

This work is supported by the **Office of Advanced Scientific Computing Research (ASCR)**

Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems

Alok Choudhary¹, Wei-keng Liao¹, William Hendrix¹, Prabhat Kumar¹, Nagiza Samatova², John Wu³ ¹Northwestern University, ²North Carolina State University, ²Oak Ridge National Laboratory, ³Lawrence Berkeley National Laboratory

Data Mining Kernels on Hybrid Architectures

- GPU-based analysis kernels
- Coordinated CPU-GPU programming
- □ SSDs for out-of-core computation

Data Analytics Kernels

The frequency of kernel operations in illustrative data mining algorithms

Application		Sum 0/			
Application	Kernel 1 (%)	Kernel 2 (%)	Kernel 3 (%)	Juli 70	
K-means	Distance (68)	Center (21)	minDist (10)	99	
Fuzzy K-means	Center (58)	Distance (39)	fuzzySum (1)	98	
BIRCH	Distance (54)	Variance (22)	redist.(10)	86	
HOP	Density (39)	Search (30)	Gather (23)	92	
Naïve Bayesian	probCal (49)	Variance (38)	dataRead (10)	97	
ScalParC	Classify (37)	giniCalc (36)	Compare (24)	97	
Apriori	Subset (58)	dataRead (14)	Increment (8)	80	
Eclat	Intersect (39)	addClass (23)	invertC (10)	72	
SVMlight	quotMatrix(57)	quadGrad (38)	quotUpdate(2)	97	

Perfomance of representative data mining algorithms is dominated by a small number of kernels

- □ Top 3 kernels usually exceed 90% of execution time
- If these kernels were effectively executed, the overall applications could be significantly accelerated
- □ Research products
- ♦ A C/Fortran/Cuda library of highly optimized analytical kernels
- \diamond A framework for programmers to combine these kernels
- Integration to popular analytics/visualization software, such as Matlab, R, Vislt. \diamond

that will be explored as a part of this project		backtracking problems on GPU limited to ~2.25 times a single CPU core (see table for def. of hardness).			
Functionality	Examples	 Optimizations due to efficient output buffering, load-balanced, fine-grain parallelization of search, and memory latency hiding through saturation and efficient memory usage essential to performance. 			
Global reduction	sum, max, min, mean				
Time Series Similarity	TAPER, mutual information				
Distribution	standard deviation, histograms, etc				
Data Preprocessing (e.g., dimensionality reduction)	PCA, ABB, LVF		Backtracking (worst-case)	GPU optimal	
Clustering	K-means, MAFIA, DBSCAN, Bisecting K-means, SNN	Problem Instance	Irregular access pattern (e.g. sparse matrix multiplication)	Regular access with locality (e.g. dense matrix multiplication)	
Anomaly/Outlier Detection	LOF, Outlier Detection	Work Unit	Variable in size and computation (e.g. CSP on large sets)	Constant size, SIMD (e.g. stream processing)	
Change Detection	Change detection in time series				
Predictive modeling, classification	ScalParC, Decision trees, Naïve Bayesian, RIPPER, SVM ^{light}	Output	Exponential size, hard to estimate (e.g. subset enumeration)	Polynomial size, apriori (e.g. dense matrix multiplication)	
Association rule mining	Apriori, FP-growth, MAFIA	Search space	Tree-based, unbalanced (e.g. 8-queens)	Fixed, apriori (if applicable) (e.g. k-d trees)	
Feature extraction	Edge detection, Blob detection				

An example of data analytics, statistics, and mining functions

Index-based Query and Analysis

- Data analysis on indexed data based on FastBit
- Parallel query on distributed indexed data
- Perturbation analytics for noisy and uncertain data

Utilizing Indexed Data

- Develop index-based data analysis kernels and algorithms for performance and power optimizations

 - ♦ FastBit compressed bitmap indexing
 - ♦ FastBit indexes can answer queries more than 10X faster than
 - ♦ FastBit indexing has been extended to HDF5 and NetCDF formats

FastBit indexes answering queries more than 10X faster than commonly used techniques

Approximate analytics algorithms

- Convert floating-point operations into integer operations
- □ Provide better performance and are more energy efficient
- Use multi-level strategies via divide-and-conquer

 - ♦ Determining performance and accuracy with respect to original algorithms
 - ♦ User power measurement devices to evaluate the actual energy consumption

