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Abstract. Numerous research works has been done with the aim of modeling the cracking
of reinforced concrete (RC) structures. Among the recent methods proposed in the litera-
ture, the combination of reinforcement-concrete equilibrium with the linear behavior of their
interface leads to a Helmholtz equation which takes account of the slip between the ho-
mogenized reinforcements and the concrete in presence of localized cracks. In the case of
large cracks openings, it is necessary to consider the non-linear behaviors of materials and
their interfaces, such as the plasticity of reinforcements. These phenomena induce variations
of the coefficients in the Helmholtz equation, which leads to two levels of iterative proce-
dures: one at a global level considering equilibrium of homogenized RC, and another one
at a non-local level taking account of equilibrium between reinforcement and concrete. The
implementation of a convergence criterion is then needed at each level. The goal of this paper
is to describe the developments implemented in the Finite Element code Cast3m to perform
non-local Helmholtz type calculations with non-constant coefficients. This method, using an
acceleration method, is illustrated by the cases of reinforced concrete tie and beam, with
homogenized reinforcements.
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1 INTRODUCTION

Reinforced concrete structures are subject to cracking, which is in most case a necessary
phenomena to maximize the reinforcements efficiency. However, the crack opening is a limit
state that must be controlled because cracks are a preferential path for chemical aggression.
Modeling the concrete cracking in presence of reinforcements is a challenging goal mostly
because of the interactions between reinforcements and matrix during cracking. It is well
known that during the cracking process, a sliding occurs between the reinforcement and the
matrix, leading to a relaxation of the reinforcement, and affecting cracks number and their
opening. Currently, the methods used to take into account this sliding, consist of meshing
explicitly the reinforcements and their interfaces with the matrix, which is not suitable for
large reinforced concrete structures [4],[5],[2],[8],[9]. To avoid meshing the reinforcements, it
is possible to use an homogenized model, where only concrete elements are meshed, and re-
inforcements are given by their surface ratio and orientations vectors. The mechanical global
equilibrium is then verified by taking into account stress in both matrix and reinforcement
considering that the strain is the same for the two materials, and so prevent to consider slid-
ing. However, a model taking into account the sliding in the case of homogenized reinforced
concrete has been recently proposed [12]. This method has proven its efficiency in the case of
linear behavior of reinforcement. The main objective of this paper is to describe the method
used to consider non linear behavior of the reinforcement constitutive law.

2 Basics of the homogenized model

The model development proposed in this paper is based on a homogenized anisotropic
model of reinforced concrete developed by Sellier et al. [10]. This model includes modeling of
anisotropic rotating cracks in the concrete matrix, thanks to tensile plasticity. The present
part gives the essentials explanations about the existing model.

2.1 Constitutive equations

The homogenized stress in the reinforced matrix σij is obtained by summing the contribu-
tion of both the matrix and the reinforcement (1).

σij = (1−
Nr∑
n=1

ρn)σmij +
Nr∑
n=1

ρnσ
rn
ij (1)

In (1), ρn is the surfacic ratio of steel in a given direction, Nr is the total types of re-
inforcements, σmij the stress in the matrix and σrnij the stress in the reinforcement number
n.

2.1.1 Stresses in the matrix

The stress in the matrix is assessed thanks to a model described in [11] based on the damage
theory [7], which is extended to macro-cracks. Evolution of the damages are computed thanks
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to the plastic principal’s strains, which control the anisotropic cracks in tension. This allows
to support three rotating orthotropic cracks directions following the principals tensile strains
directions. In a principal direction of stresses I, the damaged stress in the matrix is expressed
by (2).

σmI = (1−Dc)(Cc
I σ̃

m−
I + (1−Dt

I)σ̃
m+
I ) (2)

In (2), the stress σ̃m−I is the compressive stress while σ̃m+
I is the tensile stress. Dc is

the isotropic shear damage based on the plastic shear deformations. For shear stresses,
the plastic deformations are computed thanks to a Drucker-Prager criterion. Cc is a crack
reclosure criterion which varies between 0 when the crack is open, to 1 when the crack is
completely closed. Dt

I stands for the tensile damages occurring in a principal direction I.
The tensile damage depends on the principals plastic tensile strains εpl which occur when
the Rankine tensile criterion is reached. They are linked by the relation (3), where wkI is a
parameter depending on the fracture energy Gf which leads to the relation (4) where lI is
the finite element length in the direction I and Rt the tensile strength of the matrix. These
relations are related to the Hillerborg method [6] and allows that any size of finite element
will dissipate the same fracture energy. It is important to note that in the model, the matrix
strain is linked to the crack opening wI by the relation wI = εplI lI .

Dt
I = 1−

(
wkI

wkI +max(wplI )

)2

(3)

Gf =

∫ +∞

0

σmI dε
pl
I ' Rtw

k
I (4)

As shown in (2), an isotropic damage in shear and compression Dc can occur. This damage
is computed thanks to the material plastic dilatancy Tr(¯̄εpl,c) (5), where Tr is the trace of the
second order tensor. The compressive plastic strains εpl,c are computed thanks to a Drucker-
Prager criterion, with a non associated plastic flow allowing the model to take into account
the effective dilatancy of the concrete. In (5), εk,s is a characteristic strain which controls the
evolution of the damage rate versus dilatancy. Figure 1 gives a concrete single finite element
response for the corresponding imposed displacement cycle.

Dc =
Tr(¯̄εpl,c)

Tr(¯̄εpl,c) + εk,s
(5)

2.1.2 Stresses in reinforcements

The stress in the reinforcement n is obtained thanks to an orientation tensor P rn
ij . This

orientation tensor can be written as (6).

P rn
ij = ¯erni ⊗ ¯ernj (6)
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Figure 1: Response of the model for the concrete matrix alone in uniaxial cyclic test, with Em = 31 GPa,
Rm

c = 31.1 MPa, Rm
t = 3 MPa, Gf = 100 J/m

2
, for a single finite element.

In (6), the
−→
ern vector is a unit vector obtained directly from the coordinates of the orien-

tation vector of the reinforcement n. As the reinforcements in the matrix are uni-axial, the
undamaged stress in the reinforcement σ̃rij is obtained using (7).

σ̃rij = Er(εr − εr,pl)P rn
ij (7)

In (7), Er is the Young modulus of the reinforcement, εr is its axial strain and εr,pl its plastic
strain. The behavior law used for the reinforcement is composed of three phases. Elastic
phase develops until the elasticity limit f ry . Then, a linear kinematic hardening phase occurs,
it is characterized by its hardening modulus Hr. To prevent the stress in reinforcement to
increase to inconsistent values, a damage has been added to its behavior law, leading to a
horizontal asymptote. The damage is applied when the undamaged stress σ̃r reaches the
ultimate limit stress f ru, so the stress in the reinforcement cannot exceed the value of f ru. The
damage affecting the tensile response of a reinforcement is given by relation (8).

Dr =

0 if σ̃r < f ru

1− f ru
σ̃r

if f ru ≤ σ̃r
(8)

As a damage cannot decrease, a consistence condition
∂Dr

∂t
≥ 0 is added. The reinforcement

tensile behavior law is shown in figure 2.

2.2 Interface between matrix and reinforcement

An imperfect bond is used between the matrix and its steel reinforcements, so that, the
homogenized reinforcements can slip from the matrix. This slip is accounted for by means
of Helmholtz equation given in (9). This last is obtained from reinforcement equilibrium
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Figure 2: Tensile behavior of homogenized finite element 10 cm length with 100% of reinforcement, Er =
210000 MPa, fr

y = 560 MPa, Hr = 2000 MPa, fr
u = 670 MPa.

equation, combined with a relation between the interface shear stress and sliding, the behavior
law of the reinforcement and a link between sliding and strains of both materials. The original
Helmholtz equation was presented in [12], where the elastic strain in the reinforcement was
the state variable to be solved. In the present work, this formulation is reformulated in
term of total stress in the reinforcement, taking into account its eventual damage Dr. This
reformulation is needed to minimize the number of terms including derivatives.

σr − (1−Dr)ErΦr

4H i

∂2σr

∂x2
= (1−Dr)Er

(
εm − εr,pl

)
(9)

In (9), σr is the total stress in the reinforcement along its abscissa x, Dr is the damage in
the reinforcement, Φr is the reinforcement diameter, H i is the shear stiffness of the interface,
εm the matrix total strain in the reinforcement direction and εr,pl the plastic axial strain of the
reinforcement. This relation assumes a constant tangent stiffness between the matrix and the
reinforcement for a maximum sliding of 0.5 mm which correspond to a crack opening up to 1
mm. This Helmholtz equation acts as a diffusion equation, where the source to be diffused is
the difference between the strain of the matrix and the anelastic strain of the reinforcement
weighted by the damaged Young modulus of the reinforcement. It can be written in the form
given in (10), where lrc is homogeneous to a diffusion length, and S is the source term of the
diffusion.

σr − lrc
2

2

∂2σr

∂x2
= S (10)

It can be seen that the reinforcement damage Dr allows to consider the fact that when
a damage occurs in the reinforcement, the phenomena become localized by reducing the
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Helmholtz diffusive coefficient. Due to the damage in the diffusion term, and the plastic
strain in the source term, the differential equation becomes non linear, and the objective of
the present work is to treat numerically this non linearity.

3 Finite element implementation

The governing equations to be solved consist of the global equilibrium of the reinforced
concrete and the stress in the reinforcement n given by the second order formulation (11).
These equations are solved considering their variational formulations discretized on the finite
element mesh. This implementation is described in [12], where only the elastic phase of the
reinforcement was considered. To take into account the non linearity of the reinforcement
behavior, it is necessary to implement an iterative procedure which consist of stabilizing the
stress in the reinforcement compared to the concrete strain. This procedure needs to be
implemented between two global equilibrium iterations.

3∑
j=1

∂σij
∂xj

+ fi = 0 for i ∈ [1, 2, 3]

σrn −
lrc

2
n

2

∂2σrn
∂x2n

= Sn for n ∈ [1, ..., N r]

(11)

The boundary conditions at the edges of the reinforcements are assuming that there is no
sliding between the reinforcement and the matrix. It can be written ∂σr

∂x
= 0 which leads to

∂εr

∂x
= 0 until the edges of the reinforcement doesn’t plasticized. First, the matrix strain is

proposed by the global finite element solver, it allows to construct the source term. Then, the
Helmholtz equation is solved globally thanks to the method described in [12], and so leads to
the stress in the reinforcement. If this stress value exceeds the elasticity limit or the ultimate
stress of the reinforcement, the source needs to be actualized, and the Helmholtz equation
has to be solved again. This sub-iteration procedure uses an implicit solver which consist
of minimizing the residue of equation (10). Each values of the residue at the nodes of the
mesh are considered as components of a residue vector. As the residue in the reinforcement
is a vector, it is necessary to compute a scalar which is in correlation with this vector. The
residue RH to be minimized for all the N r reinforcements is given by equation (12).

RH = maxn=1,Nr


√(

R̄r
n

)T
R̄r
n

f ru

 (12)

Where the residue vector is given by relation (13). As the residue uses the maximum value
of all the N r reinforcements, the solver iterates until all reinforcements are at equilibrium.

R̄r
n = σ̄rn −

lrc
2
n

2

∂2σ̄rn
∂x2n

− S̄n (13)
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As the difference between the residues of two successive sub steps present a geometric
convergence rate, it is possible to use an acceleration method based on the one proposed by
Chow and Kay [3], inspired by Aitken’s work [1].

σ̄acci+2 = σ̄i+1 + λ(σ̄i+1 − σ̄i) (14)

Where λ is a scalar relaxation factor, determined from three successive estimations of the
vector σ̄.

λ =
(σ̄i−1 − σ̄i)T (σ̄i − σ̄i+1)

(σ̄i−1 − σ̄i)T (σ̄i−1 − 2σ̄i + σ̄i+1)
(15)

4 Application

To illustrate the model abilities, this section contains two applications of the reinforcement
sliding, the first one is a theoretical case, consisting of a tensile test on a reinforced concrete
tie with a single crack. The second application is a real reinforced concrete beam submitted
to a bending test with experimental data.

Figure 3: Mesh and boundary conditions for the two ties

4.1 Theoretical case

The purpose of this section is to study the numerical response of the model through the
case of a concrete tie containing a single longitudinal reinforcement placed in the center of
the cross-section. The homogenized tie results are compared to a reference case were both
the reinforcement and the elastic interface are meshed. For the homogenized model, the
reinforcement is only defined by its surfacic ratio all over the transverse section, and by its
orientation vector. For both cases, the middle of the ties contains an element with a concrete
tensile strength of 3 MPa, whereas all other elements are characterized by a concrete tensile
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Parameter Symbol Value Unit
Concrete parameters

Compressive strength Rc 35 MPa
Tensile strength in the weak zone Rt 3 MPa
Young’s modulus Em 31000 MPa
Poisson’s ratio ν 0.2 -
Tensile fracture energy Gm

f 100 J/m2

Reinforcement parameters
Elastic limit f ry 560 MPa
Young’s modulus Er 210000 MPa
Hardening modulus Hr 2000 MPa
Maximum stress f ru 667 MPa

Homogenized tie interface parameter
Elastic shear stiffness H i 40000 MPa/m

Reference tie interface parameters
Elastic modulus Ei 960 MPa
Poisson’s ratio νi 0 -

Table 1: Reinforced concrete ties parameters

strength of 30 MPa, in order to localize the crack only in the weak element (Figure 3). For
the reference case, the reinforcement is meshed with unidimensional bars elements for which
the behavior law has been plotted. Figure 3 gives both mesh and boundary conditions used.
Only the tensile behavior is studied in this case. It can be seen that, in the reference case,
the mesh next to the weak zone is highly refined compared to the homogenized case. This
allows to get a better precision in the reference results.

Homogenized tie parameters - The material parameters and their values used to per-
form the test are given in Table 1. The concrete used can be classified as an ordinary
concrete. The characteristics of the reinforcement are as well standards for civil engineering.
The corresponding reinforcement ratio used is ρr = 1.1% of the tie transverse section.

Reference tie parameters - The elastic modulus Ei of the meshed interface is linked to
the homogenized interface stiffness by the relation (16) obtained by the virtual work method,
where νi is the meshed interface Poisson’s ratio. This relation is determined such that the
elastic energy is equivalent in both the homogenized tie and the reference case. All other
concrete and reinforcement parameters are the same as in the homogenized case.

Ei = 2H iΦr(1 + νi) (16)
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Results - Figure 4 gives computed force versus displacement for the reference case and two
of the homogenized case: one is done with a sub-iteration convergence tolerance of RH = 10−6

and the other one is done with only one sub-iteration. It can be seen the strong impact of the
sub-iteration convergence tolerance to fit the reference evolution. It is important to note that,
for small loading steps, both a) and b) curves would be the same. The implemented method
allows therefore to use large loading steps which will activate the sub-iterations. This provides
a security in the case of needed large loading steps. These results show that the reinforcement
phenomenon linked to its plasticity is taking into account in the homogenized model. Even if
the results are close, there is still a little shift in the plastic phase of reinforcement behavior.
This can be explained by the fact that in the reference case, the solved variables consist of
the nodes displacements, whereas the reinforcement stress is solved in the homogenized case.
This implies a constant strain in finite elements of the reference case and a linear variation of
the strain in the homogenized case, so it could be noted that the homogenized case is more
smooth than the reference one.

Figure 4: Comparison of the force-displacement curves for the two homogenized ties and the reference case.

4.2 Application to a real structure

After the theoretical validation, it is necessary to compare the model with a real structure
behavior. The chosen case is a beam submitted to a four point bending test. The reinforced
concrete parameters are given in Table 2. To show the sliding impact, results are compared
with a case where the sliding is not considered between matrix and reinforcement by applying
the same strain in both materials. Figure 5 compares the model results obtained with and
without sliding of the reinforcements. Considering the force-deflection curves, it appears that
both models are close of the experimental response. The sliding model is however more effi-
cient in predicting the cracking process, as the non-sliding model make it imprecise. Looking
at the cracking pattern during loading, reinforcement sliding allows a better localisation of
each crack. Assuming an equal strain in matrix and reinforcement leads to higher stress in
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Parameter Symbol Value Unit
Concrete parameters

Compressive strength Rc 37.4 MPa
Tensile strength Rt 2.8 MPa
Young’s modulus Em 32700 MPa

Reinforcement parameters
Elastic limit f ry 520 MPa
Young’s modulus Er 195000 MPa
Hardening modulus Hr 3245 MPa

Interface parameter
Elastic shear stiffness H i 40000 MPa/m

Table 2: Reinforced concrete beam parameters

the matrix next to the cracks which causes diffused damage while sliding lets the matrix
stress in the vicinity of the crack slowly increases as observed in figure 4. Crack pattern
evolution has been reported during the test, and it is noticable that sliding model matches
well with the real cracking pattern for each load. Figure 5 shows that sliding changes spacing
between cracks as expected, as well as the cracks openings and the number of cracks at a
given load.

5 Conclusion

A model allowing to take into account non linear behaviors of reinforcements and interfaces
in the case of non meshed reinforcements has been presented. The model is based on solving
a Helmholtz equation in parallel of the global equilibrium of the reinforced concrete. The
non linearity induced by reinforcement plasticity and damage induces the need of an iterative
procedure which has been implemented. A theoretical tie test has shown the ability of the
model to find the reference case results during phases of elasticity, plasticity and damage
of the reinforcement. In the case of the real structure, it was observed that the model is
efficient in predicting both the global force-deflection response, but also the cracking pattern
evolution thanks to reinforcement sliding. This model has proved that it is effective to predict
the behavior of the reinforcement linked to concrete until the reinforcement maximal stress.
Its use should not be limited to civil engineering purposes since it could be applied to several
physics fields, which require diffusive variable in parallel of the global equilibrium.

Aknowledgements: The members of the C.E.A Jean-Charles Le Pallec, Ludovic Jason
and Caroline Guerin are thanked for supporting this work.
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Figure 5: Geometric characteristics and results of the beam test : model and experimental force deflection
curves, computed crack opening field for the beam with and without reinforcement sliding
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