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SUMMARY.

A finite element formulation for solving multidimensional phase-change problems is presented. The
formulation considers the temperature as the unique state variable, it is conservative in the weak form sense
and it preserves the moving interface condition. In this work, a consistent Jacobian matrix that ensures
numerical convergence and stability is derived. Also, a comparative analysis with other different phase-change
finite element techniques is performed. Finally, two numerical examples are analyzed in order to show the
performance of the proposed methodology.

1. INTRODUCTION.

Phase-change problems appear frequently in industrial processes and other problems of
technological interest. The problem is highly non-linear due to the moving interface condition
and, therefore, few analytical solutions can be obtained [12l. Numerical solutions employing
finite differences 36 boundary elements (78], or finite elements [®~*%] techniques have
been attempted by many researchers.

Among the finite element procedures two important solution techniques are found: tracking
and fixed-domain methods. The first one typically uses a deforming grid formulation in order
to adapt the mesh to the interface displacements (14-19] Tp this context, the energy interface
equation is treated in a special form. Nevertheless, this method presents many drawbacks,
such as the need of starting solutions for the front position and the difficulty of dealing with
appearing/disappearing phases and multiple or no-smooth interfaces, as it has been reported
in [42].

_Fixed-domain methods are derived from a weak formulation that imﬁhrc‘ictTy contains the
moving interface condition. Within this framework, one option is to use the enthalpy as the
main variable in order to take into account the latent heat effect. Once the nodal enthalpy
vector is obtained for each time step, the nodal temperatures can be computed using the well-
known enthalpy-temperature relationship. All enthalpy-based methods need a regularization
to remove the discontinuity that appears at the phase-change front [20-34. Rolph III and
Bathe [38] and Roose and Storrer [36] use a fictitious heat source method based in the enthalpy
concept. An alternative approach known as the source based method, also derived from the
enthalpy concept, has been used by Reddy et al. (37, Blanchard and Fremond [38 introduce
the freezing index in the energy conservation equation and solve a variational equation with
the help of an homographic approximation which contains an enthalpy regularization. Other
transformation methods have developed by Ichikawa and Kikuchi (39) and Lee et al. (4],



Tamma and Railkar (41l employ the transfinite element technique in combination with the
enthalpy method.

A second approach, exploited by Crivelli, Storti and Idelsohn (42-44] consists in retaining
the temperature as the only state variable. In order to avoid any explicit smoothing, a special
element able to integrate discontinuous functions must be used [42,43,45)

The objective of this paper is to present an alternative temperature-based finite element
formulation. In Section 2 the governing equations for the isothermal (the standard Stefan’s
problem) and non-isothermal cases are presented. The weak form and the finite element
formulation for the generalized phase-change problem are described in Section 3.

In order to achieve convergence and stability of the numerical solution, a new consistent
Jacobian matrix is derived in Section 4.

A comparative analysis with other different techniques is performed in Section 5. Several
crucial aspects of the proposed algorithm are also discussed. Section 6 includes two numerical
examples showing a good agreement between analytical and numerical results obtained with
the proposed methodology.

2. GOVERNING EQUATIONS. .

Let an open bounded domain  C R ™= (1 < ngim < 3) be the reference (initial)
configuration of a non-linear heat conductor B; with particles defined by z € Q, T = 9Q
its smooth boundary and T C IR* be the time interval of analysis (¢ € T). As usual,
0 = QUT. The standard Stefan’s problem (2] consists in finding an absolute temperature
field T : Q@ x T — IRY such that,

Po Z—;— T = —div[g] + po T in: Q, XY and U x 7T, (2.1.a-b)
q=q(=,1) inQxT, (2.2)

0
c:a—‘;1 inQx7T, (2.3)

subject to the boundary conditions,

T=T inTrx7T, (2.4)
¢ -1 =—q— Qeonv mTyx T, (2.5)

the initial condition,
T(z,t)|t=0 = To(z) in Q, (2.6)

and the energy equation at the moving interface I'ye C R naim~1 which separates the solid
and liquid phases (denoted by subscripts s and [ respectively):

g, n,+q -m=p, Lz-n in IpexT and T =Tn. (2.7)



Equation (2.1) is the energy balance derived from the First Law of Thermodynamics
(neglecting mechanical effects and volume changes [4648]) where the dot denotes time
derivative, and the symbol div denotes the divergence operator relative to a Cartesian
reference system. p, :  — IR7 is the density at the reference configuration, w : @ x T —» R
the specific internal energy (per unit mass), 7 : @ X T — IR the specific heat source,
g : QX T — IR "4m the heat flux vector and equation (2.2) represents its constitutive
law. The superposed caret in ¢ serves to distinguish this function from its value. Equation
(2.3) is the standard definition of the specific heat capacity ¢ : @ x T — R™*. It is worth
noting that ¢ may be temperature dependent.

At any time t, Q can be decomposed into two subdomains (2, C R "¢m™ and ; C IR ™dim)
such that z € Q, if T(z,t) < T, (solid phase) and =z € Q; if T(=,t) > Ty, (liquid phase),
with the following properties:

QU =0Q, (2.8.a)
QNYy=0, (2.8.b)
and
QUQGUT, =0, (2.8.¢)
(_2, n Ql = 1_‘Pc , (2.8.d)

where T,, is the melting temperature at the interface I'p. (see Figure 1).

B,

a) b)

Figure 1. Geometric description of a non-linear heat conductor B; for phase-change problems:
a) isothermal case. b) non-isothermal case.

In equation (2.4), I'r C IR ™#=~1 is the part of the boundary where the temperature
T : T7 x T — R™' is prescribed (Dirichlet boundary condition), while in equation (2.5)
(written in standard tensor motation %) T, C R ™&m~1 with unit outward normal
n: 90 — § "¢m~1 s the region where the normal heat flux is applied: a) §: Ty x T — R
is the prescribed normal heat flux and b) ¢eony : I'q X T — IR is the normal heat flux due to



convection-radiation phenomena. For this last term, the standard Newton’s constitutive law
is adopted:

Qeonv = —h (T - Tenu) ) (2.9)

where h : Ty X T — IR7 is the convection-radiation coefficient (temperature dependent) and
Tenv : Qout X T — IRY is the environmental temperatire (defined outside ). In a general
case, Ten, is the temperature at the boundary of another body B;, and equation (2. 9) is the
constitutive law of the medium that separates both bodies.

The boundary condition (2.5) is of mixed type, but becomes of Neumann type when
gconv = 0. As usual, the conditions

f‘T U I_‘q =80 5 (2.10.a)

and

'rnTy, =9, (2.10.b)

are assumed to hold.

In equation (2.7), L is the latent heat released in a freezing problem (or absorbed in
a melting one) with T = T, in Ty, and z(z,t) : Tpc X T — IR ™= js the interface
velocity. Considering only §2,, the outward unit normal to the interface is denoted by
n, : Olp. — S "¢m~1 while ¢, : 8Tpe X T — IR ™¢m js the heat flux vector existing at
points z € T',.. Similar definitions of n; and ¢; are obtained when considering only ;.
Obviously, at a point z € T'p, n; = —n,. Equation (2.7) shows that the heat flux presents a
discontinuity across the moving interface. This fact makes the problem highly non-linear.

For a full description of the problem, an appropriate constitutive law for ¢ (equation (2.3))
is necessary. The well-known Fourier’s law is adopted:

q=4q(z,t)=—E-VT nQx7T, (2.11)

where k£ : 2 X T — IR "d¢im x IR ™¢m js the conductivity second-rank tensor (which may be
temperature dependent) and V(-) = —Q is the gradient operator. As a consequence of the
Second Law of Thermodynamics, this tensor must be positive semidefinite [46].

This path independent way of defining g is equivalent to that used by Simo 7 in terms of
a heat flux potential H : @ X R "4= — IR (depending on the position and the temperature
gradient) that is a smooth convex function for all z € Q such that,

e

q = §(z,t) = —VH(z,VT(z,t)) inQx7T, (2.12)

with
1
H(=z,VT(z,t)) = = VT -k-VT nQAx7T, (2.13)

where V(+) ‘é), (in components, V;(-) = 8T )

When the latent heat is released (or absorbed) in a range of temperatures (7; — T), with
T, and 7} being the solidus and liquidus temperatures respectively, the governing equations
(with the notation described above) are:



Po g—; T = —div[g) + po 7 in: Q,x7T, Qpu XL and Q x T, (2.14.a-b-c)

q = q(z,1) nQx7YT, (2.15)
where in this case the temperature derivative of the sﬁeciﬁc internal energy takes the form:

of(T) 0w .
c+ L 3T — 3T ndxT, (2.16)

subjected to the same boundary and initial conditions described above (equations (2.4), (2.5)
and (2.6)).

Now, at any time £, {2 can be decomposed into three subdomains (2, C IR ™dim,
Qm C R ™im and @ C R ™4m), such that z € Q, if T(z,t) < T, (solid phase),
z € Qn if T, < T(z,t) < T; (mushy phase) and, z € Q; if T(=,t) > T; (liquid phase),
with the property (see Figure 1):

QU u =0, (2.17.a)
Q,N0, N =0, (2.17.b)
QUQUQ =0, (2.17.c)

In equation (2.16) f is defined as:

0 VT < T,
(1) = 0<g¢(T)<1 ;T,<VT<LT (2.18)
1 VT > T;.

The function g(T') may be obtained using a microstructure model Bl. However, from a

macroscopical point of view assumed in this paper, the simplest choice for ¢g(T') is the linear
one with:

IT)=(T-T)/(T-T.) NT<T<T. (2.19)
It can be observed that the latent heat effect appears in Q,,. In Q, and Q,, the classical

definition of ¢ (equation (2.3)) is recovered because the temperature derivative of f is zero in
those regions. Therefore, equations (2.14) can be written as:

af .
po(c +L 8—;) T = —div[g] + po T nmQAxY, (2.20)

or

D € T 4 Po L f = —div[g]+ po T in Qx Y. (2.21)



3. WEAK FORM AND FINITE ELEMENT FORMULATION.

In order to obtain the weak form of this initial boundary value problem, a space V of
admissible test functions is defined as:

Y= {neﬂl(ﬂ) | ﬂIOOTl'rT} ; - (3.1)

where H'(Q) is the standard notation for the Sobolev space 1,
An admissible solution space £ (for fixed time ¢t € T) is given by:

o= {T(z,t) € HY(Q) | T(z,t) = T(=,t) on I‘T}. (3.2)

The integral problem for the isothermal case can be formulated as: find a temperature field
T(z,t) that satisfies the corresponding equations for this case (equations (2.1) to (2.7)), such
that:

~(po ¢ T,n)a, — (div[g],m)a, + (po T, 10, —
—(po ¢ T,m)a, — (div]g],m)a, + {po ™, Ma,+
+(g - n,n)r, + (T, M), + (deonv, M)~
—(¢, - 1e, )T, — (@1 - B1 )Ty + (Po L - 71,1, = 0 Vnevy, (3-3)

with the initial condition:

(T(=,0),7) = (To,m) Vpev, (3.4)

where {.,.)a., (--)ap (- -)r, and {.,.)r,. denotes the standard L,-pairing in Q,, Q;, 0 and
T, respectively (L2(Q) being the Hilbert space of square integrable functions on Q).

Similarly for the non-isothermal case (equation (2.21)), it follows that:

—{po ¢ T'yn)a — {po L f,n)a — (div[g],n)a + (po 7y M)+
+{g - n,n)r, + (T, M1, + (deonv, M)r, =0 Vnev, (3.5)

again, with equation (3.4) as the initial condition.

After some mathematical manipulations, keeping in mind the initial condition, both
isothermal and non-isothermal cases may be summarized as (51-54] -

—{(po ¢ Tyn)a — (Po L foesnda — (div[g],nda + (po ™, M)t
+{g - 7, 7)1, + (T, 1), + {conv, M)y = 0 Vnev, (3.6)

and with f,. = H(T — Tm) being the Heaviside function for the isothermal case, and
fpe = f(T) for the non-isothermal one (see Figure 2). The Heaviside function is defined
as:

0 VT <T,
(3.7)

1 VT > T,



Equations (3.6) and (3.4) describe the generalized phase-change problem in integral form.
A further generalization takes place when two or more phase-changes (7, > 2) occur. For
this case, the term L fpc must be replaced by 3175 L; fPCi (L; and fp,; are the latent heat and
the phase-change function associated with the i-th phase-change, respectively) in equation
(3.6) and subsequents equations derived in this and next Sections. For simplicity in the
notation, the simpler form of equation (3.6) is retained.

a) b)

Figure 2. Phase-change function for: a) isothermal case. b) non-isothermal case.

Different authors [20—45] formulate the general problem starting from equation (2.20) as:

~(po (e + 1 2I22) F, m)a — (divfal,mha + (po ot

+(q - n,7)r, + (T, M1, + (geonv,M)r, = 0 VpeV. (3.8)

It should be noted that in the isothermal case, the temperature derivative of f,. is equal to
8(T — T,) (Dirac function). For numerical reasons to be discussed in Sectien 5, the integral
equation (3.6) (instead of (3.8)) will be used in this and subsequents Sections.

An important advantage that appears when standard mathematical arguments are used
for equation (3.6) is that the local form of the equations for the generalized phase-change
problem can be derived. These are formally identical to the equations corresponding to the
non-isothermal case, but considering f,. instead of f.

To integrate in time equation (3.6), a generalized mid-point rule algorithm can be used (471,
Let [t,t + At] C T (At > 0) be a time subinterval. Assuming that at time ¢ an algorithmic
approximations of the temperature *T'(z) : @ — R" and temperature rate ‘T(z): Q@ - R
are known, the objective is to obtain “+2¢T'(z) and tHALT(2) at time t + At. To this end,
it is necessary to find *™A*T" which verifies equations (2.1) to (2.7) or (2.14) to (2.16) in the
isothermal or non-isothermal phase-change problem respectively, such that:



—(p, tHaBte trabtp Vo (p, L HHEALE Ve — (div[TTAg], n)a + (po trelt, mat

+<t+aAtq . n’n)rq % <t+0At§’ T]>Fq + (t+aA£qunvy77>rq =0 VT] ey ) (3.9)

where
ttalt p ( t+At ‘X)/At , (3.10.a)
ttalty — o Aty L (1 - a) X with a € [0,1], (3.10.b)

X being any variable with superscript ¢ + aAt in equation (3.9). Again, as in equation (3.6),
both isothermal and non-isothermal problems are summarized in equation (3.9).

Choosing @ = 1 (the well-known Euler backward method), inconditional stability is
achieved [47:49],

In the context of the finite element technique [495%], the discrete problem can be obtained
via a spatial Galerkin projection of the continuum problem into a finite dimensional subspace
#Y C V of admissible C° continuous shape functions defined as:

hv:{NEHl(Q)INIOOTlI‘T}. (3.11)

Consequently, an admissible "algorithmic” solution space £ C *L (for fixed time ¢t € T)
is given by:

L= { tT(z) € HY(Q) | 4T(z) = 'T(z) on I‘T} , (3.12)

also consisting of typical C® functions [°%).

Then, the discretized problem is written as:

(po FHOL HHAYE Ny (o) I A NYg — (din[FAlg], N+ (po A, N)at
+(t+A’:q - n, N)I‘q + <t+Atq_a N)Fq + <t+A}:QConv)N)I‘q =0 VN EJJV' (3.13)

Making use of the standard spatial interpolation for the temperature field (49] it leads to:

tP(z) = NO(z) L) with N9 € WV (1=1,nm0a), and € =1, n1em ; (3.14)

where N(¢) is the shape function matrix (1 X npeq) and iT(e) is the nodal temperature
vector at element e. For simplicity in the notation, the subscript h will be dropped from here
onwards.

Following standard procedures, the global discretized thermal equilibrium equations can
be written in matrix form as:



t+AtF _ t+AtC t+AtT _ t+AtK t+AtT _ t+AtL -0 , (3.15)

where F is the external heat flux vector, C is the capacity matrix, K is the conductivity
matrix and L is the "phase-change” vector rate. As usual, all vectors and matrices are
assembled from the element contributions in the standard manner [#9. The form of the
different elemental expressions appearing in equation (3.15) can be seen in Box 1, where the
superscript 7 denotes the transpose symbol, F'. represents the concentrated heat flux vector
(temperature-dependent in a general case), and n. is the number of loaded nodes at element
e. The term L contains the latent heat effect when fpc # 0.

Using an Euler-backward approximation of the time derivatives, equation (3.15) yields:

t+At oy
tHAtp _t+At [
At

t+AtC " t+AtL tL

n t+AtK] t+atp e T _ - 4 EZO , (3.16)

where R is the residual vector and the element contributions of L at times ¢ and ¢ + At can
also be seen in Box 1.

4. SOLUTION STRATEGY.

When the residual is differentiable, an incremental iterative formulation for solving the
non-linear system of equations (3.16) can be attempted. This means that 49,

. . b t+AtRj—1 .
t+At pj _ t+At pi—1 j_
Bi= ARy T AT =0, (4.1)

where the iteration index j denotes the j-th approximation to the solution in ¢4 At.
Therefore, the incremental iterative system can be written as:

tHAtyi-1 AT7 = ttAtpi-1 (4.2)
tHAtpT — HHAtPITL 4 ATIT =1, Niger ; (4.3.2)
t+AtTo — tT , (4.3.b)

with the tangent Jacobian matrix (for iteration j) given by:



Box 1

Element matrices and vectors in the discretized thermal equilibrium equations.

t+AL po(e) _ NOT , t+ae, dQ+/ NET ez gp 4
a(e) o
q
+ A(c) N(C)T t+Ath t+AtTmu dI\q + Z t+AtF((:)
q 1i=1
t+AtC(c) — N(c)T Po t+At, N(c) a0
Qle)

t+AtK(c) — / (VN(C))T t+Atk (VN(C)) dQ +/ N(c)T t+Ath N(c) dI\q
ae) ¢

t+At 7 (e trle
t+AtL(e) _ N©T po L t+Atij a0 = AJ;J( ) 3 I:t)
Qle) '

with
tL(e) = / N©T o, L tf,. dQ
e

tHaty(e) — / NET p, [ tHAtf dQ
Qle)

At pi
H‘At]j — _M (4.4)
g tHAatI : ’

Replacing equation (3.16) into (4.4), the later becomes:

Bt A ttatgi  tHAtQ At ord t+At At
t+ tJJ _ t+ tKJ+ = 4 AtPC+ t+ tK.Zd_i__ = td i+ tEJ. (4.5)

The element contributions of Cp., K4, Cta and E are shown in Box 2.

Cpc is called the "phase-change” matrix, while the ”td” matrices appear because of the
temperature-dependent thermal properties (c, k;; and h are assumed to be smooth functions
of T). Note that the first term of Ky is non-symmetric. Finally, matrix E is due to
temperature-dependent external actions (also assumed to be smooth functions of T).

It can be observed in Box 2 that the Jacobian matrix exists if the same occurs with all the
temperature derivatives appearing in such equations. Clearly, this is not the case with f,c in
the isothermal case (as mentioned above, which results in a Dirac function). Nevertheless,

an approximated numerical smoothing can be performed in order to avoid this discontinuity.
One possibility is:

t4 At I t+At g t+At p1—1
) fpc _ .fpc - fpc (4 6)
§ t+AtT T Ot+ALp; t+Ati 1" ‘




Box 2

Element matrices appearing in the Jacobian matrix.

t+Atc(c) _ N(c)T L 0 t+Atf?C N(e) a0
R
3 t+Atk

A (e) _ eNT
KD = Joo VN g

(V N(e)) t+AtT(e) N(e) dQ +

a t+Ath
)T t+At e
+ fo N grmeg TN L,
q
t+at(e) _ )T ATV t e
0= [ N7 b grrmg (T - T) NO a0
a(re t+AtF(7)) 5 t+At,
t+At pa(e) _ i=1 i (e)T (e)
& 9 t+atp(e) t a(e) N Po g eracT N dQ +
g t+ats 8 (tHAtp tHALT, Y
@7 99 p() ()T env (e)
* /r(e) N 9 tHAtT Nl + /rm - g tHar Nl
q q

For numerical stability conditions a more convenient form of evaluating this derivative is:

o t+Atfpc
0 t+AtT

I t4Atgd ¢
= Toe _ ‘fpc. 4.7)
t+AtTJ —tT

Neglecting the "td” and external actions contributions in equation (4.5), and considering

equation (4.7) for the temperature derivative of f;., the Jacobian matrix takes the simpler
form:

y i ) t+Ath t+Ath
t+AtJJ ~ t+AtJJ — t+AtKJ ES 4 pc

At At

Obviously, J is an approximate tangent Jacobian matrix and, therefore, the quadratic

convergence of Newton-Raphson’s method is lost. However, when solving the system of

non-linear equations, the residual R is evaluated "exactly” (within the numerical frame) via
equation (3.16). Consequently, this formulation is conservative in the weak form sense.

(4.8)

As f,. can present a jump discontinuity inside an element in the isothermal case, a
non-standard spatial integration is needed to compute L accurately.

Many researchers [42:43:45] have developed special integration techniques based in splitting

the integral over Q(¢) into QS‘*) and Qge) integrals, such that f,. is a continuous function of T
within those regions. Then, the standard Gaussian quadrature can be applied in each domain
separately.

In the non-isothermal problem, the idea used in this paper is basically the same as
described above but splitting the Q(e) integral into Q) integrals (with the number of

Ndiv
element subdivisions ng;, fixed). Although f,. is continuous in 910) (but with great variations,
depending on the size of the phase-change interval (I; — T})), a more accurate integration is

achieved using this subdomain technique.



Due to latent heat effects, a severe non-linearity is introduced in this problem. To take this

fact into account, a proper convergence criterion for stopping the iteration process has to be
used. The option used in this paper (42.43] js written as:

[[FA4R7 |
”t+AtKj t+AtT.’i“2

< €Rr, (4.9)

where ||.||2 is the L, vector norm, and €g is the measure of the admissible out-of-balance
residual (often taken equal to 1073).

5. COMPARISON WITH OTHER FINITE ELEMENT TECHNIQUES.

Different formulations within the framework of fixed-domain methods for solving phase-
change problems have been developed by many researchers in recent years. The aim of this
Section is to perform a brief comparative analysis between some of these techniques [20-35]
and the temperature-based formulation presented above.

5.1. Enthalpy method. -

Although there are different versions of this method, all of them define a new variable H,
called the enthalpy, as (29

._oH 9 fpe

c_aT_c+La—T, (5.1)
where ¢ is the equivalent specific heat capacity. Note that in fact the enthalpy variable
coincides with the specific internal energy as defined by equation (2.16).

In particular, one of such versions (29 retains the temperature as the nodal unknown
variable while the enthalpy, computed using the exact H — T curve (see Figure 3), is only
needed to take into account the latent heat effect via equation (5.1) [2°). Substituting the
equivalent specific heat capacity ¢ (equation (5.1)) into the generalized phase-change equation
(3.8) and following the same procedure described in Section 3, the residual vector can be
computed in this case as [20]:

t+At 1 t+At t+AtC A A t+Até
+ R = + F_[__At_+ i+ tK]t+ tT—*‘TtT:O, (5.2)

where the element contribution of *+At( is:

t+Até(‘) _ N@T t+atz pr(e) 40 (5.3)
Qe)

Several approximated forms have been proposed to evaluate ¢ when phase-change occurs

(see References [9—13]). However, due to numerical stability conditions (2%, a regularization
in the H — T curve is necessary for the isothermal problem (see Figure 4).

It should be noted that equation (5.2) involves a temperature derivative of an almost (due
to the regularization) discontinuous enthalpy function, because it derives from the integral
equation (3.8) and not from (3.6). Clearly, equations (5.1) and (5.2) lead to an approximated
evaluation of ¢ and E, respectively. This fact makes the method to be non-conservative in



the weak form sense. Nevertheless, this drawback can be partially overcome if very small
time steps are used.

HA HA

o
Ll
(@]

T T
a) b)

Figure 3. Exact enthalpy-temperature curve for phase-change problems: a) isothermal case.
b) non-isothermal case.

HA

Figure 4. Regularized enthalpy-temperature curve for the isothermal phase-change problem
(AT, = regularization temperature interval).

As R is computed approximately, it is not useful to derive an "exact” tangent Jacobian
matrix and then is usually taken in this case simply as [29]:



t-f—Atj' — t+AtK'+

(5.4)

A modification to recover improved nodal temperatures using the exact H — T curve (or
the regularized form used for the isothermal case), after computing H via the numerical
integration of equation (5.1), has been proposed in [29]: However, in this case the residual
vector is calculated as described above with the inherent drawbacks mentioned.

An alternative formulation considers the nodal enthalpies as the unknowns of the ﬁroblem.
For this purpose, the standard spatial interpolation is now adopted for H, i.e.:

H(z)=N(z) H , (5.5)

with H being the nodal enthalpy vector. Furthermore, the following Taylor expansion is
used [l

b H—AtT

t+At ty
r-'T= o ttatg

(HHAtE _ tg)= tHAtR (tHAtg  tpy) (5.6)
where in general B is a full matrix. In practice, however, it is assumed to be a diagonal
matrix containing the enthalpy derivative of the temperature at each node. Taking into
account (3.8), (5.1) and (5.6) the residual is written as [31:

t+At
tHAtp _ t+AtF_[+ M

4 tHAtp t+AtB] (tHatg tH) — tHAt gt _ (5.7)
At ’ ’
where M is the usual mass matrix. Due to the diagonalization of B, the residual vector is
computed in an approximated form. After solving the non-linear system of equations, the
nodal temperature vector is evaluated by means of the "exact” H — T curve. As it can be
observed, this technique has the same drawbacks discussed above.

In this case, the simplified Jacobian matrix is taken as (1l
. tHAtpy ~
tHALT _ 4 tHAtR tHAL R 5.5
At

Note that both equations (5.4) and (5.8) incorporate the latent heat effect into the Jacobian
matrix. This is important to avoid numerical oscillations when phase-change takes place.

To the authors’ knowledge, no enthalpy method evaluates the residual vector as equation
(3.16) does. Therefore, all these methods are only nearly conservative in the weak form sense.

5.2. Source method.

Rolph IIT and Bathe (%] include the non-linear effects due to phase-change in the residual
as a source term Q. The residual takes in this case the following form:

t+AtC t+At

tHAtp _ t+AtF_[ = 4 thA ] AL —

tr - AL = 0. (5.9)

When computing Q, some internal constraints are imposed in order to enforce the nodal
temperature vector to follow the exact H — T curve consistently with the amount of latent



heat released or absorbed. In fact, the moving interface condition is violated because an
artificial (numerical) plateaux, leading to the impossible situation of zero interface velocity,
is produced.

The proposed Jacobian matrix in this case is (35]

tHALT _ t+At g (5.10)

It should be noted that now the latent heat effect is not considered in J.

Once more, the method is only nearly conservative in the weak form sense.
5.3. Temperature-based methods.

An important feature of these methods, which do not need any additional state variable
for the numerical solution of the problem, is that the residual vector is evaluated using
equation (3.16) (which derives from the integral equation (3.6)) with the consequence of
being conservative in the weak form sense. Nevertheless, the most difficult task consists in
finding an accurate Jacobian matrix which ensures convergence and stability of the algorithm.

In the frame of Quasi-Newton methods, Crivelli et al. [42] have proposed a Jacobian matrix
of the form: '

tHAt] _ tHAtg | tHatg + HAC L g
At At ’

(5.11)

where Cr_p is a diagonal matrix computed at nodal level which takes into account phase-
change effects. It has to be noted that this equation looks like equation (4.8). In fact, most
temperature-based methods differ only in the evaluation procedure for Cr_p.

Later, Storti et al. [*4 have derived a Jacobian matrix (considering constant thermal
properties) exclusively for the isothermal problem. Its expression is similar to equation
(5.11), but in this case the Cr_p contribution only exists for those elements containing
the moving interface. However, convergence shortcomings reported by the authors appear in
some limiting cases.

In the temperature-based formulation presented in previous Sections, the consistent
Jacobian matrix is computed at Gauss point level and its contribution is detected in all the
elements that have experienced the phase-change effect during the time increment for which
equation (4.7) is used for the temperature derivative of f,.. This fact makes the algorithm to
be stable even in the isothermal case. It should be noted that this is not the case if equation
(4.6) is considered.

In other words, the evaluation of the temperature derivative of f,. via equation (4.7) ensures
numerical stability and a reasonable convergence rate.

e

6. NUMERICAL EXAMPLES.
a) Example 1.
A 1-D example studied in References [35,42] has been considered here. A semi-infinite slab

initially in liquid state (T,(z) = 0 °C) is frozen with a imposed boundary condition at = = 0
(T(0,t) = —45 °C). The analysis has been performed with 32 equally spaced linear two node



isoparametric elements of 0.125 m width. The thermal properties are found in T'able 1. The
time step used was 0.2 s. The temperature evolution of a point placed at z =1 m is plotted
in Figure 5. Figure 6 shows the front position evolution during the process.

b) Example 2.

A two-dimensional example is also analyzed [143]. A semi-infinite skew region, initially at
0.3 °C, is frozen by lowering the temperature on the side y = 0 to —1 °C. The geometry
and the finite element mesh used are plotted in Figure 7. Four node bilinear isoparametric
elements have been used in the computations. The thermal properties are given in T'able 2.
Since the problem is symmetric along the line z = y, the analysis is rectricted to the region
y > 0 and z > y, imposing adiabatic conditions on the mentioned line. To simulate the
infinite region, adiabatic conditions have been also imposed on the other two boundaries.
Using a time step of 0.01 s, two temperature profiles along the line z = y for £ = 0.04 s and
t = 0.08 s are shown in Figures 8 and 9 respectively. Figure 10 depicts the front position
evolution along the same line z = y.

As it can be observed, a very good agreement between analytical and numerical results is
achieved in both examples.

CONCLUSIONS.

A temperature-based finite element formulation has been presented. The main features of
such a formulation are:

it is conservative in the weak form sense,
- it preserves the moving interface condition,
- it can solve generalized phase-change problems,

- it does not need any explicit regularization because an accurate integration technique is
‘employed. Thus, coarser meshes and larger time steps (in comparison with other methods)
can be used,

- it considers a proper convergence criterion,

- a consistent Jacobian matrix has been derived. This ensures numerical stability and a
reasonable convergence rate,

- the numerical examples analyzed show the accuracy of the present formulation and its
computational efficiency.

Although a rigorous convergence and stability analyses are still lacking, numerical
experiments have demonstrated that the present formulation is robust and it can accurately
simulate generalized phase-change problems.
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Table 1

THERMAL PROPERTIES
o Specific heat capacity of the solid phase: ¢ =c, = 1.0 [m]
o Specific heat capacity of the liquid phase: ¢ =¢; = 1.0 [KQJW(]
e Conductivity tensor of the solid phase: k;; = 8;;k,; k, = 1.08 [m—;’,,—c]
o Conductivity tensor of the liquid phase  : ki; = &;5k;; ky = 1.08 [m—{,c]
o Density of the solid phase: p, = po, = 1.0 [%g]

e Density of the liquid phase: p, = po, = 1.0 53]

]

e Latent heat: L = 70.26 [ng‘]

e Melting Temperature: Trp = —1.0 [°C]
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Figure 5. 1D Phase-change problem: temperature evolution at x=1 m.
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Table 2

THERMAL PROPERTIES

e Specific heat capacity of the solid phase: ¢ =¢, = 1.0 [m]

@ Specific heat capacity of the liquid phase: ¢ =¢; = 1.0 [K:TC]

e Conductivity tensor of the solid phase: k;j == 5;jk,; k, =1.0 [ﬁ]

e Conductivity tensor of the liquid phase 2 ki =85k kp=1.0 [ L ]

ms®

e® Density of the solid phase: p, = p,, = 1.0 [ﬁ]

m3

e Density of the liquid phase: p, = po, = 1.0 ﬁ;]

—

e Latent heat: L = 0.25 []‘(,5]

e Melting Temperature: Ty, = 0.0 [°C]
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Figure 8. 2D Phase-change problem: temperature profile along x=y for t=0.04 s.
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Figure 10. 2D Phase-change problem: front position evolution along x=y.



