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Abstract. This work describes the implementation of the Immersed Boundary Method (IBM)
in a high order discontinuous Galerkin framework for the CFD solver Horses3D [1]. High order
schemes are very attractive due to their low numerical dissipation, their capability of providing
high-accurate solutions and higher efficiency for a given level of accuracy with respect to low
order schemes. However, the generation of high order meshes needed by these schemes is still a
bottleneck since it requires a large amount of time. IBM tries to tackle the problem by preserving
the high order beneficial properties while avoiding the generation of complex meshes.

1 The Immersed Boundary Method

The idea behind the Immersed Boundary Method (IBM) [2] is to simulate the presence of a
body by modiyfing the equations to be solved. This approach allows to use very simple cartesian
meshes. This consideration has attracted a lot of interest in the IBM which has been widely
analysed and studied (at least for low order schemes). The effort made by the CFD community
has led to different approaches to mimic the body inside the fluid domain like cut-cell [3], ghost
nodes[4, 5], direct forcing [6] and volume penalization[10, 11, 9] . The last three types belong
to an IBM category where the mesh is fixed and the body is simulated trough the addition of a
source term to the equations. In this work, the volume penalization has been chosen due to its
simplicity, robustness and because it can be easily extended to moving bodies. From a physical
point of view, in the IBM with volume penalization the body is considered as a porous media
whose permeability approaches zero. To properly capture the shape of the body the mesh must
be refined close to the boundaries which can be done by increasing the the polynomial order near
the body. In this work we accelerate the IBM method using a multigrid Full Approximation
Scheme (FAS) [12].



1.1 Volume penalization

In the volume penalization approach a source term is applied to the compressible Navier-
Stokes equations. A mask function x(x,t) is required to be able to distinguish between the solid
region (€)), in which the source term is applied, and the fluid region (£2¢) where no source is
added. The equations become:
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In the previous equations, the viscous shear stresses are defined as 7;; = u(gg; + % - %62-]-(2%:))

where p denotes the dynamic viscosity. The heat flux vector Vq is defined as g—; = )‘% where

A is the thermal conductivity and T is the static temperature. In eq. 1 the source term is:
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where y is the mask, 7 is the penalization parameter and the subscript (.)s stands for the
imposed state. In the case of compressible Navier-Stokes equations and solid static bodies
(defined through the IBM), the condition us = (0,0,0) is applied. The penalization term is
set equal to the time step At [8] which generates a stiff source term. To avoid the time step
limitations due to the presence of the stiff source term, a second order Strang splitting is used
to include the source term, allowing the treatment of this source term implicitly[11].



1.2 Mask generation

The generation of the mask is a key point in the IBM. This mask finds the points (Gauss
point in high order Discontinuous Galerkin) that are inside and outside the body. The points
inside are penalised using the volume penalisation technique. The mask generation can be a
costly process in IBM and for this reason we use a robust and efficient algorithm. A ray-tracing
technique along with a kd-tree is used. The body is represented by a STL, file which is a three
dimensional surface of triangles. The ray-tracing is based on the fact that an odd number of
intersections identifies a point inside the body, i.e. x = 1, while an even number of intersections
identifies a point outside the body i.e. x = 0 (see fig.1). This is sufficient for the definition
of x(x,t) on each degree of freedom where the solution is computed. This technique can be
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Figure 1: The idea behind the ray-tracing technique: in this picture the number of intersections
between the ray and the STL is even, thus the point is outside the body.

further accelerated and automated as follows: generating the minimum bounding parallelepiped
enclosing a set of points, also known as Oriented Bounding Box (OBB), embedding the STL
file, check if a point is inside or outside the OBB (computationally cheap operation), if the point
is inside the OBB a ray-tracing is performed. In this way the number of degrees of freedom is
highly reduced. The latter procedure is accelerated thank to the use of a Surface Area Heuristic
kd-tree embedding the STL file, which is known to be the best algorithm for ray-tracing [13],
[14].

1.3 Surface data reconstruction

In the IBM, the solution is not known on the body surface, but it is required to find integral
quantities such as Lift or Drag. In order to compute the aerodynamic coefficients, the value of
the state on the surface must be reconstructed. The point on the surface are computed on each
triangle of the STL file according to the desired quadrature formula. Once the solution on each
triangle’s integration points is found, the integral on the surface is computed. In this work, an
Inverse Distance Weight (IDW) interpolation is performed [15, 11]: the set of points belonging
to the fluid, closest to a surface point (SP) are selected and the solution on the SP is computed



as follows: N
>
e~ d;
—1
Qsp = sz
>
i

where Np is the number of interpolation points and d; is the distance between the i**-node and
the surface’s normal passing through the surface point SP (cfr. fig.2).
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Figure 2: Visualization of the quantity d; appearing in eq.3. The red region represents the
portion of the domain occupied by the body.

2 Numerical results

The IBM previously described has been implemented in the 3D solver horses3D [1]. The tests
are perform to validate the implementation and the results are compered with the published
results. Moreover the performances of a standard explicit scheme (i.e. like Runge Kutta 3)
and the FAS multigrid are shown. Both steady and unsteady results are provided. In all the
simulations the penalization parameter 7 is set equal to the time step At.

2.1 Steady test case

The first test case is a steady cylinder at Reynolds Re = 40, Mach Ma = 0.2 and polynomial
order 3. The mesh and the results are shown in fig.3. As can be seen in fig.3a, the mesh is a
cartesian. Table 3 reports characteristic length scales for this particular case. We observed very
good agreement with the literature. In fig.7 the drag coefficient Cy is plotted along with the
number of interpolation points and observe good agreement when the number of points is larger
than 20-40. The behavior of the residual is reported in fig.6: it is important to highlight that
using an explicit scheme, like the standard Runge-Kutta, even with Strang splitting leads to a
stagnation in the residual whereas if the FAS multigrid is used, the residual can easily reach the
desired threshold in a low number of iterations. The prince to pay for using the multigrid is



the increase in the computational time per iteration. The multigrid method is based on solving
the system of equations by recursively iterating on solutions of different polynomial orders; as a
consequence, a mask for each polynomial order is built.
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(a) Mesh for the cylinder test case. (b) x-velocity component.

Figure 3: Mesh and simulation result of a cylinder at Re = 40 and Ma = 0.2.

Figure 4: Visualization of the characteristic wake properties. Image from [7].
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d d
Linnick & Fasel (2005) | 2.28 | 0.72 | 0.60 | 53.6
Taira & Colonius (2007) | 2.30 | 0.73 | 0.60 | 53.7
IBM (present work) 2.29 | 0.72 | 0.58 | 53.6

Table 1: Comparison between literature results [22], [23] and the present work. See fig.4 for
definitions.

2.2 Unsteady test case

An unsteady Re = 100, Ma = 0.2 at polynomial order 5 is simulated. In this case the FAS
multigrid is used along with a pseudo-time step approach. The Strouhal number is reported and
compared in tab.2. It can be seen that the value coming from the simulation is very close to the
reference ones.



Figure 5: Drag coefficient vs number of interpolation points Np.
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Figure 7: Wake behind a cylinder at Re = 100 and Ma = 0.2.

St
Fot et al. (1998) [20] | 0.165

Williamson (1992) [19] | 0.161
Roshko (1954) [21] 0.167
IBM (present work) | 0.160

Table 2: Comparison of the Strouhal number (St) for the Re = 100 test case.

3 Conclusions

An Immersed Boundary Method based on volume penalization has been successfully imple-
mented and tested in the high order solver horses3D. To overcome the stiffness of the source
term, a semi-implicit Strang splitting has been adopted. The robustness and efficiency of the
mask generation have been assessed thanks to the use of SAH kd-tree coupled with ray-tracing.
Finally the steady test case shows that coupling the IBM with a multigrid approach, FAS in
particular, can highly reduce the number of iterations required to obtained the desired residual

threshold.
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