
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-9 June 2022, Oslo, Norway

EFFICIENT IMPLEMENTATION OF A HIGH-ORDER
COMPRESSIBLE NAVIER-STOKES EQUATIONS SOLVER

RUNNING ON GRAPHICS PROCESSING UNITS

Fernando Gisbert, Adrián Sotillo and Jesús Pueblas1

ITP Aero, Simulation Technologies Department
Francisca Delgado 9, 28830 Alcobendas, Spain

email: fernando.gisbert,adrian.sotillo,jesus.pueblas@itpaero.com

Key words: Compressible Navier Stokes, High-order, Flux reconstruction, Low Pressure Tur-
bine, GPU, MPI

Abstract. This paper presents the implementation of a compressible Navier-Stokes equations
solver that runs on multiple GPUs. The solver, known as Mu2s2T , uses a flux reconstruction
high-order spatial discretization and is marched in time using an explicit Runge-Kutta method.
The strong data locality that results from the codification of the spatial discretisation is very
well suited to exploit the parallel capabilities of the GPU. We present a data access design that
achieves nearly optimal data transfer rates between GPU memory and processor for the most
time-consuming parts of the solver. In order to minimize the communication extra-cost when
multiple GPUs are used in parallel, we have implemented a pipelined non-blocking data transfer
between GPU and CPU that maximizes the overlap between communication and computation.
The solver is executed on a cluster of NVIDIA GeForce GPUs. We demonstrate the solver
computational efficiency and precision by running a turbulent channel flow at various Reτ and
comparing the results with those obtained with DNS simulations. The solver is used to predict the
aerodynamic performances of a linear cascade of low pressure turbine vanes at varying Reynolds
and Strouhal numbers. The numerical predictions show excellent agreement with the available
experimental data.

1 Introduction

Second order RANS CFD solvers have been, and continue to be, the main pillar of the
simulation capabilities in the aerospace industry. However, the predicting limitations of RANS
equations have been extensively reported. In the turbomachinery industry, for instance, the stall
on-set prediction in compressors or the turbine aerodynamic losses are the result of complex
fluid interactions that are not adequately reproduced using RANS or URANS equations, due to
the inherent limitations of the turbulence models involved, and more often than not expensive
validation campaigns must be carried out to adjust the numerical predictions to the actual
behaviour of the machine. To overcome such limitations one must resort to LES and DNS
simulations, where the modelization of turbulence is less aggressive or non-existent. In those
cases high order spatial discretisations are an interesting alternative to second order ones due
to their superior performances in terms of computational cost and reduced numerical errors[1].
These methods have been an active area of research for the past 30 years. There are several

1

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

(a) (b)

Figure 1: Evolution of the computational power in single precision for CPUs and GPUs. (a)
Rpeakmeasured in GFLOPS. (b) GFLOPS/€, being the cost of the hardware that of the release date and
without adjusting for inflation.

reviews that summarise the main findings [2, 3, 4, 5, 6]. This work presents the implementation
of one of such approaches, a Flux Reconstruction (FR) [7, 8] spatial discretisation, later extended
to 3D mixed grids by Wang et al.[9], which has been implemented to be executed on a cluster of
Graphics Processing Units (GPUs).

The use of GPUs as general purpose processors has surged in the last fifteen years. The
popularisation of programming languages that easily expose the inherent parallelism of the GPU
hardware, such as CUDA[10] or OpenCL[11], and the release of GPUs that deliver much higher
FLOPS than same generation CPU processors makes the implementation of CFD solvers on
these computing platforms appealing. Figure 1a shows the evolution of the single precision
theoretical peak performance (Rpeak) for some NVIDIA GeForce GPUs and Intel Xeon CPUs
since 2007, the year NVIDIA CUDA was released. Both architectures have followed Moore’s law
all these years, and Rpeak for GeForce GPUs has consistently been 4-5 times larger than Rpeak
for Intel Xeon CPUs of the same generation. According to Moore’s law that means a 4-5 year
gap between both computing platforms. However, if we compare the performance per spent €,
the gap between GPUs and CPUs widens, as shown in figure 1b. The investment on NVIDIA
GeForce GPU processors returns approximately 25 times more theoretical computational power
than the investment on CPU processors of the same generation which, according to the growing
GFLOPS/€ law, is a 16 year gap.

However, it is well known that CFD solvers usually deliver a small fraction of Rpeak due
to the fact that their performance is memory bounded, i.e., the time spent reading data to be
processed and writing the results back to memory is actually much higher than the time spent
processing them. In that regard, GPUs also exhibit superior performances, as shown in figure 2.
Both architectures have increased their memory bandwidth throughout the years, but NVIDIA

2

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Figure 2: Evolution of the theoretical peak memory bandwidth for NVIDIA GeForce GPUs and Intel
Xeon CPUs.

GeForce GPUs memory bandwidth is 4-5 times higher than that of Intel Xeon CPUs, which,
according to the bandwidth increase rate, is a 9-10 year gap.

Obviously, to materialise all these potential benefits the CFD software must be able to a)
achieve a substantial fraction of the memory bandwidth when moving data from memory to
the processors and b) execute the operations with the data as efficiently as possible. Roughly
speaking, for a GPU that means that the software must execute the same piece of code over
sets of evenly spaced input data and write the result to sets of evenly spaced output data, and
that the number of operations per memory fetch should be as high as possible. It turns out
that solvers whose spatial discretisation is based on compact differentiation largely fit into that
category, therefore several examples of GPU implementations exist in the literature. Klöckner
et al.[12] were the first ones to implement a GPU version of a Discontinuous Galerkin (DG)
solver for the resolution of the Maxwell equations, demonstrating the superior performances
of the resulting code when compared with an equivalent solver executed on CPUs. The first
FR implementation for hybrid unstructured grids on that hardware was presented in 2011[13],
showing similar speed-ups relative to the CPU execution. Since then, the number of DG and FR
solvers has been growing steadily[14, 15, 16, 17, 18, 19].

In this paper we present the techniques used to implement the most time-consuming parts
of a high-order FR Navier-Stokes solver for unstructured grids, which is part of the Mu2s2T
suite of ITP Aero in-house CFD solvers[20]. It is structured as follows: first, the equations
are presented and their spatial discretisation is outlined. Next, the implementation of the most
time consuming parts of the solver is detailed in section 3. Then, we present an implementation
of the parallel communications that maximises the computation and communication overlap in
multi-GPU executions. Some benchmark cases are presented, showing the solver performance
and its predicting capabilities. Finally, the predictions obtained after the simulation of a low
pressure turbine (LPT) vane at a given Reynolds and Strouhal numbers are compared against

3

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

experimental measurements.

2 Problem formulation

The differential form of the Navier-Stokes equations is:

∂U

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=
∂F

∂x
+
∂G

∂y
+
∂H

∂z
(1)

being U =
[
ρ ρu ρv ρw ρE

]T
the conservative variables,

[
f g h

]
=

ρu ρv ρw

ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p

u (ρE + p) v (ρE + p) w (ρE + p)

 (2)

the inviscid fluxes and

[
F G H

]
=

0 0 0
τxx τxy τxz
τxy τyy τyz
τxz τyz τzz

uτxx + vτxy + wτxz − qx uτxy + vτyy + wτyz − qy uτxz + vτyz + wτzz − qz

(3)

the viscous terms. We use the perfect gas assumption, therefore the gas state equation p = ρRgT
holds. The gas constant is

Rg = Cp − Cv
being Cp the specific heat at constant pressure and Cv the specific heat at constant volume.
Besides,

E = CvT +
1

2
q2,

where q2 = u2 + v2 + w2. The pressure can then be expressed as a function of the conservative
variables:

p = ρ (γ − 1)

(
E − 1

2
q2
)
,

where γ = Cp/Cv is the relation between the specific heats. The viscous stress tensor expression
is

τij = µ (∂ivj + ∂jvi)−
2

3
µ (∇ · v) δij (4)

and the heat flux vector is expressed using Fourier’s law:

q = −k∇T (5)

In the preceding equations (4) and (5), µ and k are the laminar viscosity and the conductivity,
respectively. The expression of the laminar viscosity is given by Sutherland’s law

µ =
1.458 · 10−6T 3/2

T + 110.4

4

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

and the thermal conductivity is

k =
µCp
Pr

where the Prandtl number for air is 0.72.

2.1 The flux reconstruction spatial discretisation

The Navier-Stokes equations are discretised using a FR scheme[7, 8, 9, 21], whose main fea-
tures are briefly described in order to clarify the subsequent discussion about their implemen-
tation. We fill the control volume using a hybrid unstructured grid, whose cells do not share
points. For each cell we define a series of solution points (SPs) at which the state variable U is
evaluated. Then the solution within the cell is approximated using Lagrange polynomials Li of
order p over these SPs:

U (x, t) ≈ Uhi (x, t) =

Nc(p)−1∑
j=0

Uhij (t)Lj (x) (6)

where Nc (p) is the number of SPs for a given cell shape and order. For convenience the spatial
dimensions (x, y, z) are mapped onto standard element coordinates (ξ, η, ζ), and a transformation
between them is defined using the Jacobian matrix

J =

 xξ xη xζ
yξ yη yζ
zξ zη zζ

and its inverse

J−1 =

 ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

therefore Eq. (1) is then expressed as

∂ |J | · U
∂t

+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= 0 (7)

with

F̃ (U) = |J | (ξxF + ξyG+ ξzH)

G̃ (U) = |J | (ηxF + ηyG+ ηzH) (8)
H̃(U) = |J | (ζxF + ζyG+ ζzH)

The flux is also approximated using a Lagrange polynomial basis, as in eq. (6):

F̃ (U) ≈ F̃Di (x, t) =

Nc(p)−1∑
j=0

F̃
(
Uhij

)
Lj (x) (9)

5

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

We use the same points to evaluate the derivatives and the fluxes, avoiding the need to perform
an additional interpolation to obtain the solution at the flux points. The Gauss-Lobatto points
have been used for the hexahedral elements, and the triangle point distributions of Warburton[22]
are employed for triangular prisms. The points for tetrahedra are those of Hesthaven and
Warburton[23] and for pyramids those of Chan and Warburton[24].

Next, a common flux at the cell interface points must be defined and added to the spatial
derivatives to unify the fluid domain. We have used the approximate Riemann solver proposed
by Roe[25] to evaluate the common convective fluxes. The common viscous flux is evaluated
using the average of primitive variables and gradients at both sides of the interface. A correction
function is used to ensure that the fluxes at the cell interfaces are the common ones. The
properties of the spatial discretisation depend on the choice of this correction function[7]. We
have used the left and right Radau polynomials for hexahedra[7] and the lifting coefficients for
triangular prisms, tetrahedra and pyramids[9].

The complete expression for the function derivative is then

∂F̃i
∂ξj

=

k=Nc(p)−1∑
k=0

DikjF̃ik +

k=Nb(p)−1∑
k=0

Cikj (Fcommon − Fboundary)k (10)

where
Dikj =

∂Lk (ξi)

∂ξj
(11)

is a Nc (p) × Nc (p) matrix that multiplied by F̃ik yields the ξj = ξ, η, ζ derivative for each cell
SP and Cikjrepresents a Nc (p) × Nb (p) matrix containing the correction coefficients for the ξj
derivative, that is multiplied by a vector Fcommon − Fboundary whose dimension is the number of
cell boundary points Nb (p).

The aliasing instabilities that arise when trying to resolve flow features whose characteristic
length is smaller than the mesh resolution have been controlled by using the split form of the
fluxes proposed by Kennedy and Gruber[26] whose stabilising and conservation properties have
been demonstrated in[27, 28]. We reproduce here the resulting spatial discretisation of the
convective terms for the sake of completeness. The convective terms derivatives of eq. (7) can
be recast as

∂

∂ξ
(ρuξφ) +

∂

∂η
(ρuηφ) +

∂

∂ζ
(ρuζφ)

where uξ
uη
uζ

 = |J | J−1

 ux
uy
uz

and φ = [1, ux, uy, uz, E + p/ρ]. The Kennedy Gruber Pirozzoli (KGP) split form is defined,
for each component, as[28]:

∂

∂ξj

(
ρuξjφ

)
=

1

4

[
∂

∂ξj

(
ρuξjφ

)
+ φ

∂

∂ξj

(
ρuξj

)
+ ρuξj

∂φ

∂ξj
+

+ uξj
∂

∂ξj
(ρφ) + ρφ

∂uξj
∂ξj

+ ρ
∂

∂ξj

(
uξjφ

)
+ φuξj

∂ρ

∂ξj

]
(12)

6

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

This form is applied to the discontinuous derivative term only, i.e., the derivative correction is
not applied to each term separately, but to the complete flux.

Finally, the gradient of the primitive variables, that is needed to evaluate the viscous fluxes,
is computed with the following expression:

∂V

∂xi
=
(
J−1

)T
ij

∂V

∂ξj
(13)

where
∂V

∂ξj
=

1

|J |

(
∂ (|J |V)

∂ξj
− ∂ |J |

∂ξj
V

)
(14)

being xi = x, y, z. The numerical evaluation of the derivative in eq. (14) is analogous to eq. (10),
but the common value at the boundary points in this case is the average value of the primitive
variables at both sides of the element boundary.

2.2 Boundary conditions and time integration

The inlet and outlet boundary conditions are the 3D characteristic boundary conditions[29]
but adapted to the inlet boundary condition data employed at ITP Aero for subsonic inlets.
The mathematical development to obtain the formulation is similar to that of Odier et al.[30].
A synthetic turbulence generation method proposed by Shur et al.[31] is used to generate inlet
turbulence profiles if required.

Adiabatic or iso-thermal no-slip boundary conditions are used at viscous walls. Periodic
boundary conditions are used to simulate just one passage of the turbomachine or an infinite
span airfoil. Finally, an immersed boundary method[32] is used to simulate the passing bars
as wake generation mechanisms in LPT simulations with upstream wakes, avoiding the need to
actually mesh them and the implementation of a sliding mesh method to simulate the moving
domain together with the LPT vane.

The resulting spatial discretisation is marched in time with a four-stage explicit Runge-Kutta
method

Un+1 = Un + ∆tn

4∑
m=1

bm
∂F̃i
∂ξi

∣∣∣∣∣
m

This summation has to be carefully executed in order to minimise the possible round-off problems
that may arise in simulations with long integration times with very small time steps, especially
in single precision simulations. We have used the Kahan summation algorithm[33] to minimise
the round-off problems.

3 Implementation of the operators

The formulation presented in the previous section to integrate the Navier-Stokes equations
can be summarised as follows:

1. Evaluate the derivative of the primitive variables. This step has been split in three sub-
steps:

7

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

(a) Compute the discontinuous derivative by evaluating a matrix-vector product, where
the matrix elements are the derivatives of the Lagrange polynomials for each solution
point: L′i of equation (11).

(b) Correct the derivative with the correction functions and the average value of the
primitive variables at the face points. This is again a matrix-vector product, but
now the matrix Cijk is given either by the left and right Radau functions for the
hexahedra or by the lifting coefficients for prisms, and the vector has the differences
between primitive variables at both sides of the face points.

(c) Pass the gradient to physical coordinates with eq. (13).

2. Evaluate the derivatives of the fluxes. This is performed, again, in three sub-steps:

(a) Compute the fluxes for each solution point with eqs. (2) and (3).
(b) Compute the fluxes discontinuous derivatives, as in step 1a.
(c) Correct the derivative with the correction functions and the common fluxes at the

face points, as in step 1b. There is no need to pass to physical coordinates afterwards
because the fluxes are already expressed in computational coordinates in eq. (7).

3. Modify the fluxes by enforcing the boundary conditions.

4. Advance to the next stage of the Runge-Kutta scheme and go to 1.

Of the steps outlined above, only 1b and 2c use data from outside the cell element. The rest of
the steps are either point-based, like 1c or 2a, or element-based, like 1a or 2b. Even steps 1b
and 2c, that need data from neighboring cells, use these data to correct the derivatives in the
cell nodes. There are a number of reasons to choose the cell as our basic data structure. The
main two are:

• In discontinuous spatial discretisations such as FR, one can number the nodes within an
element consecutively, i.e., if the first node of cell icell is in position ifirst(icell), the
nodes in that cell have indices from ifirst(icell) to ifirst(icell+1). Even though
the mesh is unstructured, the data inside a cell is treated as structured. This is key to
exploit one of the advantages of GPUs over CPUs: the higher memory bandwidth. If the
data accesses were disordered, as it usually happens in unstructured grids without repeated
nodes, the optimal bandwidth could be hardly achieved.

• On GPUs, the number of simultaneous active threads is very large, of the order of thou-
sands. Both NVIDIA and AMD GPUs group threads into groups, each thread group
containing up to 1024 threads (for current NVIDIA GPUs), that share resources such as
the so-called shared or local memory. Since it is physically located near the processor, it
serves as a sort of cache memory that can be accessed at a faster rate. The data placed
there can be reused at much less cost when compared with a load from global memory
and, crucially, without caring about the optimal data arrangement explained above. One
could then load all the cell data into shared memory and the operations with them would
be extremely fast because the time penalty to access the data would be negligible when
compared to accessing them from GPU memory.

8

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

These are the main reasons why we have chosen GPUs as computing platform and coded the FR
solver using a mixture of C++ and OpenCL[11]. The resulting software can be executed on CPUs
as well as GPUs and other many-core hardware thanks to the use of OpenCL language, which
is supported by all major hardware vendors such as NVIDIA, Intel and AMD. An additional
in-house implementation allows an automatic translation of OpenCL code into CUDA[34], which
is NVIDIA proprietary language, taking advantage of the similarities between the OpenCL and
CUDA API programming models. That allows the use of NVIDIA debugging and profiling tools,
which are very useful when trying to optimise the implementation. With this approach we do
not restrict ourselves to one particular hardware platform nor to a proprietary ecosystem, but
we can still take advantage of the best each platform has to offer. This is true in theory, but in
practice the optimisation strategies for each type of hardware are quite different. In this work
we will focus on optimising the code to run on GPUs.

3.1 Data arrangement for maximum achievable bandwidth

The GPU to processor transfer rate is worse with the so-called array of structure (AoS) data
layouts than with structure of arrays (SoA) layouts. I.e., in case we are solving the Navier-Stokes
equations, we have five conservative variables per node. If the mesh has NSP solution points, it
is better to place ρ in the first NSP positions, then ρu, etc. and access them as

(ρi, ρui, ρwi, ρvi, ρEi) = (Ui, Ui+NSP
, Ui+2NSP

, Ui+3NSP
, Ui+4NSP

)

than to pack the five variables for each node and access them with a strided access:

(ρi, ρui, ρwi, ρvi, ρEi) = (U5i, U5i+1, U5i+2, U5i+3, U5i+4)

With the SoA memory access, the optimal bandwidth is obtained. By optimal bandwidth we
understand the maximum achievable bandwidth, which is not always the peak but the measured
bandwidth in benchmarks such as STREAM[35], which is around 80% of the peak value. The
tests and simulations in this work run on NVIDIA GeForce GTX 1080Ti GPUs, which have a
theoretical peak bandwidth of 484 GB/s, and the maximum measured bandwidth is around 380
GB/s.

3.2 Evaluation of the discontinuous derivatives

Listing 1: OpenCL code of the kernel used to compute the discontinuous derivative of the primitive
variables in 2d triangles
template<typename T>
__kernel void d i s cont inuousGrad ientForTr iang l e s (. . .)
{

// We have as many thread groups as c e l l s .
int i c e l l = get_group_id (0) ;
// The node numbering w i th in the c e l l
int l i d = get_local_id (0) ;
// The node g l o b a l mesh index
int inode = l i d+ i f i r s t [i c e l l] ;

9

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

// Put the data in l o c a l arrays f o r f a s t e r memory acces s
for (int i=l i d ; i<D_size ; i+=NumberOfCellNodes) {

D_localX [i] = D_globalX [i] ;
D_localY [i] = D_globalY [i] ;

}

for (int i c =0; i c<NumberOfVariables ; i c++) {
// Put the data in l o c a l arrays f o r f a s t e r memory acces s
U_local [l i d] = U_global [inode+i c ∗NumberOfNodes] ;

// Make sure a l l t h reads have f i n i s h e d wr i t i n g to l o c a l memory
ba r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Each thread computes one row o f the matrix−vec t o r mu l t i p l i c a t i o n
T dx = 0 . , dy = 0 . ;
for (int i =0; i<NumberOfCellNodes ; i++) {

dx += D_localX [NumberOfCellNodes∗ l i d+i]∗ U_local [i] ;
dy += D_localY [NumberOfCellNodes∗ l i d+i]∗ U_local [i] ;

}

// Write the r e s u l t back to g l o b a l memory
Grad_global [inode+ i c ∗NumberOfNodes] = dx ;
Grad_global [inode+(i c+NumberOfVariables)∗NumberOfNodes] = dy ;

// Make sure U_local i s not re− f i l l e d b e f o r e dx and dy computation
ba r r i e r (CLK_LOCAL_MEM_FENCE) ;

}
}

The evaluation of the discontinuous derivatives of the primitive variables or the fluxes involves
multiplying some if not all cell SPs by the derivatives of the Lagrange polynomials at these
SPs. This matrix-vector operation could be handled by linear algebra libraries like cuBLAS[36]
in CUDA or ViennaCL[37] in OpenCL. However, several authors[12, 13] have compared the
performance of such libraries with kernels tailored for the specific data layout, and the latter
generally outperform the former. The efficient execution of the kernel is best achieved making
use of the local GPU memory presented above. The main drawback is that it has a reduced
size (up to 192 KB for NVIDIA A100 GPUs, 48 KB for the GeForce GTX 1080Ti used in the
present work), therefore we have to be cautious selecting which data is placed in that memory,
since we can easily run out of it. To evaluate the discontinuous derivative we execute as many
thread blocks as cells. The OpenCL code representing the derivation of primitive variables in 2d
triangles is shown in the program listing 1. For each cell:

1. Obtain the cell and node indices. Note the use of ifirst[cell] which, for each cell, gives
the position of its first node.

2. Fetch the data from global memory and put it in the shared memory arrays. The data
include the matrices to perform the derivatives and the data to be derived. Since there are
no repeated nodes between cells, the data access pattern is regular and coalesced memory

10

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Element type Nc (p) LMD (p) /sizeof(T)

Quad (p+ 1)2 2Nc

Triangle (p+ 1) (p+ 2) /2 Nc (1 + 2Nc)

Hexahedron (p+ 1)3 (p+ 1)2 +Nc

Triangular prism (p+ 1)2 (p+ 2) /2 2 [(p+ 1) (p+ 2) /2]2 + (p+ 1)2 +Nc

Tetrahedron (p+ 1) (p+ 2) (p+ 3) /6 Nc (1 + 3Nc)

Pyramid (p+ 1) (p+ 2) (2p+ 3) /6 Nc (1 + 3Nc)

Table 1: Number of points and size of the local memory arrays to evaluate the primitive variables
discontinuous derivative for each element type as a function of the polynomial degree p.

Element type/pmax LMD (pmax), SP LMD (pmax), DP Nc (pmax)

Quad 77 54 31
Triangle 11 9 43

Hexahedron 21 16 9
Triangular prism 10 8 11

Tetrahedron 5 4 16
Pyramid 4 3 13

Table 2: pmax to avoid surpassing 48KB of local memory size in single and double precision and pmax

to avoid having more than 1024 solution points in the evaluation of the primitive variables discontinuous
derivatives for each element type.

accesses are possible, achieving the optimal data transfer rate. The measured bandwidth
is ∼ 350GB/s, near the 75% peak value for the GPU.

3. After synchronising all threads, each one evaluates its corresponding row of theD ·U matrix
vector product for each variable. Some of the memory accesses are strided, but since the
data are already contained in the shared memory, this is no longer severely penalising.

4. Write the result to the corresponding global memory position. The data storage is also
done with an optimal data arrangement, achieving optimal bandwidth.

Table 1 summarises the number of points and the amount of local memory needed for each
cell type in order to compute the primitive variables gradient. In quads and hexahedra it is
assumed that all directions use the same differentiation matrix, whose size is (p+ 1)2. Based on
these numbers, table 2 represents the maximum polynomial degree pmax for which the shared
memory limit is reached for single and double precision or the number of cell points surpasses
the maximum number of threads, which is 1024. The limiting factor for all of them except quads
and hexahedra is the amount of local memory. This limit could be overcome if the matrix-vector
multiplication is split in smaller size blocks, in a strategy called tiling, but for the elements and
polynomial degrees used in this work p < pmax and the tiling is not needed.

Finally, it should be mentioned that this rather straight-forward implementation is sub-
optimal for elements with low order p because in that case the thread group would be very
small and so would be the GPU occupancy. In that case, one could create a thread group

11

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

containing several elements, whose numbering should ideally be consecutive, and apply the op-
erations on all of them at the same time. Once again, for the elements and polynomial degrees
employed in this work there has not been a need to pursue any further optimisation.

3.3 Evaluation of derivative corrections

Listing 2: OpenCL code of the kernel used to correct the discontinuous derivative of the primitive
variables in 2d triangles
template<typename T>
__kernel void g rad i en tCor r e c t i onForTr i ang l e s (. . .)
{

// We have as many thread groups as c e l l s .
int i c e l l = get_group_id (0) ;
// The node numbering w i th in the c e l l
int l i d = get_local_id (0) ;
// The f i r s t node o f the c e l l
int i f i r s t n o d e = i f i r s t [i c e l l] ;
// The node g l o b a l mesh index
int inode = l i d+i f i r s t n o d e ;
// The f i r s t f ace node o f the c e l l
int i f i r s t f a c e n o d e = i f i r s t f a c e [i c e l l] ;

// Put the data in l o c a l arrays f o r f a s t e r memory acces s
for (int i=l i d ; i<L i f t i n gCo e f f s_ s i z e ; i+=NumberOfCellNodes) {

L i f t i n gCo e f f s_ l o c a l [i] = L i f t i n gCoe f f s_g l oba l [i] ;
}

for (int i c =0; i c<NumberOfVariables ; i c++)
{

for (int fp=l i d ; fp<NumberOfFacePoints ; fp+=NumberOfCellNodes)
{

// FacePointsIdx conta ins the node index o f each face node wi th in the c e l l
int i l o c a l = FacePointsIdx [fp] ;
// The g l o b a l mesh index o f t ha t f ace node
int inodeFace = i l o c a l+i f i r s t n o d e ;
// The node index from the ne ighbor c e l l f a ce
int i n e i gh = FacePointNeighbor [i f i r s t f a c e n o d e+fp] ;
// The common va lue i s U_comm = 0.5∗ (U_i+U_neigh) , then the d e l t a i s
// U_comm − U_i = 0.5∗ (U_neigh−U_i)
DeltaU_local [fp] = 0 . 5∗ (U_global [i n e i gh +i c ∗NumberOfNodes] −

U_global [inodeFace+i c ∗NumberOfNodes]) ;
}
// Make sure a l l t h reads have f i n i s h e d wr i t i n g to l o c a l memory
ba r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Each thread computes the co r r e c t i on f o r i t s a s s o c i a t e d c e l l node
T cx = 0 . , cy = 0 . ;
// F i r s t index o f the L i f t i n gCoe f f s_ l o c a l array f o r each c e l l node
int i f i r s t l c = NumberOfFacePoints∗ l i d ;

12

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

// The co r r e c t i on formula us ing d e l t a s and l i f t i n g c o e f f i c i e n t s
for (int fp=0; fp<NumberOfEdgePoints ; fp++)
{

T cxy = L i f t i n gCo e f f s_ l o c a l [i f i r s t l c+fp+NumberOfEdgePoints]∗
DeltaU_local [fp+NumberOfEdgePoints] ;

cx −= L i f t i n gCo e f f s_ l o c a l [i f i r s t l c+fp+2∗NumberOfEdgePoints]∗
DeltaU_local [fp+2∗NumberOfEdgePoints]+cxy ;

cy −= L i f t i n gCo e f f s_ l o c a l [i f i r s t l c+fp]∗
DeltaU_local [fp]+cxy ;

}

// Write the r e s u l t back to g l o b a l memory
Grad_global [inode+ i c ∗NumberOfNodes] += cx ;
Grad_global [inode+(i c+NumberOfVariables)∗NumberOfNodes] += cy ;

// Make sure U_local i s not re− f i l l e d b e f o r e cx and cy computation
ba r r i e r (CLK_LOCAL_MEM_FENCE) ;

}
}

The correction of the discontinuous derivatives involves data from adjacent cells. In that case
the ordered access to the data is lost, therefore a decrease in the achieved bandwidth should be
expected. As with the discontinuous derivatives, the kernel to correct these derivatives does not
rely on mathematical libraries, but is written specifically for each element type. An example of
the implementation for 2d triangles is presented in program listing 2. The steps followed are:

1. Obtain the cell, node and face node indices. ifirstface[icell] returns, for each cell, the
position of its first face node.

2. Compute the deltas of primitive variables at each face point and store them in a local
memory array whose size is the number of face points of the element. The memory access
to the data is not ordered, as in the discontinuous derivative, but follows the numbering
of the cell face nodes and the numbering of the face nodes in the neighbor cell. Neither of
both are guaranteed to be at consecutive memory positions and therefore the fetching of
these data will be slower. However, modern GPUs have also some cache memory, albeit
not as large as that of CPUs. Given that the face nodes are close from each other at both
elements it is expected that some of them will be placed in the cache when one of them is
fetched, minimising the memory access penalty somehow. Still, the coding has not been
optimised to minimise cache misses, and the beneficial side effects, if any, are not intended
but they are nevertheless welcome.

3. Compute the correction terms by multiplying the deltas by the correction matrix. In the
example of 2d triangles, this correction matrix is given by the lifting coefficients[9], as in
triangular prisms, tetrahedra or pyramids. In quads or hexahedra, the Radau polynomial
coefficients are used[7]. These computations are all performed using data stored in local
memory, and are very fast.

4. Write the results to their corresponding global memory positions. As with the discontinuous
derivative, this last step has an ordered data access, where each thread writes the result at

13

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Element type/pmax LMC (p) /sizeof(T) LMC (pmax), SP LMC (pmax), DP
Quad 5 (p+ 1) 2456 1227

Triangle 3 (p+ 1) [1 + (p+ 1) (p+ 2) /2] 18 14
Hexahedron (p+ 1) [1 + 6 (p+ 1)] 44 30

Triangular prism (p+ 1)
(
3p2 + 17p+ 18

)
/2 17 13

Tetrahedron 2 (p+ 1) (p+ 2) [1 + (p+ 1) (p+ 2) (p+ 3) /6] 6 5
Pyramid (p+ 1) (3p+ 5) [1 + (p+ 1) (p+ 2) (2p+ 3) /6] 5 4

Table 3: Required amount of local data and pmax to avoid surpassing 48KB of local memory size in
single and double precision in the evaluation of the primitive variables derivatives correction for each
element type.

a consecutive memory position, resulting in optimal memory access bandwidth.

Some authors[12, 13] choose a different approach: they implement an additional kernel to pre-
compute the face points common values and store them. The total number of threads for that
kernel is equal to the total number of face points, and the kernel thread group size is the number
of face points for each cell instead of the number of cell points, hence avoiding idle threads
when computing the face common fluxes for high polynomial orders. The second kernel reads
the common fluxes and computes the flux derivative correction. The common fluxes writing
and reading is coalesced, adding little extra execution time. In theory, the detrimental effect of
the extra writes and reads would be offsetted by the optimal thread group size of each kernel.
However, we have tried both approaches and the one with separate kernels is slower due to those
extra memory accesses. Even when taking the adverse effect of the inappropriate thread group
size into account, it is more optimal to group both kernels to minimize the memory accesses, at
least for the hardware and polynomial degrees tested in this work.

Table 3 shows the amount of local memory needed to evaluate the primitive variables gradient
correction and the maximum polynomial degree to reach the 48KB limit for each element and
computing precision. For all elements the local memory requirement is less stringent than that
of the discontinuous derivative.

4 Parallel use of multiple GPUs

For large enough problems that do not fit into a single GPU, multiple GPUs are used in
parallel. The domain decomposition is carried out using the parallel domain decomposition
library ParMeTiS[38]. Each resulting sub-domain is processed by a single CPU core, that in
turn controls a single GPU. Given that each node of our cluster has 10 GPUs, that is clearly not
the most optimal approach to minimize the data transfer between parallel processes. If one CPU
process controlled several GPUs, the exchange of data between GPUs would not need to use MPI,
because the GPU data sent by all GPUs sharing the same CPU process would reside in the same
physical memory and the MPI data exchange would be limited to inter-node communications. If
each GPU is controlled by a separate CPU process, GPU to GPU data exchange needs MPI to
proceed, even if those GPUs are in the same node , adding an extra communication layer. While
not optimal, this strategy is the most versatile in real environments where the GPU cluster is
shared among many users and the available resources are not known a priori.

14

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Figure 3: Pipelined communication. The message is split in smaller pieces, whose communication
proceeds in parallel. The communication time is reduced.

With the chosen approach, the bandwidth of the data exchange between GPUs is a result of
a three-step process:

1. Transfer the data from the origin GPU to the origin CPU process controlling it. That
data transfer proceeds through a x16 PCIe 3.0 link, that has a theoretical unidirectional
bandwidth of 16 GB/s and a measured effective bandwidth for large enough messages of
around 12 GB/s.

2. Use MPI to send the origin CPU data to the destiny CPU through the two-port Infiniband
network used in ITP Aero’s cluster. The theoretical network unidirectional data transfer
rate is 2 x 100 Gb/s, but it is limited by the x16 PCIe 3.0 link of the network interface. The
measured unidirectional bandwidth is again around 12 GB/s for large enough messages.

3. Transfer the data from the destiny CPU to the destiny GPU through the same x16 PCIe
3.0 link, with the same transfer rate of step 1.

The PCIe bus and the Infiniband fabric support simultaneous bidirectional data transfers with no
noticeable data rate degradation, thus the bidirectional bandwidth is double the unidirectional.
The effective GPU to GPU bidirectional bandwidth is then

1

BWGPU↔GPU
=

2

BWGPU↔CPU
+

1

BWCPU↔CPU

For large enough messages, that results in an effective GPU to GPU bandwidth of 8 GB/s,
43 times less than the 350 GB/s achieved when transferring data inside the GPU. This penalty
could be minimised by using faster buses to transfer data between GPU and CPU, like NVIDIA’s
NVLink port or more recent PCIe technology. But absent better hardware some additional
improvements must be implemented to minimise the communications penalty, otherwise the
parallel efficiency of the solver is seriously compromised. The mitigation strategies fall into two
categories: those aimed at increasing the data transfer bandwidth and those that maximise the
overlap between communication and computation.

15

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Figure 4: Overlap of computation and communication. The GPU → CPU , the MPI communication
(CPU → CPU) and the CPU → GPU data transfers proceed simultaneously with the kernel executions.
As long as the total communication time tcomm remains lower than toverlap, the extra-cost of running
parallel simulations will be tgatherScatter +

1−χeff

χeff
tfrontierCells, where χeff is the parallel efficiency of the

GPU, which is below unity when the number of kernel threads is small.

Increase the data transfer bandwidth

To take full advantage of the PCIe bus performances in CPU to GPU data transfers one must
use pinned, or page-locked memory. The 12 GB/s data transfer rate through the PCIe bus is only
obtained for this type of memory, otherwise the effective bandwidth is almost halved. Besides,
taking advantage of the three-step communication explained above, one can reduce the com-
munication time very much by implementing a pipelined communication process, schematically
depicted in figure 3. In a non-pipelined communication, we first send the full message from the
GPU to the CPU, and only when this transfer has finished the CPU to CPU MPI communica-
tion starts. After completing the MPI communication, the final CPU to GPU transfer ends the
communication. By dividing the message in smaller pieces, the MPI communication of the first
piece starts as soon as the first GPU to CPU transfer finishes, and it proceeds while the second
piece of GPU to CPU data transfer is carried out, the second piece of MPI data exchange is
executed simultaneously to the first CPU to GPU data transfer and the third GPU to CPU one
and so on. There is an optimal size of the subdivided messages that maximises the bandwidth.
Too small messages degrade the bandwidth due to the network latency, while too large messages
do not take full advantage of the pipelining scheme. For message sub-divisions larger than 1 MB
we have measured bandwidth improvements in excess of 100% in optimal working conditions.
However, these improvements may be severely limited depending on the PCIe bus and/or the
Infiniband fabric congestion.

Overlap communication and computation

When we overlap communication and computation, we hide the extra cost of communicating
as much as possible. This is graphically explained in figure 4. As long as the tcomm time
required by the three-step communication strategy explained above is less than the time spent
computing toverlap, the communication cost is negligible. The first obvious improvement is to
make the communications non-blocking to allow their execution along the computations. We
use MPI non-blocking communications that allow the simultaneous launch of GPU kernels. The

16

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

kernel execution could in theory proceed simultaneously with whatever instruction executed on
the CPU, but we do not take advantage of that feature in this work because the CPU is only
in charge of launching kernels and managing the communications during the code execution.
We also overlap the GPU to CPU data transfers with the GPU computation. This is done by
creating three independent execution queues on the GPU, one controlling the GPU to CPU data
transfer, another for the CPU to GPU, and the last one to control the kernels execution.

The second improvement is to increase toverlap as much as possible. This is done by sub-
dividing the derivatives correction loop of subsection3.3. The first sub-division contains just
cells whose boundary correction does not depend on data from neighbor parallel domains. That
loop is the most time consuming because it contains the bulk of domain cells. By allowing its
execution along the communication we have increased toverlap substantially. The second sub-
division contains those cells that need boundary data from neighbor parallel domains to produce
correct output. Before the second sub-loop execution begins, we must establish a checkpoint
between the execution queue and the CPU to GPU data transfer queue to ensure that the loop
is executed only after the frontier data are fully transferred.

With these strategies the extra cost of parallelism is estimated as

tgatherScatter +
1− χeff
χeff

tfrontierCells

being tgatherScatter the cost of gathering the data that must be sent and scattering the data that
has been received, tfrontierCells the cost of computing the derivative correction for the frontier
cells as if it were a mere percentage of the total cost of the derivative correction, i.e.

tfrontierCells = ttotalCells · nfrontierCells/ntotalCells

scaled by a factor (1− χeff) /χeff (with χeff ∈ (0, 1]) that takes into account the loss of parallel
efficiency of the GPU (χeff < 1) when executing the sub-loop that contains just the parallel
frontier size as a consequence of the small number of threads of that kernel[39]. The penalty
is small compared with the execution cost of the serial operations. Therefore, as long as the
communication time tcomm is lower than the overlap time toverlap the parallel efficiency will
remain high.

5 Benchmarking

We present a number of tests that quantify the solver performances when running on ITP
Aero’s GPU cluster. The cluster consists of 20 nodes communicated with a two-port Infiniband
network at 2 × 100 Gb/s. Each node hosts 10 NVIDIA GeForce GTX 1080Ti GPUs. The
computing power of this particular GPU model is much larger for single than for double precision,
therefore the tests in this work have been carried out using single precision. The GPUs are
connected to the host’s two Intel Xeon E5-2620 v4 CPUs via two x16 PCIe3.0 links at 16 GB/s.
Each x16 PCIe3.0 link connects 5 GPUs to one single CPU, which means that when all GPUs
are sending and receiving data through the link at the same time the effective bandwidth for
each GPU is much lower than the theoretical 16 GB/s.

17

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

p 1 2 3 4 5 6 7
Nhex 221184 65536 27648 13718 8192 5488 3456
NDOF 1769472 1769472 1769472 1714750 1769472 1882384 1769472

Table 4: Number of hexahedra and number of mesh points for the meshes used in the single GPU
profiling.

F
DξF

CξΔF
DξV

CξΔV
RK

BC

%
T

im
e

0

20

40

60

80

100

p

1 2 3 4 5 6 7

F
DξF
CξΔF
DξV

CξΔV
RK
All
PyFR

t/
N

D
O

F
	(

n
s)

1

10

p
1 2 3 4 5 6 7

(a) (b)

Figure 5: (a) Fraction of total time and (b) mean execution time per degree of freedom of a four-stage
Runge-Kutta iteration on a single NVIDIA GeForce1080Ti GPU simulation of a series of hexahedra
meshes of different polynomial orders p (see table 4). F is the flux evaluation of equation (8), DξF the flux
discontinuous derivative, Cξ∆F the flux boundary correction, DξV the primitive variables discontinuous
derivative, Cξ∆V the primitive variables derivative boundary correction, RK the Runge-Kutta kernels,
BC the boundary condition kernels. The overall mean execution times per degree of freedom are compared
against those obtained with PyFR[16].

18

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

5.1 Single GPU execution profiling

The kernel profiling for a single GPU has been addressed using a series of simulations of
hexahedra meshes, whose number of cells and number of mesh points are presented in table 4.
For each one, the number of cells is such that the total number of points remains almost constant
for all p.

Figure 5a depicts the time budget for all kernels involved in the simulations. The evaluation of
the primitive variables gradient and the fluxes takes nearly 80% of the computing time irregardless
of the polynomial order, at least for orders up to 7. However, the relative weights between the
parts change, with the correction kernels having more weight for lower degrees. The mean
execution time per iteration and per degree of freedom for the most time-consuming kernels is
represented in figure 5b. Degrees p = 1 and p = 2 are comparatively slower than degrees p ≥ 3,
whose cost per degree of freedom remains constant or even decreases slightly for the derivative
correction kernels. This is a consequence of having just one cell per thread group. For small
degrees that leads to thread groups with very few elements that do not take full advantage of
the group operations, like coalesced memory accesses. For the kernel implementations presented
here it is therefore better to use higher order polynomials to maximise the GPU efficiency.

Figure 5b also shows that for p > 2 and up to p = 7 the cost per degree of freedom does not
depend on the polynomial order very much. This is a clear sign that the solver performance is
memory bounded, and that the cost of the operations, even if it increases with p3, is still far from
being dominant, with hints of it affecting the cost only visible in the discontinuous derivatives
of variables and fluxes.

The total execution times are also compared with those obtained with PyFR1, a high order
solver based on the flux reconstruction spatial discretisation[16]. The computational set-up of
PyFR, including the solver precision, the node distributions for cells and faces and the temporal
integrator, are exactly the same as those used for this work. The execution times for both codes
are very similar, except for p = 1, with PyFR slightly increasing the execution time for higher p.

5.2 Multiple GPU execution profiling

The strong parallel scaling of Mu2s2T has been assessed using up to 8 cluster nodes and two
p = 5 hexahedra meshes, one with 96× 96× 48 cells and a smaller one with 48× 48× 48. The
GPU assignation for both cases is such that the number of GPUs sharing the x16 PCIe link is
minimized, i.e., up to 16 processes, each GPU uses just one PCIe link to communicate with the
host CPU. When that is no longer possible, the number of GPUS sharing a PCIe link grows
sequentially, up until 2 GPUs per PCIe in the small case run using 32 MPI processes and 4
GPUs per PCIe in the large case run using 80 MPI processes. In order to highlight the effect
of the GPU assignation policy, the smaller case has also been run with the opposite policy, i.e.,
maximizing the number of GPUs per PCIe link for each parallel simulation.

The mean time per four-stage Runge-Kutta iteration is depicted in figure 6a. For the large
case, the parallel efficiency loss is not substantial up to 32 MPI processes, when comparing the
execution time with the one obtained running with 4 MPI processes. That corresponds to ∼ 104

cells per MPI process. For 64 and 80 MPI processes the GPU to GPU bandwidth degradation
1The PyFR used for the tests has commit SHA1 c9d02b004e70a71536cb423a0e0f39f66c59462a

19

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

0.7
13

0.5
30

1

0.9
77

0.9
11

0.8
73

0.8
46

0.7
03

1

0.9
53

0.9
39

0.9
15

0.6
58

0.5
68

96×96×48	p=5	hexahedra	
optimal	PCIe
48×48×48	p=5	hexahedra	
optimal	PCIe
48×48×48	p=5	hexahedra	
shared	PCIe
Ideal

t	(
s)

0.01

0.1

NGPU

1 10 100

96×96×48	p=5	hexahedra	
optimal	PCIe
48×48×48	p=5	hexahedra	
optimal	PCIe
48×48×48	p=5	hexahedra	
shared	PCIe	

t	⋅
	N

G
P
U
/N

D
O

F
	(
n
s)

15

17.5

20

22.5

25

27.5

30

NGPU

1 10

(a) (b)

Figure 6: (a) Mean execution time and (b) mean execution time per mean number of DOF of a four-stage
Runge-Kutta iteration for two different hexahedra meshes. The labels in the curve symbols represent the
parallel efficiency.

due to the PCIe link sharing, together with the time reduction due to the smaller mesh partitions
leads to a dramatic decrease of the parallel efficiency. For the smaller case, the parallel efficiency
loss is more progressive when the PCIe link sharing is not that intensive, and the speed-up is not
seriously degraded until the number of cells per MPI process is ∼ 5 ·103. However, if we force the
PCIe sharing by assigning all MPI processes to GPUs within the same node, the communications
cost surpasses the computations cost sooner, at ∼ 104 cells per MPI process, and the parallel
efficiency loss is deeper for the same number of MPI processes.

Figure 6b presents the same results using a different variable, the mean execution time per
mean degree of freedom t ·NGPU/NDOF , that clearly signals the point at which the communica-
tions cost is too high to be hidden and becomes dominant, changing the curve trend. While the
communications cost is hidden, the increase in time per mean degree of freedom is due to the
parallel simulations overheads: the gather and scatter of the variables to communicate and the
loss of parallel efficiency of the GPU for smaller kernels. The extra cost, around 9% when the
number of MPI processes is increased four-fold, seems to be fairly independent of the problem
size at least for the small number of MPI processes tested in our examples. Whether this extra
cost keeps increasing or reaches a plateau should be assessed running larger cases with more MPI
processes. It has not been done in this work because the computing resources were unavailable.

6 Validation

6.1 Turbulent channel

The solver has undergone an extensive validation. First, we present three comparisons with
DNS simulations of an incompressible channel flow at Reτ 180[40], 950[41] and 2000[42]. To

20

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Reτ p Nx Ny Nz y+w ∆x+max ∆y+max ∆z+max t · uτ/h GPU-hours
180 7 24 12 12 0.15 10 16 10 34 75
950 5 48 48 48 0.38 35.6 35.7 17.8 34 2970
2000 5 96 96 96 0.26 37.3 32.3 18.7 7 8400

Table 5: Parameters of the turbulent channel flow simulations. The channel dimensions are Lx = 2πh,
Ly = 2h, Lz = πh and the bulk Mach number is Mb = 0.2

speed-up the simulations we have used a bulk Mach number Mb = 0.2. The channel dimensions
are Lx = 2πh, Lz = πh, Ly = 2h, which are sufficiently large to reproduce one-point statistics
of larger boxes[43]. The element distribution is uniform in x and z directions. The y point
distribution is obtained using the following formula proposed by Ghiasi et al.[44]:

yn
Ly

=
1

2

1−
tanh

[
λ
(
1
2 −

n
np

)]
tanh (λ/2)

 , 0 ≤ n ≤ np

where np = Ny + 1 is the number of points in the y direction and λ is a parameter to control
the compactness of the point distribution near the wall. A value of λ = 5.4 has been used
for all cases. The parameters for the simulations are detailed in table 5. The maximum mesh
spacings are too large for a DNS simulation, which is a deliberate choice to assess the robustness
of the method to perform under-resolved DNS simulations and to save computational time and
resources.

Figure 7 depicts the instantaneous ρV field for the z = 0 plane for the three simulations, and
figures 8 and 9 compare the resulting mean velocity and velocity fluctuations against the DNS
simulations. The matching between DNS and Mu2s2T is very good for all compared quantities.
The differences between the DNS simulation and our CFD in the Reτ = 180 case are very small.
Mu2s2T slightly under-predicts the amplitude of the velocity fluctuations for Reτ = 950 and
Reτ = 2000, which could be a consequence of the relatively coarse mesh used to simulate the
flow or, in the Reτ = 2000 case, of the insufficient convergence of the RMS of the velocities.

6.2 LPT airfoil with upstream wakes

Next we present a comparison between Mu2s2T and some experimental measurements ob-
tained at the Fluid Dynamics Laboratory of the Universidad Politécnica de Madrid (UPM).
Details about the facility can be found in [45, 46]. It has been used to measure the aerodynamic
performances of a linear cascade of LPT airfoils under unsteady inflow conditions generated by
the wakes of an array of moving bars placed upstream. The flow disturbances produced by the in-
coming wakes strongly modify the suction side boundary layer separation and reattachment[47],
thus controlling the aerodynamic losses of the LPT airfoil.

The facility operates at very low Mach numbers, therefore the flow regime is incompressible.
The experiment aims at characterizing the aerodynamic behaviour of the 2D region of the airfoil
for a range of Reynolds numbers and reduced frequencies fr, where

fr =
Vb · S
θb · V2

21

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Reτ = 180

Reτ = 950

Reτ = 2000

Figure 7: Instantaneous ρV field at z = 0 for the turbulent channel flow simulations at different Reτ

Mu2s2T,	Reτ=180
DNS,	Reτ=180
Mu2s2T,	Reτ=950
DNS,	Reτ=950
Mu2s2T,	Reτ=2000
DNS,	Reτ=2000

U
+

0

5

10

15

20

25

y+

0.1 1 10 100 1000

Mu2s2T,	Reτ=180
DNS,	Reτ=180
Mu2s2T,	Reτ=950
DNS,	Reτ=950
Mu2s2T,	Reτ=2000
DNS,	Reτ=2000

U
+

16

18

20

22

24

y+

100 1000

Figure 8: Comparison between Mu2s2T and DNS of the mean streamwise velocity for the turbulent
channel flow at different Reτ . Left: Full distribution. Right: Close-up of the logarithmic layer.

22

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Mu2s2T,	Reτ=180
DNS,	Reτ=180
Mu2s2T,	Reτ=950
DNS,	Reτ=950
Mu2s2T,	Reτ=2000
DNS,	Reτ=2000

u
'+

0

0.5

1

1.5

2

2.5

3

y+

0.1 1 10 100 1000

Mu2s2T,	Reτ=180
DNS,	Reτ=180
Mu2s2T,	Reτ=950
DNS,	Reτ=950
Mu2s2T,	Reτ=2000
DNS,	Reτ=2000

v'
+

0

0.25

0.5

0.75

1

1.25

y+

0.1 1 10 100 1000

(a) (b)

Mu2s2T,	Reτ=180
DNS,	Reτ=180
Mu2s2T,	Reτ=950
DNS,	Reτ=950
Mu2s2T,	Reτ=2000
DNS,	Reτ=2000

w
'+

0

0.25

0.5

0.75

1

1.25

1.5

1.75

y+

0.1 1 10 100 1000

Mu2s2T,	Reτ=180
DNS,	Reτ=180
Mu2s2T,	Reτ=950
DNS,	Reτ=950
Mu2s2T,	Reτ=2000
DNS,	Reτ=2000

u
'v

'+

−1

−0.8

−0.6

−0.4

−0.2

0

y+

0.1 1 10 100 1000

(c) (d)

Figure 9: Comparison between Mu2s2T and DNS velocity fluctuations for the turbulent channel flow.

23

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Figure 10: Instantaneous entropy solution for the simulation of the airfoil with upstream moving bars.

being Vb the bar velocity, θb the bar pitch, S the airfoil suction side perimeter and V2 the mean
exit flow velocity. The parameter that controls the wake inclination is the flow parameter

φ =
Vx
Vb

where Vx is the axial flow velocity.
The fluid domain has been discretized with a hybrid p = 5 mesh made of hexahedra for the

boundary layer and wake regions and triangular prisms for the outer flow region. Pitchwise and
spanwise periodic boundary conditions are used to simulate the 2D behaviour of one infinitely
long airfoil pitch. The portion of span between spanwise periodic boundaries is long enough to
allow developing the most unstable wavelengths. The resulting mesh has 1.97 million cells and
312 million DOFs. y+max < 0.7, ∆x+ ≈ 50 and ∆z+ ≈ 20 for the entire airfoil perimiter. The
passing bars have been simulated used an immersed boundary condition[32], which reproduces the
actual behaviour of a cylindrical bar after a few bar diameters. Comparisons at several Reynolds
and reduced frequencies that have been experimentally tested and simulated have been published
before[48, 46]. We present here a different simulation at Re = 1.3 · 105, φ = 1.21 and fr = 0.53.
We have simulated 20 blade passages, and taken statistics during the last 17 until the variation
of the mean solution is deemed low enough as to ensure that the airfoil aerodynamic losses
variation between periods is less than 1%. The cost of the simulation, running on ITP Aero’s
cluster, is 19900 GPU-hours. Figure 10 shows the instantaneous entropy field. The suction side
boundary layer separates due to the adverse pressure gradient, the shear layer resulting from that
separation is unstable and quickly transitions to turbulence. On top of that, the perturbations
induced by the passing wakes modify the boundary layer dynamics leading to a reduction in
overall aerodynamic losses.

The simulation results are compared against experimental measurements at the same Reynolds,
φ = 1.09 and fr = 0.52. The discrepancy in flow parameter and reduced frequency is caused
by the inability to simulate a single airfoil pitch configuration where the bar pitch θb is not a
multiple of the airfoil pitch θa. Given certain flow conditions, by fixing θb and fr, we fix Vb and
therefore φ. Conversely, if we fix φ, we fix Vb and fr is a result that cannot be chosen freely.

Figure 11 compares the measured and predicted airfoil Cp distributions. The simulation

24

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Experiment
Mu2s2T

C
p

x/Cx

0 0.2 0.4 0.6 0.8 1

Figure 11: Comparison between measured and predicted airfoil Cp distributions.

Figure 12: Airfoil stations where boundary layer profiles measurements are compared against Mu2s2T
predictions.

suction side loading is lower than the measured, which could be due to a slight mismatch between
the measured and simulated inflow angle due to the presence of the bars. The position of the
suction side bubble and its reattachment, marked by the change of slope of the suction side Cp
curve, are correctly reproduced.

Figure 13 compares the measured and predicted velocity profile, non-dimensionalized with
the isentropic velocity2, for several airfoil stations, whose location is depicted in figure 12. The
experimental measurements have been obtained using hot wire anemometry. The simulation
correctly predicts the location of the separation bubble, between stations 2 and 5, even though
the velocity profiles there are a little bit different from the measured ones. After station 6 the
agreement between the experimental measurements and the CFD predictions is quite good, with
the simulation predicting a slightly larger velocity gradient next to the wall. When comparing

2vis is defined using the outer flow mean values of total pressure, total temperature and velocity at each
measurement station.

25

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Experiment Mu2s2T

d
/S

V/Vis+Nstation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Experiment Mu2s2T

d
/S

RMS(Vh)/V
2+Nstation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 13: Comparison between measured and predicted non-dimensional mean velocity profiles (top)
and non-dimensional mean 2D turbulent kinetic energy (bottom) for the measurement stations of figure
12.

26

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

the RMS of the horizontal velocity non-dimensionalized by the exit velocity squared there are
important differences between the measured and predicted values, especially for the stations
after the suction side bubble. The measurements predict lower RMS values. The origin of the
discrepancies is not completely understood. It is known that the hot wire is unable to catch the
highest frequencies of the velocity fluctuation due to the wire inertia, therefore yielding smaller
RMS measurements. But to prove that some kind of RMS filtering analogous to the alleged
behaviour of the hot wire should be implemented and that has not been done.

Figure 14 compares the measured and predicted mean velocity and mean velocity fluctuations
at an axial location 0.5Cx downstream the airfoil trailing edge. The agreement for the mean
velocity is deemed good, with the CFD correctly predicting the wake width. The discrepancies
in the outer flow zone could be attributed to the different measured and simulated flow parameter.
In the mean axial velocity fluctuations the conclusions are similar: the wake width is correctly
predicted, but the outer flow region has some differences. The agreement between the experiment
and the simulation is somewhat poorer for v′v′ and u′v′. The shapes of the distributions are
very similar for both distributions, but there is an offset between the measured and simulated
distributions, with the simulation predicting lower v′v′ and higher u′v′. More tests should be
conducted to establish the origin of these discrepancies, which could be attributed either to
the noise inherent to the LDV measurements, to the differences in flow coefficient between the
experiment and the simulation or a combination of both.

7 Conclusions

The popularisation of many-core computing architectures, GPUs in particular, is driven by
their superior computing performances, both in absolute terms and especially when the hardware
acquisition cost is taken into account. The CFD solvers need to be adapted to these new comput-
ing platforms to better take advantage of their potential. We have presented the implementation
of a high order solver for the Navier-Stokes equations based on the flux reconstruction scheme.
The resulting implementation is optimized to be executed on multiple GPUs.

The details of the most time consuming parts of the solver are presented. The use of the
so-called local or shared GPU memory is key in achieving an optimal performance of the kernels
involved in the discontinuous derivatives and the derivatives corrections. The proposed imple-
mentation is not optimal for low polynomial degrees, but it achieves a good performance for p > 2,
comparable to that of other high-order solvers with a similar formulation. The performance is
entirely memory bounded, at least up to p = 7. Thus, the use of GPUs with higher memory
bandwidth are expected to translate directly into a proportional gain in the solver performances.

When multiple GPUs are used in parallel, the main bottleneck is the time spent communi-
cating data between them, because the resulting bandwidth is much lower than the bandwidth
between the GPU memory and its processors. We have presented a strategy to maximize the over-
lap between communication and computation that, together with the communications pipelining,
delays the point at which the communications cost becomes dominant.

The resulting solver has been used to conduct a series of simulations to validate its predictions
either against DNS data of turbulent channels at several Reτ or against experimental measure-
ments of flows around low pressure turbine airfoils. The agreement is very good for all cases,
proving it to be a valuable tool in future analyses of turbomachinery designs without the need

27

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

Experiment
Mu2s2T

V
/V

2

y/θb

0 0.5 1 1.5 2

Experiment
Mu2s2T

u
'u

'/
V

2 2

y/θb

0 0.5 1 1.5 2

(a) (b)

Experiment
Mu2s2T

v'
v'

/V
2 2

y/θb

0 0.5 1 1.5 2

Experiment
Mu2s2T

u
'v

'/
V

2 2

y/θb

0 0.5 1 1.5 2

(c) (d)

Figure 14: Comparison between measured and predicted non-dimensional mean velocity (a) and non-
dimensional mean velocity fluctuations u′u′ (b), v′v′ (c) and u′v′ (d) at a measurement plane 0.5Cx
downstream the airfoil trailing edge.

28

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

to resort to costly experimental campaigns.

Acknowledgments

The authors wish to thank ITP Aero for the permission to publish this work and to Patxi
Apoita and David Cadrecha from ITP Aero Aerothermals department for providing the geometry
and the experimental data of the low pressure turbine airfoil experiments. This work has been
partially carried out under the Spanish Ministry of Economics collaboration contracts RTC-2017-
6150-4 and RTC-2019-007194-4.

REFERENCES

[1] Wang, Z. J., “High-order computational fluid dynamics tools for aircraft design,” Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol. 372, No. 2022, 2014, pp. 20130318.

[2] Cockburn, B., Karniadakis, G. E., and Shu, C.-W., “The Development of Discontinuous
Galerkin Methods,” Discontinuous Galerkin Methods, edited by B. Cockburn, G. E. Karni-
adakis, and C.-W. Shu, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 3–50.

[3] Shu, C.-W., “High-order Finite Difference and Finite VolumeWENO Schemes and Discontin-
uous Galerkin Methods for CFD,” International Journal of Computational Fluid Dynamics,
Vol. 17, No. 2, 2003, pp. 107–118.

[4] Wang, Z., “High-order methods for the Euler and Navier-Stokes equations on unstructured
grids,” Progress in Aerospace Sciences, Vol. 43, No. 1, 2007, pp. 1–41.

[5] Huynh, H., Wang, Z., and Vincent, P., “High-order methods for computational fluid dynam-
ics: A brief review of compact differential formulations on unstructured grids,” Computers
& Fluids, Vol. 98, 2014, pp. 209–220, 12th USNCCM mini-symposium of High-Order Meth-
ods for Computational Fluid Dynamics - A special issue dedicated to the 80th birthday of
Professor Antony Jameson.

[6] Wang, Z. and Huynh, H., “A review of flux reconstruction or correction procedure via
reconstruction method for the Navier-Stokes equations,” J-Stage Mechanical Engineering
Reviews, Vol. 3, 2016.

[7] Huynh, H., “A Flux Reconstruction Approach to High-Order Schemes Including Discon-
tinuous Galerkin Methods,” 18th AIAA Computational Fluid Dynamics Conference, No.
2007-4079, 2007.

[8] Huynh, H., “A Reconstruction Approach to High-Order Schemes Including Discontinuous
Galerkin for Diffusion,” 47th AIAA Aerospace Sciences Meeting , No. 2009-403, 2009.

[9] Wang, Z. and Gao, H., “A unifying lifting collocation penalty formulation including the
discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed
grids,” Journal of Computational Physics, Vol. 228, No. 21, 2009, pp. 8161 – 8186.

29

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

[10] NVIDIA, “CUDA Programming Guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide, June 2018.

[11] Khronos Group, “OpenCL 1.2 Specification,” https://www.khronos.org/registry/
OpenCL/specs/opencl-1.2.pdf, November 2011.

[12] Klöckner, A., Warburton, T., Bridge, J., and Hesthaven, J., “Nodal discontinuous Galerkin
methods on graphics processors,” Journal of Computational Physics, Vol. 228, No. 21, 2009,
pp. 7863 – 7882.

[13] Castonguay, P., Williams, D., Vincent, P., Lopez, M., and Jameson, A., “On the Develop-
ment of a High-Order, Multi-GPU Enabled, Compressible Viscous Flow Solver for Mixed
Unstructured Grids,” 20th AIAA Computational Fluid Dynamics Conference, No. 2011-
3229, 2011.

[14] Siebenborn, M., Schulz, V., and Schmidt, S., “A curved-element unstructured discontinu-
ous Galerkin method on GPUs for the Euler equations,” Computing and Visualization in
Science, Vol. 15, No. 2, April 2012, pp. 61–73.

[15] López-Morales, M., Bull, J., Crabill, J., Economon, T., Manosalvas, D., Romero, J., She-
shadri, A., II, J. W., Williams, D., Palacios, F., and Jameson, A., “Verification and Vali-
dation of HiFiLES: a High-Order LES unstructured solver on multi-GPU platforms,” 32nd
AIAA Applied Aerodynamics Conference, No. 2014-3168, 2014.

[16] Witherden, F., Farrington, A., and Vincent, P., “PyFR: An open source framework for
solving advection - diffusion type problems on streaming architectures using the flux recon-
struction approach,” Computer Physics Communications, Vol. 185, No. 11, 2014, pp. 3028
– 3040.

[17] Chan, J., Wang, Z., Modave, A., Remacle, J., and Warburton, T., “GPU-accelerated discon-
tinuous Galerkin methods on hybrid meshes,” Journal of Computational Physics, Vol. 318,
No. 1, August 2016, pp. 142–168.

[18] Romero, J., Crabill, J., Watkins, J., Witherden, F., and Jameson, A., “ZEFR: A GPU-
accelerated high-order solver for compressible viscous flows using the flux reconstruction
method,” Computer Physics Communications, Vol. 250, 2020, pp. 107169.

[19] de Araujo Jorge Filho, E. J. and Wang, Z. J., “Efficient Implementation of the FR/CPR
Method on GPU Clusters for Industrial Large Eddy Simulation,” AIAA AVIATION 2020
FORUM , 2020.

[20] Corral, R., Gisbert, F., and Pueblas, J., “Execution of a parallel edge-based Navier-Stokes
solver on commodity graphics processor units,” International Journal of Computational
Fluid Dynamics, Vol. 31, No. 2, 2017, pp. 93–108.

[21] Haga, T., Gao, H., and Wang, Z., “A High-Order Unifying Discontinuous Formulation
for the Navier-Stokes equations on 3D Mixed Grids,” Mathematical Modelling of Natural
Phenomena, Vol. 6, No. 3, 2011, pp. 28–56.

30

https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

[22] Warburton, T., “An explicit construction of interpolation nodes on the simplex,” Journal of
Engineering Mathematics, Vol. 56, No. 3, 2006, pp. 247–262.

[23] Hesthaven, J. S. and Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications, Springer Publishing Company, Incorporated, 1st ed., 2007.

[24] Chan, J. and Warburton, T., “A Comparison of High-Order Interpolation Nodes for the
Pyramid,” SIAM Journal of Scientific Computing , Vol. 37, No. 5, 2015, pp. A2151–A2170.

[25] Roe, P., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal
of Computational Physics, Vol. 43, 1981, pp. 357–372.

[26] Kennedy, C. A. and Gruber, A., “Reduced aliasing formulations of the convective terms
within the Navier-Stokes equations for a compressible fluid,” Journal of Computational
Physics, Vol. 227, No. 3, 2008, pp. 1676–1700.

[27] Pirozzoli, S., “Generalized conservative approximations of split convective derivative opera-
tors,” Journal of Computational Physics, Vol. 229, No. 19, 2010, pp. 7180–7190.

[28] Coppola, G., Capuano, F., Pirozzoli, S., and de Luca, L., “Numerically stable formulations
of convective terms for turbulent compressible flows,” Journal of Computational Physics,
Vol. 382, April 2019, pp. 86–104.

[29] Lodato, G., Domingo, P., and Vervisch, L., “Three-dimensional boundary conditions for
direct and large-eddy simulation of compressible viscous flows,” Journal of Computational
Physics, Vol. 227, No. 10, 2008, pp. 5105–5143.

[30] Odier, N., Poinsot, T., Duchaine, F., Gicquel, L., and Moreau, S., “Inlet and Outlet Charac-
teristics Boundary Conditions for Large Eddy Simulations of Turbomachinery,” Turbo Expo:
Power for Land, Sea and Air , No. GT2019-90747, 2019.

[31] Shur, M. L., Spalart, P. R., Strelets, M. K., and Travin, A. K., “Synthetic Turbulence
Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic
Problems,” Flow, Turbulence and Combustion, Vol. 93, 2014, pp. 63–92.

[32] Goldstein, D., Handler, R., and Sirovich, L., “Modeling a no-slip flow boundary with an
external force field,” Journal of computational physics, Vol. 105, No. 2, 1993, pp. 354–366.

[33] Kahan, W., “Further remarks on reducing truncation errors,” Communications of the ACM ,
Vol. 8, No. 1, 1965.

[34] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable Parallel Programming with
CUDA,” Queue, Vol. 6, No. 2, March 2008, pp. 40–53.

[35] Deakin, T., Price, J., Martineau, M., and McIntosh-Smith, S., “GPU-STREAM v2.0: Bench-
marking the achievable memory bandwidth of many-core processors across diverse parallel
programming models,” ISC High Performance 2016 International Workshops, ExaComm, E-
MuCoCoS, HPC-IODC, IXPUG, IWOPH, P3MA, VHPC, WOPSSS , edited by M. Taufer,
B. Mohr, and J. M. Kunkel, Springer, Frankfurt, Germany, June 2016, pp. 489–507.

31

Fernando Gisbert, Adrián Sotillo, Jesús Pueblas

[36] NVIDIA, “cuBLAS,” https://docs.nvidia.com/cuda/cublas, June 2018.

[37] Rupp, K., Tillet, P., Rudolf, F., Weinbub, J., Morhammer, A., Grasser, T., JÃŒngel, A.,
and Selberherr, S., “ViennaCL—Linear Algebra Library for Multi- and Many-Core Archi-
tectures,” SIAM Journal on Scientific Computing , Vol. 38, No. 5, 2016, pp. S412–S439.

[38] Karypis, G., Schloegel, K., and Kumar, V., “ParMeTiS, Parallel Graph Partitioning and
Sparse Matrix Ordering Library, version 3.1,” August 15 2003.

[39] Gisbert, F., Bolinches-Gisbert, M., Pueblas, J., and Corral, R., “Efficient implementation
of Flux Reconstruction schemes for the simulation of compressible viscous flows on Graph-
ics Processing Unigs,” Tenth International Conference on Computational Fluid Dynamics
(ICCFD10), No. ICCFD10-307, Barcelona, Spain, July 2018.

[40] del Álamo, J. C. and Jiménez, J., “Spectra of the very large anisotropic scales in turbulent
channels,” Physics of Fluids, Vol. 15, No. 6, 2003, pp. L41–L44.

[41] del Álamo, J. C., Jiménez, J., Zandonade, P., and Moser, R. D., “Scaling of the energy
spectra of turbulent channels,” Journal of Fluid Mechanics, Vol. 500, 2004, pp. 135–144.

[42] Hoyas, S. and Jiménez, J., “Scaling of the velocity fluctuations in turbulent channels up to
Reτ = 2003,” Physics of Fluids, Vol. 18, No. 1, 2006, pp. 011702.

[43] Lozano-Durán, A. and Jiménez, J., “Effect of the computational domain on direct simula-
tions of turbulent channels up to Reτ = 4200,” Physics of Fluids, 2014.

[44] Ghiasi, Z., Li, D., Komperda, J., and Mashayek, F., “Near-wall resolution requirement for
direct numerical simulation of turbulent flow using multidomain Chebyshev grid,” Interna-
tional Journal of Heat and Mass Transfer , Vol. 126, 2018, pp. 746–760.

[45] Bolinches-Gisbert, M., Corral, R., Cadrecha, D., and Gisbert, F., “Prediction of Reynolds
number effects on Low Pressure Turbines using a high order ILES method,” Proceedings of
the ASME2019 Turbo Expo, No. GT2019-91346, 2019.

[46] Bolinches-Gisbert, M., Robles, D. C., Corral, R., and Gisbert, F., “Numerical and Exper-
imental Investigation of the Reynolds Number and Reduced Frequency Effects on Low-
Pressure Turbine Airfoils,” Journal of Turbomachinery , Vol. 143, February 2021.

[47] Coull, J. D. and Hodson, H. P., “Unsteady boundary-layer transition in low-pressure tur-
bines,” Journal of Fluid Mechanics, Vol. 681, 2011, pp. 370–410.

[48] Bolinches-Gisbert, M., Robles, D. C., Corral, R., and Gisbert, F., “Prediction of Reynolds
Number Effects on Low-Pressure Turbines Using a High-Order ILES Method,” Journal of
Turbomachinery , Vol. 142, No. 3, 02 2020, 031002.

32

https://docs.nvidia.com/cuda/cublas

	Introduction
	Problem formulation
	The flux reconstruction spatial discretisation
	Boundary conditions and time integration

	Implementation of the operators
	Data arrangement for maximum achievable bandwidth
	Evaluation of the discontinuous derivatives
	Evaluation of derivative corrections

	Parallel use of multiple GPUs
	Benchmarking
	Single GPU execution profiling
	Multiple GPU execution profiling

	Validation
	Turbulent channel
	LPT airfoil with upstream wakes

	Conclusions

