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Abstract. Aortic flows with thrombus formation represent a challenging application of fluid-
structure interaction (FSI) in biomechanics where blood flow, thrombus, and vessel wall are
strongly coupled. Considering patient-specific FSI and thrombus formation on identical time
scales remains unfeasible. To resolve this issue, we propose incorporating the dynamics-based
thrombus formation model of Menichini et al. [1] into our recently presented semi-implicit, split-
step partitioned FSI scheme for non-Newtonian fluids [2, 3]. Herein, we formulate the basic
split-step scheme and present the first promising results, merely coupling the fluid pressure and
structure displacement iteratively at each time step.

1 INTRODUCTION

Blood clotting and thrombus formation play a key role in many cardiovascular diseases, dras-
tically impacting surgical planning and options, risk factors, and possible long-term treatment.
Thrombosis significantly impacts the flow field and is thus a major design criterion for, e.g.,
blood pumps or implants such as stents or artificial valves. In such scenarios, vast changes in
the affected flow regions are triggered, but can only be captured considering the tight coupling of
fluid flow, thrombus build-up and tissue deformation within a fluid–structure interaction (FSI)
framework. However, for modern computational methods to aid clinical decision-making or
highlight risks associated with individual interventions, efficient algorithms are needed. Com-
putational modeling of thrombus formation has remained challenging in this regard despite the
advances in computational biomechanics during the past decade, since it combines demanding
fluid flow or FSI problems with complex biochemical systems.

To render such problems feasible, we combine (i) a split-step method for incompressible
non-Newtonian FSI [2], which was extended by interface quasi-Newton acceleration, suitable
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Robin interface conditions, and other models and numerical aspects in [3] with (ii) the thrombus
formation model of Menichini et al. [1]. A semi-implicit FSI scheme allows coupling only the bulk
elastic structure’s displacement and the fluid pressure iteratively, while the equations governing
constituent transport and all other fields are solved only once per time step. Herein, the first
results in a clinically relevant setting are presented to highlight the efficiency and applicability
of the framework. Of particular interest are the coupling to a dynamics-based thrombus model,
decoupling the FSI time scale and accelerating the thrombus growth scale based on averaged
haemodynamic quantities. The considered fluid, solid and thrombus formation models can be
seen as placeholders, which can be replaced by similar approaches.

2 PROBLEM STATEMENT

The instationary domain Ωt at time t ∈ (0, T ] is composed of subdomains Ωt
f and Ωt

s denoting

the volume occupied by the fluid and structure phases, where Ωt = Ωt
f ∪ Ωt

s. Adopting an
Arbitrary Lagrangian–Eulerian (ALE) method, the fluid domain at current time t is considered,
based on the corresponding entities in the reference configuration, Ω̂ = Ω̂f ∪ Ω̂s. The fluid–
structure interface is denoted by Σt := ∂Ωt

f ∩ ∂Ωt
s in the spatial configuration, while in the

reference frame, we have Σ̂ := ∂Ω̂f ∩∂Ω̂s. In both the fluid and structure subdomains, mappings
from the reference to the spatial configuration are constructed,

At : Ω̂f → Ωt
f , At := x̂+ df (x̂, t), F f := I + ∇̂df , Jf := detF f , (1)

Lt : Ω̂s → Ωt
s, Lt := x̂+ ds(x̂, t), F s := I + ∇̂ds, Js := detF s, (2)

in terms of the fluid and structure displacements df and ds. Further, we introduce the defor-
mation gradients F f and F s and their determinants Jf and Js, emphasising byˆthe connection

to Ω̂ whenever necessary. On the interface, there holds

ds = df , dtds = uf , P n̂s = JfσfF
−>
f n̂s on Σ̂, (3)

i.e., continuity of displacements, velocities, and tractions hold. Here, dtds denotes the solid’s
material velocity, P the first Piola–Kirchhoff stress tensor, σf the fluid’s Cauchy stress tensor

and n̂s the unit outward normal of Ω̂s. Following the ALE approach, smoothly extending df
from given ds on Σ̂ into Ω̂f is crucial. So, we consider an auxiliary problem,

−∇̂ ·
[
λm(∇̂ · df )I + 2µm∇̂Sdf

]
= 0 in Ω̂f , (4)

df = ds on Σ̂, (5)

df = 0 on ∂Ω̂f \ Σ̂, (6)

with the symmetric gradient 2∇̂S := ∇̂> + ∇̂, describing the deformation of a linear elastic
continuum. In (4), the Lamé parameters λm and µm are locally modified depending on the
element size he and Jacobian Jf (see, e.g., [5]). Then, At, F f and Jf are given by (1), while in

2



R. Schussnig, S. Dreymann, A. Jafarinia, T. Hochrainer and T.P. Fries

the solid domain Ω̂s, the material displacement is governed by

ρsd
2
tds − ∇̂ · P = bs in Ω̂s, (7)

ηRs dtdf + P n̂s = ηRs uf + JfσfF
−>
f n̂s on Σ̂, (8)

P n̂s = −keds − cedtds on Γ̂R,s, (9)

ds = 0 on Γ̂D,s, (10)

using a total Lagrangian approach and given suitable initial conditions for dtds and ds. Here, ρs
denotes the structure’s density, d2

tds the material acceleration, bs the body force, (8) is a Robin
interface condition with parameter ηRs , incorporating the fluid’s velocity uf and (9) accounts
for viscoelastic support with coefficients ke and ce. Robin interface conditions as (8) have been
shown to accelerate and stabilise the fluid–structure coupling also in cases with high added-mass
effect [6]. The structure’s constitutive law is for simplicity chosen as

P := λs(∇̂ · ds)I + 2µs∇̂Sds, (11)

that is, linear elasticity. This simplification is in general too strict, as one might want to consider
for nonlinear material behaviour, incompressibility and/or anisotropic fiber reinforcement [3].
However, we can justify its use within this contribution, given that the focus lies on the FSI
coupling algorithm, including thrombus formation, and in a partitioned setup, (11) is easily
replaced, as (3) and (8) account for large strains.

For a generalised Newtonian fluid, the Cauchy stress σf is given by

σf := −pfI + 2µf∇Suf , (12)

where pf denotes the fluid’s pressure, and the dynamic viscosity µf depends on the shear rate
γ̇(∇Suf ). The shear-thinning behaviour of blood is captured via Carreau’s law,

η (γ̇) = η∞ + (η0 − η∞)
[
1 + (λf γ̇)2

] ξ−1
2
, with γ̇ :=

√
1/2∇Suf : ∇Suf , (13)

with suitable upper and lower viscosity limits η0 and η∞ and fitting parameters λf and ξ.
The classical ALE form of the Navier–Stokes equations for incompressible flows of generalised

Newtonian fluids on the moving domain Ωt
f can then be reformulated as

bf = ρf [∂tuf |x̃ +∇uf (uf − um)]−∇ · σf in Ωtf , (14)

−∆pf = ∇ ·
[
ρf∇uf (uf − um)− 2∇Suf∇µf − bf

]
+ [∇× (∇× uf )] · ∇µf in Ωtf , (15)

uf = dtds on Σt, (16)

uf = gf on ΓtD,f , (17)

σfnf = tf on ΓtN,f , (18)

pf = −µf∇ · uf + nf ·
(
2µf∇Sufnf − tf

)
on ΓtN,f , (19)

nf · ∇pf = nf ·
[
bf + 2∇Suf∇µf − µf∇× (∇× uf )− ρf∇uf (uf − um)− ρf∂tgf |x̃

]
on ΓtD,f , (20)

nf · ∇pf = nf ·
[
bf + 2∇Suf∇µf − µf∇× (∇× uf )− ρf∇uf (uf − um)− ρfd2

tds
]

on Σt, (21)
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where the interested reader is referred to [2, 4] for further details. Herein, bf denotes the body
force, ρf the fluid’s density, ∂tuf |x̃ the ALE time derivative, um the mesh velocity um := ∂tdf |x̃.
Note that all spatial derivatives are taken with respect to x and we consider the current domain
Ωt
f , while ∂t |x̃ uses data corresponding to grid points of the moving mesh.

The system (14)–(21) consists of the standard momentum balance equation (14), a pressure
Poisson equation (PPE) replacing the divergence-free constraint by (15), and is equipped with
fully consistent boundary conditions for both the velocity and pressure (16)–(21). Starting from
this system, efficient semi-implicit schemes can be derived, considering for pure flow problems,
the PPE and momentum balance equations only need to be solved once per time step, while in
the FSI setting, this choice allows employing efficient and added-mass stable coupling schemes,
merely coupling the fluid pressure and structure displacement iteratively, see Sec. 3.

We assume suitable initial conditions given for all unknowns including pf , which is trivial
starting from the quiescent state, uf = 0, and using zero body force, bf = 0, or alternatively
construct µf and pf based on a given velocity field uf by projecting the rheological law (12)
and solving the PPE (15) before starting the split-step scheme.

Even though the system (14)–(21) inherently enforces ∇ · uf , i.e., incompressibility without
any modification, mass conservation is further improved by so-called divergence damping [4].
Divergence damping is rooted in a Helmholtz-Leray decomposition uf := ǔf +∇ψ, constructing
a weakly divergence-free velocity field via

−∆ψ = −∇ · uf in Ωt
f , (22)

nf · ∇ψ = 0 on ΓtD,f ∪ Σt, (23)

ψ = 0 on ΓtN,f , (24)

but considering the auxiliary variable ψ on the past time step’s velocities only. This way, velocity
boundary conditions are preserved at tn+1, an additional velocity projection step is circumvented
and the auxiliary Poisson problem (22)–(24) is only solved once per time step given uf .

Lastly, let us briefly introduce the thrombus formation model by Menichini et al. [1]. One of
the main ingredients of the thrombus formation model is the particle residence time τ , which is
governed by a convection–diffusion–reaction equation,

∂tτ |x̃ + (uf − um) · ∇τ −Dτ∆τ = 1 in Ωt
f , (25)

τ = 0 on ΓtD,f , (26)

nf · ∇τ = 0 on ∂Ωt
f \ ΓtD,f , (27)

and zero initial condition in the whole domain, i.e., τ = 0 in Ωt
f . The self-diffusivity of blood is

Dτ = 1.14×10−14 m2/s, such that the convective and reactive terms dominate, possibly triggering
spurious oscillations when employing a finite element method as discussed in Sec. 3.

Within the thrombus model, time-averaged haemodynamics are considered via mean values
over the previous cardiac cycle i of length Tp from ti−1

p := (i− 1)Tp to tip := i Tp of the residence
time τ , shear rate γ̇ and shear stress vector s := Sn− [(Sn) · n]n as

τ :=
1

Tp max{τ |t=tip}

∫ tip

ti−1
p

τ |x̃ dt, γ :=
1

Tp

∫ tip

ti−1
p

γ̇|x̃ dt, s :=
1

Tp

∫ tip

ti−1
p

s|x̃ dt, (28)
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which are variable fields in Ωt
f and on ∂Ωt

f , respectively, to be used in the following cardiac
cycle. These quantities are then used to identify regions of high residence time and low shear,
favouring coagulation and thrombus build-up. Based on the residence time, the concentration
of activated and resting platelets, ca and cr, is determined solving

∂tca|x̃ + (uf − um) · ∇ca −Dp∆ca = (α1ca + α2τ) cr in Ωt
f , (29)

∂tcr|x̃ + (uf − um) · ∇cr −Dp∆cr = (α3ca + α4τ) cr in Ωt
f , (30)

ca = cr = 0 on ΓtD,f , (31)

n · ∇ca = n · ∇cr = 0 on ∂Ωt
f \ ΓtD,f , (32)

with a uniform initial condition ca = cr = 1 in Ωt
f at t = 0. The enhanced Brownian diffusivity

is Dp = 1.6 (1 + γ̇) × 10−13 m2/s and the coefficients are (α1, α2, α3, α4) = (3, 10, 0.15, 0.5) 1/s.
Further, introducing the scaled quantities

c̃b :=
c2
b

c2
b + 4× 108

, γ̃ :=
γ2

γ2 + 250
, c̃c :=

c2
c

c2
c + 108

, τ̃ :=
τ2

τ2 + 0.81
, (33)

write the system governing the coagulant cc and bound platelets cb concentrations as

∂tcc|x̃ −Dc∆cc = kcc̃bγ̃ in Ωt
f (34)

∂tcb|x̃ = kbc̃cτ̃ γ̃ ca in Ωt
f , (35)

cc = 0 on ∂Ωt
f \ Γtc. (36)

On Γtc ⊂ Σt, a conditional Neumann term for the coagulant concentration cc is enforced,

n · ∇cc = qc :=

{
kw if ||s|| < 0.2 Pa ∧ cb < 2× 105 nmol/m3

0 otherwise
on Γtc, (37)

such that the coagulant concentration is increased on Γtc under low wall shear stress conditions
combined with a low concentration of bound platelets. The diffusion and coupling coefficients
in (34)–(37) are given as Dc = 1.6 γ̃ × 10−8 m2/s and (kb, kc, kw) = (1, 2, 0.02)× 106 nmol/m3.

Having introduced all the thrombus constituents and the necessary auxiliary flow quantities,
the modification to the Navier–Stokes equations and hence the equivalent system in (14)–(21)
is small: it only consists of modifying the volumetric source term bf ← bf − kc̃buf , where
k = 107 × kg/m3s inhibits fluid flow in regions of high bound platelet concentration. In fact, one
might exchange the flow solver by one’s favourite choice, merely adapting the source term and
considering the additional convection–diffusion–reaction equations modeling thrombus growth.
In the following, however, the modular nature of split-step scheme will be exploited by thoughtful
use of extrapolation/linearisation, deriving an added-mass stable FSI scheme.

3 DISCRETISATION

We decompose the interval (0, T ] into Nt time steps of length ∆tn = tn+1− tn, n = 0, . . . , Nt

and employ the Chung–Hulbert-α time integrator [7] for the structure, yielding

ρs

(
α′md̈

n+1
s + αmd̈

n
s

)
− α′f∇̂ · P

(
dn+1
s

)
− αf∇̂ · P (dns ) = α′fb

n+1
s + αfb

n
s in Ω̂s, (38)
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where α′m = 1 − αm and α′f = 1 − αf and a generalised trapezoidal rule is applied to the

stress–divergence terms. The structure’s acceleration d̈s and velocity ḋs are given by

d̈
n+1

s =
1

β∆t2
(
dn+1
s − dns

)
− 1

β∆t
ḋ
n

s +

(
1− 1

2β

)
d̈
n

s , (39)

ḋ
n+1

s =
γ

β∆t

(
dn+1
s − dns

)
−
(

1− γ

β

)
ḋ
n

s + ∆t

(
1− γ

2β

)
d̈
n

s , (40)

with γ = 1
2 − αm + αf , β = 1

4 (1− αm + αf)
2, αf := 2ρ∞−1

1+ρ∞
and αm := ρ∞

1+ρ∞
, depending on the

spectral radius in the high frequency limit ρ∞.
For the fluid and thrombus subproblems, we use backward differentiation formulae (BDF) of

order m, which gives, e.g., for the residence time τ and fluid velocity uf

∂tτ |x̃ ≈
m∑
j=0

αmj τ
n+1−j , ∂tuf |x̃ ≈ α

m
0 u

n+1
f +

m−1∑
j=0

αmj+1

(
un−jf −∇ψn−j

)
, (41)

which are to be understood in an ALE sense and where ∂tuf |x̃ includes divergence damping
terms on the past time step’s solutions via the auxiliary variable ψ.

A key aspect of the proposed split-step scheme is the linearisation and decoupling of the
fluid’s velocity and pressure, which allows to recover them independently. For this reason,
extrapolations of the same order m are introduced as

pn+1
f ≈ p?f =

m∑
j=1

βmj pf , un+1
f ≈ u?f =

m∑
j=1

βmj uf , (42)

and likewise for all other involved variables. The coefficients αmj and βmj for BDF time integration
and extrapolation of order m = 1 and m = 2 are given in Tab. 1.

Table 1: Coefficients for BDF schemes, αmj , and extrapolation, βmj .

m 1 1 2 2 2

j 0 1 0 1 2

αmj
1

∆tn − 1
∆tn

2∆tn+∆tn−1

∆tn(∆tn+∆tn−1)
−∆tn+∆tn−1

∆tn∆tn−1
∆tn

∆tn−1(∆tn+∆tn−1)

βmj × 1 × 1 + ∆tn

∆tn−1
∆tn

∆tn−1

Discretisation in space is carried out employing standard, C0-continuous Lagrangian finite
elements were suitable weak forms of all the involved balance equations are constructed fol-
lowing [2, 4], allowing for equal-order interpolation of velocity and pressure. The PPE-based
split-step scheme circumvents the inf-sup condition such that first-order finite element spaces
can be employed to discretise the weak forms.

The weak formulation of the pseudo elasticity problem (4)–(6) at the center of the ALE mesh
update step, reads: Find dn+1

f ∈ [H1(Ω̂f )]d, such that dn+1
f |Σ̂ = d?s and dn+1

f |∂Ω̂f\Σ̂ = 0 and〈
∇̂ϕ, λm(∇̂ · dn+1

f )I + 2µm∇̂Sdn+1
f

〉
Ω̂f

= 0 ∀ϕ ∈ [H1(Ω̂f )]d, with ϕ|∂Ω̂f
= 0, (43)
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which can then be used to update um = ∂tdf |x̃ via (41). Similarly, a weak form corresponding to

the structure’s momentum balance equation is: Find dk+1
s ∈ [H1(Ω̂s)]

d with dk+1
s |Γ̂D,s = gn+1

s ,

such that for all ϕ ∈ [H1(Ω̂s)]
d with ϕ|Γ̂D,s = 0, there holds:

ρs

〈
ϕ, α′md̈

n+1
s + αmd̈

n
s

〉
Ω̂s

+
〈
∇̂ϕ, α′fP (dk+1

s ) + αfP (dns )
〉

Ω̂s

= αf 〈ϕ,P (dns )n̂s〉Γ̂R,s∪Σ̂ − α
′
f

〈
ϕ, ked

k+1
s + ceḋ

n+1
s

〉
Γ̂R,s

+
〈
ϕ, α′fb

n+1
s + αfb

n
s

〉
Ω̂s

+ α′f

〈
ϕ, ηRs

(
u?f − ḋ

n+1
s

)
+ Jfσf

(
u?f , p

k+1
f , µn+1

f

)
F−>f n̂s

〉
Σ̂
, (44)

where d̈
n+1
s and ḋ

n+1
s are evaluated with the last iterate dks in, e.g., Newton’s method.

Focusing on the subproblems connected to the flow problem, we solve for the projection
variable ψn+1 ∈ H1(Ωt

f ) given un+1
f , such that ψn+1|ΓtN,f = 0, and

〈
∇ϕ,∇ψn+1

〉
Ωtf

= −
〈
ϕ,∇ · un+1

f

〉
Ωtf

∀ϕ ∈ H1(Ωt
f ), ϕ|ΓtN,f = 0, (45)

to be used as ψn in the next time step for divergence damping. For generalised Newtonian fluids,
the dynamic viscosity µn+1

f ∈ H1(Ωt
f ) is recovered from u?f using an L2-projection of (12), i.e.,〈

ϕ, µn+1
f

〉
Ωtf

=
〈
ϕ, η

(
γ̇(∇u?f )

)〉
Ωtf

∀ϕ ∈ L2(Ωt
f ). (46)

To compute the pressure, we first construct continuous boundary data using the auxiliary vari-
able ζ, projecting the Dirichlet condition (19) with given u?f and µn+1

f via

ζn+1 = −µn+1
f ∇ · u?f + nf ·

(
2µn+1

f ∇Su?fnf − tn+1
f

)
on ΓtN,f , (47)

and then solve for the pressure pk+1
f ∈ H1(Ωt

f ), such that pk+1
f |ΓtN,f = ζn+1 and〈

∇ϕ,∇pk+1
f

〉
Ωt

f

=
〈
∇ϕ, bn+1

f − kc̃?bu?f + 2
(
∇u?f

)>∇µn+1
f − ρf∇u?f

(
u?f − um

)〉
Ωt

f

−
m∑
j=0

〈
ϕnf , ρfα

m
j g

n+1−j
f

〉
Γt
D,f

−
〈
ϕnf , ρf d̈

n+1

s

〉
Σt

+
〈
nf ×∇ϕ, µn+1

f ∇× u?f
〉

Σt∪Γt
D,f

(48)

holds for all ϕ ∈ H1(Ωt
f ), where ϕ|ΓtN,f = 0 and d̈

n+1
s is evaluated using the last computed

iterate dks in (39). Also, note that the reaction term stemming from the thrombus model is
treated explicitly. Then, the fluid momentum step consists of finding un+1

f ∈ [H1(Ωt
f )]d with

un+1
f = gn+1

f on ΓtD,f , un+1
f = ḋ

n+1
s on Σt, such that

ρf
〈
ϕ, αmo un+1

f +∇un+1
f

(
u?f − um

)〉
Ωt

f

+
〈
∇ϕ, 2µn+1

f ∇Sun+1
f

〉
Ωt

f

+
〈
ϕ, kc̃?bu

n+1
f

〉
Ωt

f

=
〈
∇ϕ, pn+1

f I
〉

Ωt
f

− ρf
m−1∑
j=0

αmj+1

〈
ϕ,un−jf −∇ψn−j

〉
Ωt

f

+
〈
ϕ, tn+1

f

〉
Γt
N,f

+
〈
ϕ, bn+1

f

〉
Ω̂f
, (49)
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holds for all ϕ ∈ [H1(Ωt
f )]d, with ϕ = 0 on ΓtD,f∪Σt, where the auxiliary projection variable ψ is

considered only for the past time steps’ velocities and the thrombus reaction term is considered
semi-implicitly. For details on the derivation of (43)–(49) and the corresponding reasoning
behind, the interested reader is once again referred to [2, 3].

The last ingredients remaining to be specified are the weak forms corresponding to the throm-
bus model. The residence time depends on the fluid and mesh velocities only, which we sum-
marise in the convective velocity cn+1 := un+1

f −un+1
m for convenience. Then, the problem is to

find τn+1 ∈ H1(Ωt
f ), such that τ |ΓtD,f = 0 and

〈
ϕ, αm0 τ

n+1 + cn+1 · ∇τn+1
〉

Ωt
f

+Dτ

〈
∇ϕ,∇τn+1

〉
Ωt

f

= 〈ϕ, 1〉Ωt
f
−
m−1∑
j=0

〈
ϕ, αmj+1τ

n−j〉
Ωt

f

(50)

holds for all ϕ ∈ H1(Ωt
f ) with ϕ|ΓtD,f = 0. The next step within the thrombus formation

framework consists of solving for the activated platelets concentration, ca ∈ H1(Ωt
f ), and resting

platelets concentration, cr ∈ H1(Ωt
f ), with ca = cr = 0 on ΓtD,f , such that there holds

〈
ϕ, αm0 c

n+1
a + cn+1 · ∇cn+1

a

〉
Ωt

f
+
〈
∇ϕ,Dn+1

p ∇cn+1
a

〉
Ωt

f
= 〈ϕ, (α1c

?
a + α2τ) c?r〉Ωt

f
−
m−1∑
j=0

〈
ϕ, αmj+1c

n−j
a

〉
Ωt

f

, (51)

〈
ϕ, αm0 c

n+1
r + cn+1 · ∇cn+1

r

〉
Ωt

f
+
〈
∇ϕ,Dn+1

p ∇cn+1
r

〉
Ωt

f
= 〈ϕ, (α3c

?
a + α4τ) c?r〉Ωt

f
−
m−1∑
j=0

〈
ϕ, αmj+1c

n−j
r

〉
Ωt

f

, (52)

∀ϕ ∈ H1(Ωt
f ) with ϕ|ΓtD,f = 0, where Dn+1

p is evaluated using un+1
f and τ refers to the past

cardiac cycle’s time-averaged residence time. Note here also, that these weak forms are linearised
and decoupled counterparts of (29)–(32), which can be solved in any desired order.

Lastly, the concentrations of coagulant, cc ∈ H1(Ω) with cc|ΓtD,f = 0 and bound platelets,

cb ∈ H1(Ω) are sought, such that ∀ϕ ∈ H1(Ωt
f ) with ϕ|ΓtD,f = 0, there holds

〈
ϕ, αm0 c

n+1
c

〉
Ωt

f
+
〈
∇ϕ,Dn+1

c ∇cn+1
c

〉
Ωt

f
= 〈ϕ, kcc̃?b γ̃〉Ωt

f
−
m−1∑
j=0

〈
ϕ, αmj+1c

n−j
c

〉
Ωt

f

+ 〈ϕ, qc〉Γt
c
, (53)

cn+1
b = kbc̃

?
c τ̃ γ̃c

n+1
a −

m−1∑
j=0

αmj+1c
n−j
b , (54)

where Dn+1
c is evaluated using un+1

f and the scaled quantities τ̃ and γ̃ refer to the past cardiac

cycle’s time-averaged residence time and (L2-projected) shear rate. Note, that (53) is a reaction–
diffusion equation followed by (54), a simple time step of an implicit BDF scheme, realised via
vector operations only.

With this, the final scheme consists of the following steps at time step n from tn to tn+1:

1. Extrapolate solution components in time via (42).

2. Based on d?s, update dn+1
f via (43), the fluid domain Ωt

f and the mesh velocity un+1
m .

3. Project µn+1
f by solving (46).

4. Construct continuous boundary data ζn+1 on ΓtN,f (47).

8
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5. Until converged: iterate through the PPE (3), considering the extrapolated bound platelets
concentration c?b in c̃b in an explicit thrombus reaction term, and the solid momentum (44)
steps, accelerating the coupling by an IQN-ILS algorithm (see [3, 8]).

6. Solve the fluid’s momentum balance equation for un+1
f , using the extrapolated bound

platelets concentration c?b in c̃b and a semi-implicit thrombus reaction term.

7. Compute the auxiliary variable ψn+1 via (45) to act on unf in the next time step.

8. Update the residence time τn+1 given the flow field by solving (50).

9. Determine concentrations of activated and resting platelets, cn+1
a and cn+1

r , via (51)–(52).

10. Solve for the coagulant concentration cn+1
c using (53).

11. Perform a simple BDF time step (54) for the bound platelets concentration, based on an
L2-projected, scaled and time-averaged shear rate.

Let us note here, that all (potentially) convection-dominated problems in the semi-implicit
FSI scheme involving thrombus formation, i.e., the fluid’s momentum balance equation (49),
the equations governing the residence time (50) and activated and resting platelets concentra-
tions (51)–(52) are stabilised via residual-based methods [9]. To treat cases of recirculatory flow,
where uf · n < 0 introduces spurious energy over ΓtN,f , backflow stabilisation [10] is added and
the residence time and concentrations are weakly enforced to zero using a penalty approach.

4 NUMERICAL EXAMPLE

The implementation of the presented framework is based on deal.II [11], parallelised through
MPI and makes heavy use of the algebraic multigrid methods provided by Trilinos’ ML pack-
age [12] for preconditioning iterative solvers of all involved linear systems. Moreover, these first
results presented herein are limited to two spatial dimensions because of computational com-
plexity but nonetheless give important insights into the performance of the split-step scheme.

A channel of 10 cm length and inlet radius R = 1 cm with 1 mm thick elastic walls and
a backward-facing flap as depicted in Fig. 1 is considered. Thrombus formation is triggered
by a nonzero flux qc in the coagulant concentration equation (53), where Γtc is defined as the
fluid–structure interface in the region behind the backward-facing flap.

ΓtD,f ΓtN,f
Ω̂f

Ω̂s

Γtc
0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Channel with a backward-facing flap: initial configuration at t = 0 s with fluid domain Ω̂f in

light grey, solid domain Ω̂s in dark grey and solid touching Γtc highlighted in red (left). Ramped periodic
maximum inflow velocity prescribed on the center of the channel’s inlet ΓtD,f (right).

The structure is pinned at the in- and outlet faces, making up Γ̂D,s and viscoelastic support
with ke = 2× 107 N/m3 and ce = 105 Ns/m3 is considered on the top and bottom of the channel.
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Starting from the quiescent state, we ramp up a parabolic inflow profile centered on the left side,
prescribing uf = (1, 0, 0)>uin (1− |y|2/R2), with the maximum inlet velocity shown in Fig. 1. On
the right side of the channel, ΓtN,f , we combine nonzero traction conditions stemming from a
two-element Windkessel model and backflow stabilisation,

tn+1
f = −pc(Qn)nf −

ρf
4
un+1
f (|u?f · nf | − u?f · nf ), (55)

where Qn hints at the volumetric flow rate over ΓtN,f from the previous time step being used. The

Windkessel model features a capacitance of 8×10−8 m4s2/kg, a distal resistance of 15×105 kg/m4s

and a distal pressure of 7.5 kPa. For further details regarding this choice see [2].
The Carreau fluid has a density ρf = 1060 kg/m3 and we set upper and lower viscosity limits

of η0 = 39.13 mPa s and η∞ = 5.13 mPa s, λf = 0.9 s and ξ = 0.32. The linear elastic solid
has a density of ρs = 1200 kg/m3 and the Lamé parameters correspond to a Young’s modulus
of 100 kPa and a Poisson’s ratio of 0.3. The elastic properties selected here are not resembling
arterial tissue, but suffice for this initial study.

For time integration, we employ BDF-2 for the fluid and the second-order accurate CH-α
scheme with ρ∞ = 0 for the structural equations, while the equations governing thrombus
growth are integrated via BDF-1. The time step size ∆tn is adaptively chosen, targeting an
element CFL number of 0.5. Overall, 20 cardiac cycles are considered, i.e., T = 10 s and
thrombus formation is activated from t = Tp = 0.5 s, where the coupling to the FSI problem is
smoothly ramped from t = Tp = 0.5 s to fully active at t = 2Tp = 1 s.

With these settings, the semi-implicit scheme takes ≈ 34 × 103 time steps, and the fluid’s
pressure and the structure’s displacement are solved ≈ 105 times. Thus, the average iteration
count is ≈ 2.95 when reducing the pressure and displacement interface norms by a factor of 104.
Despite the high added-mass effect, adaptive time step selection, and the Windkessel model
being used, the split-step scheme is robust, owing to the combination of IQN-ILS acceleration
and Robin interface conditions with ηRs := ρf/∆tn.

In Fig. 2, the displacement norm ||df || and pressure pf in point A at the tip of the beam are
shown. Rather large displacements are seen, caused by (i) the pressure fluctuations at the outlet
and (ii) the structure’s compressibility. The FSI iteration counts are rather uniform, showing
only a slight decrease towards the end of the considered time interval when the thrombus slowly
reaches its maximum extent.

0 2 4 6 8 10
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0 2 4 6 8 10
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2

4

6

8

10

10
4

Figure 2: Channel with a backward-facing flap: displacement (left) and pressure (middle) in point A at
the tip of the beam and FSI iterations (right) over time.

As expected, the thrombus – the concentration of bound platelets cb – builds up in the region
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below the flap, where low shear rates are present and Γtc is defined. As shown in Fig. 3, the
region occupied by thrombus extends also towards the end of the channel in the wake of the
backward-facing flap until it stagnates due to high shear. Initially, slight oscillations in cb are
seen, caused by a rather coarse spatial resolution employed beneath the flap.

The pressure fluctuations cause a compression of the flap and expansion of the channel, while
the stagnating fluid (low µf due to low γ̇) below the flap suppresses excessive flap motion due
to incompressibility. Moreover, we see a strong impact on the flow field as the concentration of
bound platelets increases – the thrombus reaction term hinders fluid flow, such that in the wake
of the flap where the thrombus builds up, the fluid flow is restricted. Comparing cycles 2 and
17 in Fig. 4, a striking difference in the flow fields is observed.

Figure 3: Concentration of bound platelets cb in Ωtf and displacement norm in Ωts at late diastole in
cycles 2 (t ≈ 0.87 s, left) and 17 (t ≈ 9.30 s, right).

Figure 4: Fluid velocity uf in Ωtf and displacement norm in Ωts at late diastole in cycles 2 (t ≈ 0.87 s,
left) and 17 (t ≈ 9.30 s, right).

5 CONCLUDING REMARKS

We present a semi-implicit FSI scheme incorporating the thrombus formation model by Meni-
chini et al. [1], allowing for the coupled simulation of structural displacements, incompressible
flow of generalised Newtonian fluids, and thrombus constituents in an added-mass stable fashion.
Based on a pressure Poisson equation, the scheme couples merely the fluid pressure and struc-
tural displacements iteratively, while the remaining equations are only solved once per time step.
First promising results in a two-dimensional setting are carried out, showing the applicability of
the method to clinically relevant settings being the focus of ongoing work.
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