

parallelism.

function cull tetrahedra AABB

m_min, m_max := lower, upper vertex of Cartesian box

for each tetrahedron t

t_min, t_max := lower, upper vertex of t bounding box

for each dimension d

coordinate d of t_min :=

max between

| coordinate d of t_min,

| coordinate d of m_min

coordinate d of t_max :=

min between

| coordinate d of t_max,

11
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| coordinate d of m_max

if coordinate d of t_min > coordinate d of t_max

then

declare t invalid

end if

end for each

end for each

end function

• Step 3 - the tetrahedra vertices and bounding boxes are then transformed to the (i, j,k) grid coor-

dinate system.

function transform to grid ijk

m_min, m_max := lower, upper vertex

of Cartesian box

n.0, n.1, n.2 := number of cells

of Cartesian box in each dimension

for each dimension d

factor.d := (n.d - 1) / (

coordinate d of m_max -

coordinate d of m_min

)

end for each

for each tetrahedron t

t_min, t_max := lower, upper vertex

of t bounding box

for each dimension d

g_t_min := ceiling of factor.d * (

coordinate d of t_min -

coordinate d of m_min

)

g_t_max := floor of factor.d * (

coordinate d of t_max -

coordinate d of m_min

)

end for each

end for each

end function

• Step 4 - each grid-coordinate bounding box contains a relatively small number of the Cartesian grid

cell centers, hence we can iterate over those with a triple loop in k, then j, then i as per HYPERION

grid ordering. For a constant ( j,k) in the grid box, a line segment containing cell centers with

varying i is obtained. Note that one possible implementation of the function determining whether

a point is in a tetrahedron can be found in [36] and shall not be repeated here.

function rasterize

12
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n.0, n.1, n.2 := number of cells

of Cartesian box in each dimension

for each tetrahedron t

g_t_min, g_t_max := lower, upper vertex

of t bounding box in ijk coordinates

for k from g_t_min.2 to g_t_max.2

for j from g_t_min.1 to g_t_max.1

for i0 from g_t_min.0 to g_t_max.0

if (i0,j,k) in tetrahedron t

then

break for i0

end if

end for

if i0 > g_t_max.0

then

cycle for j

end if

for i from g_t_max.0 down to i0

if (i,j,k) in tetrahedron t

then

break for i

end if

end for

base := n.0 * (j + n.1 * k)

for l from i0 to i

n := l + base

flag cell center of index n

as inside tetrahedron t

end for

end for

end for

end for each

end function

• Step 5 - the i-values are searched for the first and last cell centers that are inside each tetrahedron,

if any, which yields a set of flagged (i, j,k) that can be said to be inside the immersed object.

As mentioned, the algorithm can be easily adapted to a code working in parallel. For a multithreaded

code, then the tetrahedra can be split among the different threads to share the workload. There is a chance

that two threads might try to flag the same (i, j,k) to the set of solid cells. In particular this can happen

if a cell center is on the shared face of a pair of tetrahedra (or close to that face because of numerical

rounding errors). However, there is no need for a critical section or an atomic write: first, from the

perspective of either thread the cell center will be found to be inside the immersed object, and anyway

the (i, j,k) grid coordinates are 32-bit integers that are written atomically by nature.

If the number of tetrahedra in the discretization of the object is noted Nt , then the complexity of this

13
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algorithm is, mostly, O(Nt). For the same worst-case problem as before, the time-to-completion falls

to 8.5 seconds on a single OpenMP thread and the timings for 2, 4, 8 and 16 OpenMP threads are 4.3
seconds, 2.6 seconds, 2.1 seconds and 2.0 seconds respectively (versus ≳ 48 hours for the brute-force

algorithm for 4 OpenMP threads).

4 MIGRATABLE TASKS FOR THE MASSIVE PARALLELIZATION OF THE RECONSTRUC-

TION ALGORITHM

As mentioned in section 2.2, the interpolation of the fluid values at each image point (step 5) relies on

the least-square ENO-like interpolation discussed in details in the paper by Bridel-Bertomeu [4]. A short

study in the latter paper mentions that for the algorithm to be robust (i.e for the least-square matrix to

be well enough conditioned), at least 25 neighbors are necessary in two dimensions for a third order

interpolation. The same kind of study conducted in three dimensions shows that at least 85 neighbors are

required for a third order interpolation so that the least-square matrix reaches its asymptotic minimum

conditioning.

Furthermore, to balance the number of neighbors picked in each direction around the cell of interest, HY-

PERION implements a spiral walk (see [4], figure 4(a)): with that strategy, getting to 25 (85) neighbors

in two (three) dimensions means having access to at least three layers of cells around the cell of interest.

However, considering that such cells of interest are by nature in proximity to the immersed objects and

because we cannot consider the immersed cells as valid neighbors in the interpolation, acquiring the

information from enough valid neighbors can quickly lead to accessing the fifth or sixth layer of cells

away from the cell of interest (e.g. for fourth or fifth order interpolation matching the order of the TENO

reconstruction described in paragraph 2.1.2).

In a sequential, or even in a shared-memory parallelism context, accessing cells that are far away from

the cell of interest is not a challenge - the algorithm presented in [4] could be implemented directly

without any modifications in a purely sequential or only OpenMP version of HYPERION. In a distributed

parallelism context however, things become rather tricky if one aims at minimizing the computational

overhead related to communications between processes and/or the overall memory use of the application,

as is the goal for HYPERION.

If only in terms of memory use, note that out of consistency, in HYPERION the size of the MPI halo

equals the number of ghost cells used at the edges of the domain - see figure 5. Therefore, if we consider

a rather common mesh size of 5123 cells, and if we attempt to gain access to cells six layers away with a

halo of size 6, the actual mesh handled by HYPERION has size (512+2×6)3, which, if we only account

for the five conservative variables, means an overhead of about 3 Gi in memory. HYPERION efficiency

is around 1 to 1.5 µsCPU/it/cell, hence using a size 6 halo tends to introduce an overhead of about 10 sCPU

at each iteration.

With these considerations in mind, along with the fact that having e.g. size 6 halos is highly detrimental

to the performance of the MPI communications (although it has not been quantitatively evaluated in

the present study), we worked on an algorithm that would not rely on the MPI halos at all in order to

perform well in conjunction with any kind of reconstruction stencil. Inspired by the spiral ”walk” used in

a sequential context to gather information from enough valid neighbors for the least-square interpolation,

we turned ourselves towards a migratable task paradigm.

In this paradigm, the first ingredient is a task. In our context, let us remember that for each image point
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Figure 5: Illustration of the Cartesian partitioning of the Cartesian mesh in HYPERION. The overlapping halos

(of size 1 in this case) ensuring communications between neighboring processes are also represented. Note that

the numbering of the MPI processes is done the same way as the numbering of the fluid cells.

we want to gather information from enough ”valid” neighbors to have a well-conditioned least-square

matrix (see figures 2(f) and 6(a)).
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Figure 6: (a) Zoom on the neighborhood of an immersed boundary cell image and the corresponding surrounding

cells numbering for the spiral walk. (b) Illustration of the spiral walk task in the migratable task algorithm and of

the influence of partitioning thereupon - the halos are omitted as the algorithm does not make use of them.

To do so, we emit a probe that will march the surrounding cells in a spiral motion: for each ”valid”

neighbor (that is not an immersed cell), the index of the cell and the values of the fluid variables are

stored in the probe structure before it goes on. This marching is the task in the migratable task paradigm
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- see figure 6(b) - which is supported by a simple data structure:

struct _probe_task_state

status // status of the marching

(x,y,z) // current coordinate of the head of the probe

coords[] // coordinates of valid neighbors, accumulated

values[] // fluid variables in the valid neighbors, accumulated

origin_rank // rank of the processes wherefrom the probe originates

rank // rank of the process the probe needs to be sent to, if any

count // current number of neighbors

end struct

Because of the partitioning of the Cartesian mesh, several, if not all, processes own immersed boundary

cells and must therefore emit probes. In terms of implementation, each process has a stack of such tasks

that it works through either sequentially or in parallel with multiple shared-memory OpenMP threads.

During its march, if a probe next step has to be taken on a different process (illustrated on figure 6(b)),

then a message is sent from its current owner to the neighboring process containing the entire probe

structure ; in so doing, the probe is popped from the previous owner stack of tasks and pushed to the

neighbor process stack that can resume the walk of the probe. This march of each probe continues until

it has found enough valid neighbors, per the user request, at which point the whole structure of the probe

is sent back to the process it originated from so the least-square interpolation can take place and the

immersed boundary cell can be populated with values enforcing the immersed boundary condition [4].

Note that during the course of the algorithm, no process can predict with simple logic whether it is

going to receive a task from a neighbor or whether it will have to send one of its tasks to a neighbor -

since no process knows whether to expect a message, they all wait for messages asynchronously while

handling the tasks on their stacks. This poses a well-known problem in parallel computations, namely a

termination issue. Since no process knows to expect a message, if nothing is done all the processes will

eventually finish working on their own tasks and wait indefinitely for messages from their neighbors. To

prevent such an infinite loop from occurring in HYPERION, we implemented the algorithm of Francez

et al. [9] to achieve distributed termination without introducing any new communication.

The entire pseudocode algorithm is described below.

while not terminated

%MASTER THREAD

{

while to_send_stack not empty

e := pop to_send_stack

async send e to e.rank

sent_stack push e

end while

while sent_stack not empty

check sent request has gone through
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end while

probe all sources for any message

if message

new_e := deserialize message

stack push new_e

end if

terminated ?= francez termination algorithm

}

%END MASTER THREAD

while stack not empty

e := pop stack

until enough neighbors

go to the next cell in the spiral

if next cell is solid or ghost

then

skip

else

if next cell on current process

e.coords append cell center coordinates

e.values append cell values

increment e.count

if enough neighbors

e.status := SUCCESS

break until

end if

else

e.rank := neighbor rank

break until

end if

end if

end until

if e.status == SUCCESS

e.rank := e.origin_rank

end if

if e.status == SUCCESS and current process rank == e.origin_rank

solve least square problem

compute immersed ghost cell value

else

to_send_stack push e

end if

end while

end do

This migratable task strategy allowed us to use the ENO-like interpolation algorithm with large neigh-
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Figure 7: Speed up achieved for distributed parallelism with HYPERION and the migratable task algorithm - ideal

speed-up (dashed line) versus actual speed-up (blue dots). Data collected for a single immersed body using AMD

Rome processors.

borhoods in massively parallel computations with guaranteed stability, yielding a satisfactory speed-up

up to 4096 processes as shown on figure 7.

5 TOWARDS HIGH-FIDELITY SIMULATIONS

The two algorithms/strategies presented in sections 3 and 4 made possible running massively parallel

simulations in three dimensions with HYPERION: before the introduction of the former, detecting solid

cells on realistic meshes of the order of 108 cells would take several days, and before the introduction

of the latter, three-dimensional computations with immersed objects would be too expensive and, most

often, would fail altogether during the spiral walks. In the high Mach and Reynolds numbers regimes

where this study places itself, direct numerical simulations (DNS) are out of reach because of their

prohibitive computational cost. However, we aim at running large eddy simulations (LES) with an ad

hoc subgrid-scale model to improve the predictive capabilities of HYPERION in the compressible regime

even on coarse meshes - gaining the ability to run three-dimensional simulations was a first step in that

direction.

An in-depth presentation of the LES equations for compressible flows is out of the scope of this paper

(the interested reader is referred e.g. to Garnier et al. [16]), but recall that solving the LES equations

implies using a filtered version of the compressible Navier-Stokes equations (1)-(2), among which the

momentum equations now read:

∂ρ̄ũi

∂t
+

∂ρ̄ũiũ j

∂x j

+
∂ p̄

∂xi

−
∂
⌣
σ i j

∂x j

=−
∂τi j

∂x j

+
∂

∂x j

�

σi j −
⌣
σ i j

�

, (21)
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where the ·̃ overset denotes Favre averaging, the ·̄ overset denotes Reynolds averaging, and
⌣
σ i j depends

on the computable rate-of-strain tensor:

⌣
σ i j = µ(T̃ )

�

2S̃i j −
2

3
δi jS̃kk

�

, S̃i j =
1

2

�

∂ũi

∂x j

+
∂ũ j

∂xi

�

. (22)

All overset variables are computable whereas we need a closure for the subgrid-scale stress tensor τi j.

In HYPERION, we follow a Boussinesq type hypothesis [2] that leads to the subgrid-scale stress tensor

having the following mathematical form:

τi j −
1

3
δi jτkk =−2ρ̄νsgs

�

S̃i j −
1

3
δi jS̃kk

�

, (23)

where νsgs represents a scalar subgrid viscosity that is left to be modelled. In the present study we rely

on the Wall-Adapting Local Eddy-viscosity model (WALE) by Ducros et al. [8] to run preliminary tests

with the LES version of HYPERION.

5.1 Taylor-Green Vortex

Before trying to evaluate the quality of the LES computations in the presence of immersed obstacles,

let us run a very classical viscous test case that will allow us to check the implementation of the WALE

model.

We are therefore considering the case of a Taylor-Green vortex which set-up and reference solution can

be obtained from the 3rd international workshop on higher-order CFD methods [7]. The domain is a

periodic cube of dimensions [−π,π]3, and the initial solution is given by the following expressions:











































u = sin(x)cos(y)cos(z),

v = −cos(x)sin(y)cos(z),

w = 0,

p =
1

γM2
∞

+
1

16
(cos(2x)+ cos(2y))(cos(2z)+2) ,

ρ = γM2
∞ p.

(24)

In this problem, we do not intend to validate in any way the behavior of the immersed boundaries al-

gorithms. Rather, we shall inspect the temporal evolution of the kinetic energy Ek and of the enstrophy

ε integrated over the domain and compare it to the reference solution [7]. Note that the mathematical

expression used in this study for the kinetic energy is:

Ek =
1

N3 ∑
i, j,k

1

2
ρi, j,k

�

u2
i, j,k + v2

i, j,k +w2
i, j,k

�

, (25)

and that of the enstrophy is:
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ε =
1

N3 ∑
i, j,k

1

2
ρi, j,k

�

ω2
x;i, j,k +ω2

y;i, j,k +ω2
z;i, j,k

�

, (26)

where N stands for the number of cells along one side of the domain (assuming the Cartesian mesh

is homogeneous), and ω = ∇×u is the vorticity. To observe the convergence of the solution towards

the reference solution, computations results on meshes of sizes 643 and 5123 are shown here. The

computations were furthermore run using the AUSM+-up Riemann solver in conjunction with the fifth-

order TENO reconstruction scheme.

)

(a) (b)

Figure 8: Snapshots of the state of the Taylor-Green vortex after (a) 1 characteristic time and (b) 20 characteristic

times on the 643 mesh. Isocontours of enstrophy are represented, colored by the magnitude of velocity.

Figure 8 presents the three-dimensional structures present in both the coarse and the fine flow as isocon-

tours of the Q-criterion colored by the magnitude of the vorticity. As expected, the turbulence is allowed

to develop itself down to much smaller scales on the fine mesh.

Figure 9 introduces a more quantitative comparison between the present results and both the reference

spectral computation conducted on a 5123 mesh in [7] and some high-order reference computations from

[17]. The results are satisfactory and show the convergence towards the reference for both metrics -

the kinetic energy, figure 9(a) and the enstrophy, figure 9(b). The results in terms of enstrophy seem

further away but in another exhaustive study (unpublished yet) the authors show the prime importance

of the approximate Riemann solver on the quality of the enstrophy production in a finite-volume code,

and although the AUSM+-up solver is particularly adapted at handling all-speed flows with hypersonic

regions, it might not be the ideal solver for fine turbulence behavior - such a discussion is however out

of the scope of this paper.
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(a) (b)

Figure 9: Comparison of the temporal evolution of (a) the kinetic energy (see equation (25)) and (b) the enstrophy

(see equation (26)) against the 5123 spectral computation from [7] (black line) and the high-order computations

from [17] (symbols).

5.2 Double cone

With the implementation of the subgrid-scale model validated by the turbulence testcase discussed in

paragraph 5.1, we move on to the study of the flow around two documented configurations in supersonic

or hypersonic regimes.

MacLean
Shock W

Figure 10: Geometrical details of the double-cone configuration.

For the first immersed boundary condition testcase, the hypersonic flow over an axisymmetric double

cone configuration (see figure 10) is studied at Mach number 12.2 and Reynolds number 14 × 106.

The wall temperature is fixed at 1.75T∞. The results presented below correspond to meshes made of

1,200,000 and 4,000,000 cells, qualified of coarse and fine, respectively (as it is an axisymmetric ob-

stacle, the simulation itself has been treated as a two-dimensional, axisymmetric simulation).
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A qualitative visualization of the resulting flow is provided on figure 11 in the form of a numerical

Schlieren image. It mostly shows the regions where strong changes in density occur, allowing the user to

visualize the shock and contact waves, and, like in the present case, the boundary layer developing along

the wall. An inset has been added to the figure to put the light on the lambda-shock pattern found after

the boundary layer passes the recirculation region and reattaches itself to the wall of the second cone.

Figure 11: Numerical Schlieren imaging of the flow around the double cone configuration. The inset zooms in on

the lambda-shock pattern found after the recirculation region at the change of wall angle.

In a more quantitative manner, the wall pressure and the wall heat flux are compared against the experi-

mental results obtained by MacLean et al. [30] - see figure 12(a) and (b). Without much effort, the wall

pressure is correctly predicted - figure 12(a) - because it is mostly driven by the inviscid behavior of the

simulation and does not depend too much on the resolution of the near-wall flow. In contrast, the viscous

heat flux is not as well predicted because boundary layers are not resolved properly with the immersed

boundary method implemented in HYPERION. Even with a fine mesh, although the peak of heat flux is

correctly captured both in terms of coordinates and magnitude, the heat flux levels after the reattachment

of the boundary layer are markedly underestimated. This is a well known shortcoming of any immersed

boundary method, and a future study will be dedicated to correcting it with the help of ad hoc wall laws.

5.3 Flow study around a double ellipsoid configuration

The second immersed boundary condition testcase is the fully three-dimensional flow around a double

ellipsoid shape [1] described mathematically by the following equations (see figure 13):
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(a) (b)

Figure 12: (a) Pressure coefficient and (b) heat flux obtained at the wall of the double cone. Comparison between

the results obtained presently on the coarse and fine meshes (orange and blue line, respectively) and the reference

solution from MacLean et al. [30] (black line).
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Figure 13: Geometrical details of the double ellipsoid configuration.

For that flow, the Mach number is set at 8.15, the Reynolds number is set at 16.7×106 and the freestream

angle of attack is set at 30◦. The Cartesian mesh contains approximately 7× 107 cells, and the double

ellipsoid object is tesselated using approximately 2× 105 triangles; the computation was conducted on

4096 AMD Rome processors, using 2048 MPI processes and 2 OpenMP threads per process, and lasted

approximately 48 hours before the wall quantities could be said to be converged (see below). Note that

this computation, both in terms of manipulation of the immersed object and in terms of computational
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performance, is made possible only thanks to the two algorithms presented above in sections 3 and 4

respectively - without massive parallelism, the time-to-results for this computation would have been

unrealistic.

A first quantitative visualization of the flow is given in figure 14, where both numerical Schlieren imaging

and three-dimensional isocontours of the Q-criterion are presented. The strong shock waves can be

clearly seen around the object whereas the wake seems characterized by multiple contact waves and

large-scale turbulent structures that the LES simulation is able to capture, as expected.

Figure 14: Illustration of the flow around the double ellipsoid immersed object with a 30◦ angle of attack. The

walls of the visualization domain are colored using the numerical Schlieren imaging technique, and the wake of

the double ellipsoid is shown using isocontours of Q-criterion, colored by the magnitude of the vorticity.

Similarly to the study conducted for the previous test case (see paragraph 5.2), figure 15 presents the

pressure coefficient and the Stanton number at the wall of the double ellipsoid. The conclusions are

similar to the ones for the double cone flow. The pressure coefficient is satisfactorily predicted - the

experimental data does not allow to conclude on the nature of the oscillations observed in the vicinity

of the recirculation region (when the second ellipsoid starts, around x ≃ 0.0). The heat flux accuracy is

however fairly low again, mostly because of the lack of alignment between the Cartesian mesh and the

object wall causing the boundary layers to be poorly described. This phenomenon and possible fixes will

be, as aforementioned, explored in a future study.

6 CONCLUSIONS

In this paper, we present some work related to the immersed boundary method and in particular to the

adaption of the method for massively parallel computations. A novel algorithm based on the theory of
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(a) (b)

Figure 15: (a) Pressure coefficient on both the pressure and the suction sides and (b) Stanton number on the

pressure side of the double ellipsoid. Comparison between the present computations (green and blue lines) and the

experimental reference data (black dots) extracted from [1].

computational geometry is introduced to drastically decrease the time necessary to identify a tesselated

immersed body in a Cartesian box - from beyond 48 hours to a few seconds. The steps of this algorithm

are detailed exhaustively and an example implementation of its non-trivial functions is provided. Still in

order to lift major limitations to conducting three-dimensional simulations involving immersed objects

on massive clusters, a second algorithm is presented that make the interpolation step of the immersed

boundary workflow possible for any number of MPI processes. This algorithm represents the parallel

extension of the works presented in [4] about an ENO-like least-square reconstruction mandatory to

handle strong shocks in the vicinity of immersed bodies subject to hypersonic flows.

As those two new algorithms finally make massively parallel three-dimensional computations accessi-

ble with HYPERION, the improvement of the predictive capabilities of the code are then discussed.

Rather than conducting direct numerical simulations that stay, even today, unreachable because of their

prohibitive computational cost at high Reynolds numbers, HYPERION is turned towards large eddy

simulations (LES). Preliminary axisymmetric and three-dimensional simulations conducted show that

even if adequate subgrid-scale modeling allow for the prediction of large-scale turbulent structures on

relatively coarse mesh, it is not enough to capture accurately the near-wall viscous phenomena. The

lack of alignment between the Cartesian grid (fluid grid) and the wall of the immersed body makes for

poorly resolved boundary layers which, in turn, yield poor performance when it comes to predicting the

viscous-driven wall quantities such as heat flux and shear stress. A future study shall be dedicated to

investigating these shortcomings and proposing solutions, perhaps axed towards the use of wall laws.
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