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Abstract. Non-Uniform Rational B-Splines (NURBS) have become the industrial standard to represent
and exchange a CAD geometry between CAD/CAE systems. CAD-based shape parameterisation uses
parameters of a CAD model to modify the shape which allows to integrate a CAD model into the de-
sign loop. However, feature-trees of typical commercial CAD systems are not open and obtaining exact
derivatives for gradient-based optimisation methods is not possible. Using the CAD-based NSPCC ap-
proach a designer can deform multiple NURBS patches in the design loop without violating geometric
and/or thickness constraints. The NSPCC approach takes CAD descriptions as input and perturbs the
control points of the NURBS boundary representation to modify the shape.

In this work, an adaptive NSPCC method is proposed where the optimisation begins with a coarser design
space and adapts to finer parametrisation during the design process where more shape control is needed.
The refinement sensor is based on a comparison of smoothed node-based sensitivity compared to its
projection onto the shape modes of the current parametrisation. Both static and adaptive parametrisation
methods are coupled in the adjoint-based shape optimisation process to reduce the total pressure loss of
a turbine blade internal cooling channel.

The discrete adjoint flow solver STAMPS is used to compute the flow fields and their derivatives w.r.t. sur-
face node displacements. The shape derivatives for gradient-based optimisation are obtained by applica-
tion of reverse mode AD to the NSPCC CAD kernel. Since a CAD model is kept inside the design loop,
the resulting optimal shape is directly available in CAD for further analysis or manufacturing. Based
on the analysis regarding quality of the optima and rate of convergence of the design process adaptive
NSPCC method outperforms static NSPCC approach.
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1 Introduction

Industrial work flow relies heavily on CAD models and requires all disciplines to share the same geom-
etry in the design process, which reduces the CAD integration effort to carry out production. However,
there are some issues that prevent the use of CAD models in a gradient-based shape optimisation process.
These issues are:

1. Difficulties of computing sensitivity of the geometric shape to the design variables which is an
essential measure for gradient based shape optimisation.

2. Poor shape parametrisation that cannot capture important shape modes obtained from an adjoint
CFD solver.

3. Lack of functionalities for handling geometrical and manufacturing constraints.

One available option is to use finite differences [24] to calculate CAD sensitivities. This approach suffers
a potential lack of accuracy in regions of high curvature. On the other hand, if the source code is
available as in the case of open-source CAD engine OpenCASCADE, CAD sensitivities can be obtained
by differentiating a complete CAD kernel [4]. As an alternative, the authors developed a lightweight
CAD kernel ‘NURBS-based Parameterisation with Complex Constraints (NSPCC)’. The implementation
was done in Fortran to support the application of source-transformation AD using Tapenade[9], which
results in extremely efficient derivative code.

Choice of shape parameterisation is crucial which determines the set of shape modes that can be captured
during the design process [26]. Since the best achievable design belongs to this set, shape parameteri-
sation method influence the final solution and the rate of convergence of the optimisation process. Most
shape parameterisation methods require manual setup [26, 32]. Setting up auxiliary grids for lattice-
based methods, such as e.g. auxiliary grids with Hicks-Henne bumps on airfoils [11] or stacked spline
curves for turbomachinery blades [28], involve substantial effort and are difficult to extend to complex
geometries. To reduce complexities, the designer often ends up with choosing small number of design
variables and the design space that capture all the possible shape modes remain fixed throughout the
optimisation. This traditional static parameterisation approach restricts the generation of superior de-
signs outside the fixed envelope and the final solution highly depends on how the designer parameterise
the baseline shape. To obtain superior designs, the designer should terminate the design process and
reparameterise the shape manually in a periodic manner.

On the other hand, one can consider the displacement of every surface grid node as a design variable [15,
12, 5], called as the node-based method. This method offers richest design space for shape optimisation.
However this design space is very rich and contains unwanted oscillatory modes which needs to be
filtered by the use of surface regularisation method. Additional surface regularisation is necessary, and
implicit [14] as well as explicit [15] Sobolev smoothing methods have been proposed. However, both
of them require a smoothing coefficient and/or number of smoothing iterations to control the amount of
smoothing applied on the shape.

Hradil et al. [13] proposed an adaptive parameterisation method based on FFD approach and Masters
et al [18] presented an adaptive subdivision surfaces for shape optimisation. The results also show
design acceleration however optimised geometry is not available in CAD format for further analysis and
manufacturing. Agarwal et al. [1] presented a CAD-based adaptive parameterisation method by adding
multiple CAD features to a parameteric CAD model. Results showed that the inserted CAD features
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are not good enough to capture superior designs hence it affects the rate of convergence and leads to a
sub-optimal solution. This strongly justifies the need for adding more design variables that can capture
important shape modes for design improvement.

NURBS have become the de-facto industry standard for data exchange between CAD systems and of-
fers local shape modification property. The NSPCC method derives parametrisation directly from the
boundary representation (BRep) of a CAD-model [21]. The BRep, in the typical standardised STEP for-
mat, represents the shape in a number of NURBS patches. NSPCC approach uses control points of the
NURBS patches to deform geometry in the design process. Since the shape parametrisation is derived
from the BRep of a CAD model, construction history of a CAD model is not required hence only subset
of functionalities can be added. This reduces the computational effort required to parameterising the
existing CAD models. In this work, NSPCC method is extended to handle adaptive design space in the
shape optimisation using knot insertion algorithm.

The important contribution of NSPCC to CAD-based parametrisation based on BRep is the formulation
of geometric constraints, e.g. G0−G2 continuity at NURBS patch interfaces [21] or box, radius and
thickness constraints [22]. In the NSPCC approach, surface node sensitivities are projected onto the
control points of the design surface. In general, the Boundary Representation (BRep) of a baseline
shape exported by a CAD system often depends on the local curvature of a shape. For example, region
with a large curvature may contain large density of control points and a flat region may contain sparse
control points. If a control net is too coarse then the important gradient modes may not be projected
effectively which restricts the generation of superior designs outside this fixed envelope [16]. On the
other hand, finer distribution of control points may leads to inefficient navigation in the design space and
may converge to local minima. Therefore, the optimal distribution of control points suitable for shape
optimisation is difficult to obtain a-prior to the shape optimisation process.

The focus of the present work is three-fold.

1. First, an adaptive NSPCC parameterisation method using knot insertion algorithm is proposed
to refine the control net distributions without modifying the geometry. The adaptive refinement
is driven by node-based sensitivity information, therefore the control points are added only in the
region where larger design improvement can be achieved when the optimiser has reached sufficient
convergence. As a consequence the adaptive NSPCC replaces user in the design loop as design
variables are automatically created based on the adaptive refinement.

2. Second, the entire design chain is reverse differentiated using source transformation Algorithmic
Differentiation tool which is essential for handling large number of design variable in the design
process.

3. Third aim is to demonstrate the efficiency of the proposed parameterisation method in an industrial
design chain by minimising the mass averaged total pressure loss of the VKI U-Bend benchmark
case using one-shot optimisation strategy

The paper is organised as follows. Brief details about the NSPCC method are presented in Sec. 2.
The proposed adaptive NSPCC method is presented in Sec. 3. Discrete adjoint formulation to compute
CFD sensitivity and shape sensitivity are presented in Sec. 4. The aerodynamic shape optimisation of
the VKI U-Bend geometry including flow solver validation, mesh convergence study, CAD sensitivity
verification are discussed in Sec. 5. An optimisation framework developed using the proposed adaptive
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NSPCC method is presented in Sec. 6. In Sec. 7, influence of shape parametrisation is presented with
analysis of the results of the optimisation and the effectiveness of the methodology. Conclusions and
future work are presented in Section 8.

2 NURBS-Based Parametrisation with Complex Constraints (NSPCC)

2.1 Non-Uniform Rational B-Splines (NURBS)

The BRep, in the typical standardised STEP format, represents the geometry as a collection of NURBS
patches. In the BRep, surfaces and curves are represented by NURBS which is a current industrial
standard in CAD systems. NURBS patches are bivariate parametric surface defined by piecewise rational
functions with degree p and q in the parameter direction s and t respectively. Mathematically it is written
as [23],

S(s, t) =
∑

n−1
i=0 ∑

m−1
j=0 Bi,p(s)B j,q(t)Pi, jwi, j

∑
n−1
i=0 ∑

m−1
j=0 Bi,p(s)B j,q(t)wi, j

, (1)

where Pi, j are the control points which form a bidirectional control polygon with n and m are the total
number of control points along each parameter direction s and t respectively. Bi,p(s),B j,q(t) are the
B-spline basis functions defined on the knot vectors S = {s̄0, . . . , s̄r} and T = {t̄0, . . . , t̄k} with r and k
are the number of knots along each parameter direction respectively. For the current work, we use a
non-periodic or clamped type of knot vectors as given in the Eqn. 2 and Eqn. 3 in which the first and last
knots have multiplicity of p+1 and q+1 in S and T knot vectors respectively.

S = {a, . . . ,a︸ ︷︷ ︸
p+1

, s̄p+1, . . . . . . , s̄r−p−1,b . . . ,b︸ ︷︷ ︸
p+1

} (2)

T = {ā, . . . , ā︸ ︷︷ ︸
q+1

, t̄q+1, . . . . . . , t̄s−q−1, b̄ . . . , b̄︸ ︷︷ ︸
q+1

} (3)

2.2 Deformation with Geometric Constraints

The NSPCC approach [30, 31] employs control points of a conformal patch topology to deform shape
in the design process. Hence, a finite control point displacement Pi, j on or near a patch interface affects
the surface continuities such as G0 (no gaps), G1 (tangency) and G2 (curvature) which is clearly visible
in Figure 1.

(a) Original NURBS (b) Perturbed NURBS

Figure 1: Shape deformation of a NURBS patch with its control net
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Figure 2: Test points along a common edge and corresponding control net of adjacent NURBS patches

To maintain patch continuity, constraints are need to be imposed on a common edge. This can be achieved
by the use of test points approach in which constraint equations are evaluated discretely at each pair of
test points deployed linearly along a common edge of the adjacent patches. Typical distribution of test
points at a common edge and corresponding control net of adjacent patches are shown in Fig. 2. To ensure
G0 and G1 continuity along an edge, the following constraint equations G0 (Eqn. 4) and G1 (Eqn. 5) are
evaluated discretely at each pair of test points:

G0 = Xp,L−Xp,R = 0 (4)

G1 =~nL×~nR = 0, (5)

where Xp,L and Xp,R are the positional coordinates, ~nL and ~nR are the unit normal tangent plane, suffix L
and R corresponds to Patch-L and Patch-R respectively. Then we need to assemble Jacobian for each of
the constraint equation and after linearization we obtain the following linear system of equations [21],

CδP = 0. (6)

The matrix C is called constraint matrix and δPi denotes the displacement of x,y,z coordinates of N
control points and in vector form both terms are written as,

C =



∂G0,1
∂P1

∂G0,1
∂P2

. . .
∂G0,1
∂PN

...
. . .

...
∂G0,M0

∂P1

∂G0,M0
∂P2

. . .
∂G0,M0

∂PN

. . . . . . . . .
∂G1,1
∂P1

∂G1,1
∂P2

. . .
∂G1,1
∂PN

...
. . .

...
∂G1,M1

∂P1

∂G1,M1
∂P2

. . .
∂G1,M1

∂PN


=

G j
0

. . .

G j
1

 ,δP =


δP1
δP2

...
δPN

 (7)

where M0 and M1 correspond to the total number of G0 and G1 constraint equations respectively and j
is the edge index. By assembling the matrix C as given in the Eqn. 7 we can impose different continuity
constraints to different edges. The matrix has a total of Mc rows where Mc corresponds to total number
of constraint equations with N columns which is the total number of control points.
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2.3 Design space

Using a projected gradient approach, the control point perturbations (design space) has to lie in the null
space of C and the design modes are the N basis vector of the null space and determined using Singular
Value Decomposition (SVD).

C = UΣVT (8)

where U is the Mc×Mc unitary matrix, Σ is an Mc×N diagonal matrix with positive real numbers on the
diagonal σi called singular values of C and VT represents a N×N unitary matrix. The number of non-
zero singular values in Σ determines the theoretical rank r of the constraint matrix, C and last (N− r)
columns of the matrix V span the exact null space of C. With the presence of non-linear constraints
singular values show a gradual decrease rather than sudden drop to zero. Therefore in NSPCC a cut-
off threshold frequency value σC is used to determine the rank of the matrix C which is denoted as
numerical rank r′ and the corresponding nullspace associated with the numerical rank r′ is termed as
numerical nullspace and it is denoted as Ker(C). Each column in Ker(C) gives a deformation mode that
satisfies the constraints and orthogonal to each other. Therefore the resultant control point perturbations
are computed as the linear combination of the columns of numerical nullspace which offers richest design
space for the shape optimisation and it is written as,

δP =
N−r′

∑
k=1

vk+r′δαk = Ker(C)δα. (9)

where δαk with k = 1,2, ....N− r′ are the perturbations to design variables and vk+r are the columns of
the numerical nullspace. Hence the size of the design space is N− r′ which is determined by the total
number of control points and the threshold frequency σC.

3 Adaptive NSPCC

The adaptive NSPCC method progressively adds more control points on the design surface using knot
insertion algorithm. One can insert a knot in either s or t parameter direction or in both parameter
direction. Each knot insertion adds a row or column of control points and also modifies the neighboring
control points. Therefore it is important to determine when to terminate the current optimisation and
which knot value to insert. Details of the knot insertion algorithm can be found in [23]. The adaptive
refinement consists of two steps which includes Refinement trigger and Refine.

3.1 Refinement trigger

Refinement trigger monitors the design progress and determines when to terminate the current design
space level. This step has to be performed automatically without designer in the loop. In this work, the
refinement trigger proposed by Anderson et al [3] is used which triggers the refinement when the rate of
convergence of the objective function with respect to the design iteration falls below some fraction of the
maximum attained in the current design level,

4Ji

max(4Jd)
< εd (10)

where4Ji = Ji−1− Ji, d is the design space level and εd = 0.1 is a cutoff parameter.
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3.2 Refine

This step computes the suitable knot value s̃ and t̃ to insert in both s and t parameter direction respec-
tively. Zingg et al. [8] used knot insertion algorithm to refine B-spline volumes in shape optimisation and
proposed to insert a new knot arbitrarily in each knot span of a knot vector. Martins et al. [10] also used
knot insertion to refine FFD frame and insert a new knot in the middle of each knot span. This may be
suitable for simple geometries however for a complex geometry with large number of patches inserting a
knot in each knot span without any additional measure may leads to the addition of unnecessary control
points on the design surface. Therefore, a suitable adaptation criterion is needed to precisely enrich the
control point distribution locally on the design surface.

Once the refinement trigger terminates the design process, magnitude of the adjoint node sensitivities
(G = ∂J

∂Xs
) are used to identify the region of interest to refine control points. To raise the regularity

of computed gradients, an additional explicit weighted Laplacian smoothing method is used. Thus the
smoothed gradient (Ḡ) is obtained as,

Ḡ y+1 = G y +βU(G) (11)

y is the number of smoothing iteration, β is the smoothing parameter and U is the umbrella operator.
Then the surface mesh points in each patch with large magnitude of the smoothed adjoint sensitivities
are identified. Then three different samples of mesh points (z1,z2,z3) are selected in total of nm number
of surface mesh points in a patch (z1 = nm

2 ,z2 = nm
4 ,x3 = nm

8 ). Then the knot value to be inserted in a
patch is calculated as the average value of parametric coordinates s and t of the selected mesh points as
given in Eqn. 12 and 13. As a result, three different sets of new knot values for each patch are obtained.
They are, (sκ

1, t
κ
1 ),(s

κ
2, t

κ
2 ),(s

κ
3, t

κ
3 ).

s̃κ
1 =

z1

∑
i=0

sκ
i

z1
, s̃κ

2 =
z2

∑
i=0

sκ
i

z2
, s̃κ

3 =
z3

∑
i=0

sκ
i

z3
(12)

t̃κ
1 =

z1

∑
i=0

tκ
i

z1
, t̃κ

2 =
z2

∑
i=0

tκ
i

z2
, t̃κ

3 =
z3

∑
i=0

tκ
i

z3
(13)

κ is the patch ID, z1,z2,z3 are the number of selected mesh points used in the average and nm represents
the total number of mesh points in a patch. Knot insertion with these set of knot values creates three
refined control nets without modifying the geometry. Note that there exists an infinite number of possi-
bilities, however in this work only three refined control nets are obtained at the end of each optimisation
level. To determine which updated control net to choose for the next design level, the adaptation metric
proposed by Martins et al. [10] is used.

AM =
1
2

N

∑
i=1

(
∂J
∂Pi
−

Ng

∑
j=1

∂G j

∂Pi

)2

(14)

where N represents the total number of control points Pi, Ng is the total number of geometric constrains
including G0 and G1, ∂G j

∂Pi
represents the Jacobian of each constraint equation j with respect to each

control point Pi. This metric is evaluated for each control net and choose the one which has larger
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adaptation metric value. Note that gradient smoothing is performed only to determine the high sensitivity
region of interest and for optimisation the original node sensitivity (G) is projected onto the NURBS
control points.

4 Computation of Adjoint Sensitivities

4.1 CFD solver

In this work, a RANS-based compressible flow and discrete adjoint solver STAMPS [20] is used to
compute flow and adjoint fields. The primal solver of STAMPS uses a standard node-centered, edge-
based compressible finite volume discretisation using MUSCL type reconstruction of primitive variables
with second order accuracy and stable implicit JT-KIRK scheme. The viscous source terms are obtained
using an edge-corrected Green-Gauss formula. Turbulence modeling is performed with Spalart-Allmaras
RANS model with AUSM scheme for the convective fluxes. In general, steady state discrete system of
governing equations can be written as,

R(U,α) = 0, (15)

where R is the residual, U is the state variables, α is a set of design variables.

4.2 Adjoint solver

In a gradient-based design loop, one must compute the sensitivity of the objective function (J) with
respect to design variables of interest α. The scalar objective function of interest considered in an aero-
dynamic shape optimisation (e.g. lift, drag, etc.) not only depends on the design variables α, but also on
the physical state of the system U , input volume mesh Xv and surface mesh Xs which intern depends on
design variables α. This can be written as a series of nested function,

J = J(U(Xv(Xs(α)))). (16)

With a CFD solver, the discrete adjoint equation can be written as,

∂R
∂U

T

ψ =
∂J
∂U

T

(17)

where ψ is the adjoint variable. Once the flow and adjoint fields are computed, the adjoint sensitivity of
objective function with respect to design variables can be obtained using [20, 30],

dJ
dα

T
=

∂J
∂α

T

+
∂Xs

∂α

T

f T
S ψ

T . (18)

where fS =
∂R
∂Xs

and ∂Xs
∂α

is the shape sensitivity term.

4.3 NSPCC

With a CAD model in the design loop and using NSPCC approach, the adjoint CAD sensitivity term can
be written as,

∂Xs

∂α

T

=
∂P
∂α

T
∂Xs

∂P

T

. (19)
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With geometric constraints, numerical nullspace as given in Eqn. 9 needs to be included in the chain rule.
Therefore Eqn. 18 can be written as,

α =
dJ
dα

T
=

∂J
∂α

T

+
(
Ker(C)

)T
(

∂Xs

∂P

)T

Xs. (20)

where X s is the CFD sensitivity which represents the adjoint sensitivity of the objective function with
respect to surface mesh coordinates ∂J

∂Xs

T
. In this work, the entire implementation including both CFD

and CAD modules was written in Fortran90 to support the application of source-transformation AD using
Tapenade. To compute the shape sensitivities, in-house light-weight CAD kernel NSPCC is differentiated
using adjoint mode. Differentiated source code modules are assembled with non or hand-differentiated
code to optimise memory and runtime. Equation 20 shows how seeding the reverse differentiation of the
NURBS kernel with ∂J

∂Xs
computes ∂J

∂P at a cost that is independent of the size of the control net density.

5 Aerodynamic Shape Optimisation of Turbine Blade Cooling Channel

5.1 VKI U-Bend Geometry

The proposed adaptive NSPCC method is used to minimise the mass-averaged total pressure loss of the
VKI U-Bend geometry. The objective function is defined as J,

minimize
α

J =

∫
inlet Ptot~u ·~ndS−

∫
outlet Ptot~u ·~ndS∫

inlet~u ·~ndS
(21)

where α represents the design variables, Ptot is the total pressure, u is the velocity vector, n is the surface
normal direction and S is the cross section area. Figure 3b shows the U-bend geometry with design
surfaces are highlighted in green. It consists of a two squared cross section ducts with a hydraulic
diameter of D = 0.075m and both ducts are connected by the half-circular U-bend. This is a typical
180◦ bend duct used to circulate cooling air inside the turbine blade (See Fig. 3a). This U-Bend passage
turns the cooling fluid 180◦ and of crucial importance since they represent the region of high-pressure
loss. Boundary conditions considered in this work for validation and subsequent optimisation are similar
to the standard benchmark conditions specified in the About Flow project [29]. The Reynolds number
considered is 43830 and the Mach number of 0.1 allows using an incompressible assumption.

5.2 Shape Parameterisation

The U-Bend region has 12 patches, of which 8 are rectangular and 4 are half-circular surfaces. To test
the performance of the proposed adaptive-NSPCC method, each patch is parameterised with a coarse
distribution of control points. In this work, each patch is parameterised using cubic NURBS curve along
the streamwise direction with 6 control points and cubic rational Bezier curve is used along the radial
direction with 4 control points (perpendicular to streamwise direction). In total this parameterisation
contains 288 control points with each patch defined using 6×4 control net. Figure 4a shows the baseline
U-Bend region with its control points distribution. This parametrisation exhibits global shape control
along the radial direction, this can be clearly seen in Fig. 4b which shows the effect of perturbing a
control point on the design surface.

9



Rejish Jesudasan and Jens-Dominik Müller

(a) (b)

Figure 3: (a) Internal U-bend passage for turbine blade cooling channel [25], (b) U-bend geometry with
design surfaces are highlighted in green

5.3 Grid Convergence Study

Based on the suggestions given by McHale et al. [19] four grid levels have been generated to perform a
detailed grid convergence study: a coarse (C), a medium (M), a fine (F) and an extra fine (XF) mesh
with each level containing 50k, 125k, 260k and 500k nodes respectively. Computational grids are created
using Ansys Mesher with the coarse grid (C) having Y+ value of 3 and remaining all grids having Y+

value of 1. The structure of all the grid levels at the inlet and outlet of the U-bend geometry is shown in
Fig. 5.

In this work, the objective function value and velocity profiles at three different locations are compared
with all the grid levels to make sure the solution is independent of the mesh resolution. These velocity
profiles including both streamwise as well as radial directions are taken at the 90◦ turn region (location
A) and others (location B and C) at the exit of the channel are shown in Fig. 6a. Figure 6b shows the
variation of the normalized objective function value with all the grid levels.

Figure 7 shows a comparison between the normalized streamwise velocity profiles at the location A, B
and C (along the vertical lines). The positive and negative z/Dh indicates the top and bottom surfaces
respectively from the center of the U-bend. Figure 8 shows a comparison between the normalized radial
velocity profiles at the location A, B and C (along the horizontal lines). From the comparison, it is found
that both streamwise and radial velocity profiles from the fine (F) and extra-fine meshes are closely
matched and hence solution became independent of the mesh resolution. Figure 6b shows that the fine
mesh results in a difference of less than 0.1% for the objective function value with the extra fine (XF)
mesh.This difference is found acceptable for the present study [19] and hence the fine mesh (F) is used
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(a) Baseline U-Bend (b) Deformed U-Bend

Figure 4: (a) Coarse control net distribution of baseline U-Bend region. (b) Effect of perturbing a control
point.

(a) Coarse (C) (b) Medium (M) (c) Fine (F) (d) Extra Fine (XF)

Figure 5: The inlet and outlet of the structured hexahedral meshes of all levels

for the optimisation purpose.

5.4 CFD solver validation

The numerical results obtained using STAMPS are compared with the computational and experimental
ones performed by Coletti et al. [6, 2] for the same Reynolds number Re = 43830. In their experimental
work, the inlet leg with 23.3Dh long is used to guarantee a fully developed flow at the location of the cir-
cular bend. Based on the suggestion given in test case description [29] the inlet leg of 10Dh with respect
to the center of the U-Bend region is used in the present numerical study to reduce the computational
cost. For the validation of our present model, the simulation is performed using fine mesh (F) containing
total 260k nodes, as the grid-independence study showed that this grid offered sufficient resolution, see
Fig. 6b. The comparison of the simulated velocity field and experimental results by Coletti et al.[6],
the Large Eddy Simulation results by Alessi et al. [2] and the STAMPS results is shown in Fig. 9 for
the symmetric mid plane (Z/Dh). The STAMPS solution captures the large flow separation region right
after the turn. However height and length of the separation region are underestimated. Similar behavior
is also noted in the RANS-based results of Alessi et al. [2].

Figure 10 shows a good match between STAMPS and LES for the counter-rotating Dean vortices at
the 90◦ turn region, only small discrepancies near the inner wall separation region can be observed. The
analysis of the STAMPS solution computed on the fine (F) mesh is in good agreement with the published
experimental and numerical results. Hence this configuration has been used for the optimisation studies.
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(a) Locations used for velocity profiles (b) Grid convergence of objective function

Figure 6: Grid convergence study.

(a) at A (b) at B (c) at C

Figure 7: Streamwise velocity profiles along z axis at A, B and C.

5.5 Gradient Verification of Differentiated NSPCC

Since major focus of this work is on the CAD-based parametrisation, the verification of the gradient
computation by Automatic Differentiation is presented only for the NSPCC CAD kernel, solver valida-
tion can be found in [20]. Sensitivity verification is performed by perturbing the BRep of the baseline
U-bend geometry shown in Fig 4a. All the required derivatives of geometric operators, including surface
sensitivities with respect to parameters s and t for point inversion (Eqn. 1), entries of the constraint matrix
C (Eqn. 7) and shape sensitivities (Eqn. 20) are computed using derivative code produced by the source
transformation AD tool Tapenade [9].

To verify the AD derivatives we compare to the values obtained with the complex step method [27]. The
method is very easy to use in Fortran which allows very simple conversion from all double precision
variables to double precision complex variables. However additional care has been taken as discussed
in [7, 17] when handling intrinsic functions such as abs and conditional branches IF..THEN..ELSE. Fig-
ure 11 shows the convergence of truncation error for seven surface points using complex step derivative
method.
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(a) at A (b) at B (c) at C

Figure 8: Radial velocity profiles along y axis at A, B and C.

Figure 9: Comparison of normalized velocity field (U∗) along streamwise direction between experimen-
tal and simulation taken at mid plane. (a) Experimental [6] (b) LES simulation [2] (c) RANS simula-
tion [2] (d) RANS-(STAMPS)

Figure 10: Comparison of normalized velocity field at 90◦ turn region. (a) LES [2] (b) (b) STAMPS
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Figure 11: Relative error for seven surface points using complex step derivatives. Error: ε = |FD−AD|
|AD| .

6 Optimisation Framework using NSPCC

We developed a standalone Fortran-based CAD kernel dedicated to shape optimisation of arbitrary ge-
ometries using adaptive NSPCC method. NSPCC provides a direct interface to a CAD model’s boundary
representation (BRep) and derives parametrisation directly from the STEP file. Therefore CAD model’s
parametric design information as given in the form of ‘Feature Tree’ is not required. This framework is
generic and can be used to setup any industrial test case for shape optimisation. In this work, a Python
API has been developed to integrate CFD and CAD modules with the Python-Scipy library to drive the
design process. The developed CAD-system consists of six major components. They are:

1. CAD parser: This is a python-based CAD reader and writer which is used to read and write BRep
information from the STEP file and builds the initial geometry object. This object includes both
topological and geometrical entities of a CAD model.

2. Mesh mapper: This module reads the computational mesh available in GMSH format and creates
surface mesh objects which includes surface grid connectivity information, volume ID and surface
ID. Mesh mapper also computes parametric coordinates (s, t) for each surface mesh point (Xs)
using point inversion algorithm and assign a unique patch ID that it belongs to.

3. Geometry Module: This module evaluate a number of geometric quantities of interest, such as
G0, G1, leading and trailing edge radius, curvature and thickness to handle user-defined geomet-
ric and/or manufacturing constraints. In this work, G0 (Eqn. 4) and G1 (Eqn. 5) constraints are
used. Constraint equations are differentiated in forward mode using AD tool Tapenade. Constraint
matrix C as shown in Eqn. 7 is then assembled and the null space Ker(C) is computed using a
Singular Value Decomposition (Eqn. 8).

4. Sensitivity module: This module is used to compute CAD sensitivities in both tangent and adjoint
mode. These CAD sensitivities are combined with CFD sensitivities to compute total gradients
as given in Eqn. 20 and then passed it to an optimiser to obtain perturbations to design variables
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Figure 12: Shape optimisation work flow with the adaptive NSPCC parametrisation method

(δα). CFD sensitivities can be obtained from any adjoint solver. In this work, STAMPS a discrete
adjoint solver is used to obtain flow fields (Eqn. 15), objective function value (Eqn. 21) and adjoint
fields (Eqn. 17) as well as the CFD sensitivities (Eqn.18).

5. Adaptation module: Once the refinement trigger terminates the design process (Eqn. 10). This
module performs gradient smoothing (Eqn. 11) and compute suitable knot values to insert in both
parameter direction of all the NURBS patches (Eqn. 12 and Eqn. 12) and then perform knot inser-
tion to obtain three refined control nets. Finally, this module evaluate the adaptation metric for each
control net and choose the control net which has the highest adaptation metric value (Eqn. 14).

6. Deformation module: This module computes perturbations to control points δP as given in Eqn. 9.
This ensures that geometric constraints are satisfied automatically. Similarly, a user can choose
different constraints such as G2, box, radius and thickness constraints based on the requirements.
An additional constraint recovery step is also required for non-linear constraints. Details can be
found in [21]. This module makes the required modification to the initial NURBS patches and
compute displacements to surface grid points δXs using the parametric coordinates computed from
step 2.

After perturbing the geometry and corresponding surface mesh, we can use any mesh deformation al-
gorithm to propagate surface grid displacements δXs smoothly into the volume mesh δXv. In this work,
Inverse Distance Weighting (IDW) method which is also available in STAMPS deformation module is
used to deform surrounding volume mesh. Figure 12 shows the work flow of a shape optimisation process
with the adaptive NSPCC parametrisation method.

7 Results and Discussion

Both static and adaptive parameterisation methods are coupled in the adjoint-based shape optimisation
process to reduce the total pressure loss of a turbine blade internal cooling channel. Optimisation results
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Figure 13: Convergence of objective function: static vs adaptive NSPCC

obtained using both parameterisation method are compared. Particular attention is given to rate of design
convergence, quality of the optima and their sensitivity to the choice of control points distribution on the
design surface.

7.1 Shape optimisation

The U-Bend region is parameterised with a coarse distribution of control points, each patch is param-
eterised with 6× 4 control net, in total it has 288 control points. First three layers of control points
between the fixed and deformable patches are placed close to the inlet and exit throat and are fixed to
maintain G2 continuity. Adaptive parameterisation begins with this coarser control net and adapt to a
finer parameterisation during the design process where more shape control is needed. On the other hand,
in the static NSPCC method, control net remain fixed throughout the optimisation. In both case, BFGS
optimiser available in the Python-Scipy library is used to drive the design process.

Figure 13 compares the convergence history of the objective function between static and adaptive NSPCC
method. The size of the design space is given by N− r′ in which N is the total number of control points
allowed to deform in the design process and r′ is the numerical rank of the constraint matrix (Eqn. 9).
Value of r′ depends on the chosen threshold frequency value σC, for this test case the chosen value is
10−10 which results 442 number of design variables at the end of the optimisation. On the other hand, in
the adaptive case, design space has been refined three times. Table 1 shows the comparison of number
of design variables and the performance improvement achieved between static and adaptive NSPCC
method. Shape optimisation using the refined design space is able to reduce the objective function
value further and has the potential to accelerate the design convergence and capture important shape
modes outside the fixed envelope offered by the static design space. Figure 14 shows the comparison of
optimum geometries obtained using static and adaptive NSPCC method.
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Level Control net
dimension

Number of
control points (N)

Size of the
design space

Percentage drop in
total pressure loss

Static 4 * 6 288 442 -25.34%
Adaptive NSPCC

Iter 1-7 4 * 6 288 574 -14.51%
Iter 8-23 5 * 7 420 736 -25.68%
Iter 24-37 6 * 8 576 1026 -30.63%

Iter 42 7 * 9 756 1402 -30.8%

Table 1: Optimisation results: static vs adaptive NSPCC

Figure 14: Comparison of optimised geometries: Static vs Adaptive NSPCC
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(a) Baseline (b) static NSPCC (c) adaptive NSPCC

Figure 15: Comparison of normalized velocity magnitude between experimental and CFD. Cross-
sectional slice taken at the mid-symmetry plane

7.2 Flowfield of the optimised geometry

Pressure losses in a serpentine cooling channel are caused by the effect of both wall friction and momen-
tum exchanges due to the change in the direction of the flow. Figures 15a and 16a shows the normalised
velocity magnitude of the baseline geometry. When compared with the baseline configuration, optimised
geometries obtained using both the parameterisation methods suppress the flow separation near the inner
wall of the exit channel hence reduces wall shear stress significantly. Figure 15 shows the comparison
of velocity magnitude taken at mid symmetry plane between baseline and optimised geometries. The
reason for the design improvement is threefold. Firstly, all levels of parameterisation altered the radius
of the inner U-Bend, this can be clearly seen in Fig 15. For incompressible and irrotational flow the
velocity gradient normal to the streamline is proportional to the curvature of the streamline. Hence the
optimised geometries with enhanced radius of curvature reduces the required radial pressure gradient
and hence the streamwise adverse pressure gradient, resulting in a smaller separation zone.

Secondly, the duct section is considerably enlarged for both the optimised geometries, this can be clearly
seen in Fig. 16 which compares the CS shape taken at the 90◦ turn region, both the optimum geometries
exhibit larger CS area than the baseline geometry. Hence reducing the velocity in the bend which, similar
to the radius increase, reduces the required centripetal forces, hence the required radial pressure gradient,
hence the separation zone. When compared with the static NSPCC, the optimised shape obtained using
adaptive NSPCC shows larger cross-sectional area which further reduces the pressure gradient normal to
the stream line. Lower normal pressure gradient at the turn generates weaker secondary vortex which sig-
nificantly reduces the associated diffusion loss. In addition, weaker secondary vortex reduces velocities
near the outer wall of the exit channel which reduce the wall shear stress further.

Finally, a third contribution is obtained by the formation of strake like shape along the vertical direction
of the inner U-Bend such as widely used on airplanes and pipelines. At the inner part of the U-Bend,
a low velocity region was observed which is shown in the Fig. 16. The size of this region is more for
baseline geometry than others (Fig. 16a). From Fig. 16c it is interesting to note that inner U-Bend region
of the adaptive shape captures strong convex or hump-like shape mode along vertical direction however
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the optimised shape obtained using static NSPCC doesn’t capture this superior design (Fig. 16b). This
strake like shape mode formed at the center of the inner U-Bend that splits the counter-rotating vortices
hence re-energies and reduces the low velocity region in the optimum geometries.

8 Conclusion

In this present work, CAD-based NSPCC approach is extended to include adaptive design space for
shape optimisation by refining the control points locally on the design surface using knot insertion algo-
rithm. The proposed adaptive parameterisation method has been used to reduce pressure loss of the VKI
U-Bend. Optimisation begins with a coarser net and then automatically refine the control points distri-
bution in the regions where significant node-based sensitivities are detected. Design space enrichment is
performed by inserting knots in both parameter directions of the NURBS patches. The refinement proce-
dure is fully automatic and minimal user input is required to setup the design space for the optimisation.
This approach is both efficient and complete by eliminating the arbitrary trade-off between the dimension
and distribution of control points on the design surface. The optimised geometry obtained using adaptive
parameterisation outperforms static parameterisation.

In this work, CFD sensitivities are computed by using in-house flow and discrete adjoint solver named
STAMPS. Previously, NSPCC CAD kernel has been differentiated in forward mode [30, 31, 16] where
computational costs for computing CAD sensitivity is proportional to the number of design variables. In
this present work, the NSPCC CAD kernel is differentiated in reverse mode, therefore the entire design
chain in now differentiated using source transformation AD tool in reverse mode which computes adjoint
sensitivities in an efficient manner.

NSPCC approach has many advantages. They are:

• User set-up: Shape parametrisation is derived from the BRep of a CAD model, hence construction
history of a CAD model is not required, only subset of functionalities can be added. This reduces
the computational effort required to parameterising existing CAD models.

• Orthogonal shape modes: NSPCC offers rich design space and uses the SVD basis vectors of the
nullspace as a basis for the design space, hence resultant shape modes are orthogonal to each other.

• Adaptive design space: Using knot insertion algorithm, control net refinement can be performed
where more shape control is needed. Hence the resultant shape is unaltered during the refinement
process.

• Efficient constraint handling: Both geometric and manufacturing constraints are handled simulta-
neously via test point approach.

• Exact shape sensitivities: NSPCC CAD kernel has been differentiated using source transformation
AD tool to compute required gradients. Shape sensitivities are available in both tangent and adjoint
mode.

• CAD model: Preserves CAD geometry in the design loop hence more suitable to handle multi-
disciplinary optimisation with minimal effort. Currently work in progress to couple NSPCC CAD
kernel with conjugate heat transfer and structural analysis.
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(a) Baseline

(b) static NSPCC

(c) adaptive NSPCC

Figure 16: Comparison of secondary flow structure between baseline and optimised geometries. Cross-
sectional slices are taken at different locations along the length of the channel.
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