


tinuum mechanics produces failure without energy dissipation (since it oc­
curs over a set of measure zero). This is unrealistic. In a classical continuum 
the strain-softening characteristic behavior favors uncontrolled strain lo­
calization in numerical analyses, and as a consequence finite-element cal­
culations suffer from a pathological mesh-dependence. 

Several regularization methods have been proposed to overcome these 
problems. Among these are micropolar constitutive relations (de Borst 1991), 
nonlocal models (Bazant et al. 1984; Pijaudier-Cabot and Bazant 1987), 
and gradient-dependent models (Lasry and Belytschko 1988; de Borst and 
Miihlhaus 1991). These constitutive relations bear the same fundamental 
property: an internal length, sometimes called the characteristic length, is 
introduced in the governing equation and scales the localization zone that 
cannot develop over a set of measure zero. This property was elucidated 
recently for gradient-plasticity models (de Borst et al. 1991) and nonlocal­
damage models (Pijaudier-Cabot and Benallal 1992) using perturbation 
analyses, because two well-differentiated length scales are present in the 
problem: one associated to the macroscopic behavior of the solid and one 
that is microscale, related to the localization zone. There is, however, a 
basic underlying issue common to every constitutive model and resolution 
technique: the spatial interpolation of the primitive variables. Shear bands 
for plastic-type materials or damaged zones for brittle-type materials must 
be accurately described. This implies that the measure of the discretization 
(loosely speaking: the element size) must be of the order of the internal 
length, that is, the microscopic scale. This has been observed in practice on 
finite-element computations in statics and dynamics, where the width of the 
localization zone seems to be well captured when the element size is smaller 
than the internal length of the continuum (Pijaudier-Cabot and Bazant 1987; 
Sluys 1992). 

The present paper substantiates these observations with analyses in which 
the discretization error, defined as the error on the wave speeds due to 
discretization, is derived as a function of the element size. The method is 
based on a linearized analysis of a disturbance around the equilibrium state 
followed by a von Neumann (or Fourier) method in the discretized domain. 
Two localization limiters are investigated and compared: a nonlocal (inte­
gral) damage model and a gradient plasticity model. The constitutive re­
lations are set in such a format that they can be compared, that is, the same 
stress-strain response for monotonic loading in a homogeneous strained solid 
is imposed. For the sake of clarifying the analytical developments, the pres­
ent study is restricted to a one-dimensional continuum, although the method 
can be applied to a two-dimensional context without restrictions. 

After comparing the constitutive relations, discretization errors in the 
damage model are discussed. Next the same results are examined with the 
gradient-plasticity model. Finally, both models are compared. 

CONSTITUTIVE RELATIONS 

Nonlocal Damage Model 
The first limiter considered is the one-dimensional version of the nonlocal­

scalar-damage model proposed by Pijaudier-Cabot and Bazant (1987). The 
constitutive relation reads 

a = (1 D)Ee (1) 

in which a and e are the current stress and total strain, respectively; D is  

2



the damage variable which ranges from O initially to 1 when the material 
cannot sustain any stress; and Eis the initial- ( undamaged)- material Young's 
modulus. Given an equilibrium state defined by a stress field cr0 with the 
corresponding strain Eo and damage n° fields, the rate constitutive equation 
is written as 

&  (1 - n°)fa DEE0 
(2) 

where a superior dot denotes time derivatives. The growth of dam�ge is 
defined as the function of the average damage energy-release rate Y and 
the damage loading surface, that is 

f(Y) = F(Y) F(K*) (3) 

{
D(x) = d:v

) Y(x); if f(Y) = o and Y > o

D(x) = O; if f(Y) < 0 or if f(Y) = 0 and Y::::;; 0 
(4) 

In (3), F = an experimentally determined evolution law for damage; and 
If*  hardening-softening parameter that is taken as the maximum between 
Y at this particular point for all the previous history of loading and an initial 
threshold of damage. In fact, F(K*) = n, which shows clearly the path­
dependence of this nonlocal strain-softening model. Actually, this definition 
of growth of damage is parallel to the classical nonassociated plasticity. That 
is, the growth of damage can also be defined from a dissipation potential 
g, namely 

Jj = " a�
aY (5) 

with the Kuhn-Tucker conditions 11. 2: 0, f::::;; 0, and 11.j  O; and g  Y, 
which implies D = 11.. 

The basic variable in the previous equations Y (average energy-release 
rate) introduces the nonlocal nature of the model, since it is an average of 
the local energy-release rate Y and is defined as 

with 

Y(x) = l 'l'(s - x) 
Y(s) ds

l1 Vr(x) 

1 Y(x) = 2 
E(x)fa(x) 

(6) 

(7) 

where the integration domain !1 spans over the entire structure analyzed; 
'l'(s - x)!Vr(x) = a weighting function adequately defined to normalize
the averaging; and Vr(x) = f n 'l'(s x) ds  the representative volume 
at point x. The weighting function '11 is defined as 

(8) 

where Iv = internal length of the nonlocal continuum that can be estimated 
experimentally as a function of the size of the heterogeneities in the material 
(Bazant and Pijaudier-Cabot 1989). 

With these definitions, the increase of damage from the previously cited 
equilibrium state around n° is 
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D. ( ) = dF(!) { 'l'(s - x) E 0( ) . ( ) d x 
dY Jn V,(x)

e s e s s 

with the conditions f(Y) = 0 and Y > 0. 

(9) 

Once the expression for the growth of damage, (9), is known; it is possible 
to perform a linearized analysis of a disturbance u (velocity field) around 
the equilibrium state defined by the stress CT

0
, strain e0

, and damage D0 

fields in a strain-softening regime over a subdomain {} of the studied solid 
n. Such an analysis has been reported in Pijaudier-Cabot and Benallal (1992)
in a general three-dimensional context and here it is particularized to the
present case. Two assumptions are made to solve the problem in closed
form: first, the deformation, damage, and stress states are homogeneous,
and second, the nonlinearity due to the growth of damage (4) is removed
by imposing that the subdomain {} remains in the strain-softening state.
Under these conditions the linearized equation of motion reads

a2u a& 

P at2 
=

ax 
(10) 

where p = mass density, and the above equation is only valid in the strain­
softening subdomain {}. Possible wave solutions of (10) with a constitutive 
behavior defined by (2) and (9) are sought in harmonic form 

(11) 

where A = amplitude of the wave; k  wave number; and c
e 

phase 
velocity. Substitution of this velocity field into the constitutive and motion 
equations yields the expected eigen-problem associated with this classical 
procedure [see Pijaudier-Cabot and Benallal (1992) for the detailed general 
derivation]. The wave speed is then given by the equation 

(12) 

where c0 := initial wave velocity in the elastic medium; c0 =
V'iflp; and 'l'(k) = the Fourier transform of'¥, which is a function of the 
wave number. Given the weighting function, (8), its Fourier transform reads 

'l'(k) = e -[(k!D)2(2] (13) 

Several important conclusions can be drawn from such a result. It must 
be noticed that the phase velocity is dispersive; that is, waves with different 
wavelengths travel at different speeds. Similar results were also obtained 
for different localization limiters by Lasry and Belytschko (1988) and Sluys 
et al. (1991). 

A critical value of the wave number exists for which the phase velocity 
vanishes, namely 

(14) 

These are the stationary waves obtained in statics [see Pijaudier-Cabot and 
Bode (1992)]. For high frequencies, that is, wave numbers larger than this 
critical value, the wave velocity is real and therefore the disturbance u 

4



remains bounded. Asymptotically, as the wave number goes to infinity, 
waves with an infinite frequency propagate with the elastic wave speed of 
a damaged material: \/E(l D0)/p. On the other hand, for low frequen­
cies, the wave speed is imaginary and the disturbance is unbounded. These 
large wave lengths, however, are not able to develop in the strain-softening 
region of order lv. 

Finally, the critical wave number depends on the initial strain field E
0

• 

Before the peak stress, all the waves can propagate. After the peak stress, 
only short wave modes can propagate. Thus, it is expected that the damage 
front in a bar propagates even during softening. 

Eq. (12) shows that the softening region{} is a dispersive medium. Hence, 
a difference exists between the phase velocity, that is, the velocity of a single 
harmonic, and the group velocity, which is the velocity at which energy 
travels. The group velocity, Cgroup, is defined by 

k dee 
Cgroup = Ce + dk

and it becomes in this particular case 

r (lvk)2 

Cgroup = Ce l1 + -2-
(1 

(15) 

(16) 

This equation shows that the group velocity is always positive for wave 
numbers larger than the critical ones defined by (14), and that it approaches 
the single harmonic phase velocity ( or equivalently the elastic-damaged 
medium wave speed) ask goes to infinity. For a wave number corresponding 
to the critical initial frequency, Cgroup becomes infinite. In itself, this result 
is nonphysical. However, in states in which the time scale is omitted, such 
a result seems reasonable because the information in statics is transmitted 
at an infinite speed. Recall that the governing equation loses ellipticity at 
the inception of the localization. 

An infinity of solutions to the hyperbolic problem still exists in the soft­
ening region, which is not the case in a local model where there are no 
solutions after localization begins. Therefore, so-called loading waves, with 
a frequency above a threshold, can still propagate. Thus, the damage zone 
must expand during the localization process that produces a consumption 
of energy. In view of the numerical applications, this is an important con­
clusion, since after mesh refinement strain does not localize into a single 
element. 

Gradient Plasticity Model 
The second limiter is a nonclassical plasticity model originally proposed 

by de Borst and Miihlhaus (1991). The constitutive relation reads 

(T = EEe 

with the yield function 

(17a) 

(17b) 

(18)
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which is very similar to classical plasticity: a = current stress; a
y 

= initial 
yield stress; HE = hardening/softening modulus, which plays a similar role 
for the "average" inelastic strain eP as the elastic modulus E has for the 
elastic strain E

e
. His by definition negative and IHI < 1 during softening; 

and it is assumed constant in the present analysis. The regularization is 
performed in (18) by the introduction of the variable average plastic strain 
eP defined from the local plastic strain EP as 

(19) 

Again, the constant le is the internal length for this model. The linearized 
perturbation analysis similar to that performed in the previous section can 
be found in Sluys (1992). The rate constitutive equation for the present 
model may be written as 

( a2 p
) & = HE f,P + 12 _E 

e axz 
(20) 

And the linearized equation of motion obtained after substitution of (20) 
into (10) is 

(
a4u p a4u 

) 
a2u a2u 

- HE/2 - - - -- + pE(l + H) - - HE - = 0 
e ax4 E at2ax2 at2 ax2 

(21) 

The expected wave-velocity equation is obtained after substitution of (11) 
into the previous fourth-order differential equation 

H[l - (/ek)2] 
1 + H[l - (/ek)2J (22) Ce = Co 

where c0 is again the initial wave speed in the elastic medium. 
The previous equation shows that for classical plasticity (gradient-inde­

pendent model, that is, le = 0) the wave speed becomes imaginary as soon 
as softening occurs. On the other hand, for a gradient-dependent model 
(i.e., le 4= 0) the previous equation clearly shows the dispersion of the 
wave velocity. Moreover, the onset of softening does not imply an imaginary 
velocity. In fact, with this localization limiter, a critical value for the wave 
number also exists. It is defined by 

k = _!_ 
le 

(23) 

Notice here that the critical wave number is independent of the original 
reference strain state from which the perturbation analysis is performed. 
This characteristic is clearly different from the previously presented nonlocal 
model. 

The softening region is also for this model a dispersive medium; therefore, 
the group velocity must be evaluated to check for any inconsistency. Using 
again (15), the group velocity is written as 

{ 
Uek)2 

} 
Cgroup = Ce 1 - 1 + (1 + H)[l - (/ek)2] 

(24)
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which is always positive for wave numbers larger than the critical one and 
becomes infinite for wave numbers equal to the critical one. 

Nonlocal/Gradient Relation 

Several authors (Bazant 1984; Lasry and Belytschko 1988; de Borst and 
Miihlhaus 1991) have suggested that gradient relations can be derived from 
nonlocal-integral models. They follow two basic ideas: first, the so-called 
average-rate inelastic strain is defined in a nonlocal manner, and second, 
the gradient relation is obtained after an expansion in Taylor series up to 
second order. As is to be shown, the last step is not completely rigorous. 

First of all, eq is defined nonlocally, that is 

rt) = J
+lf

, 'V(s - x) eP(s) ds (25) 
QC vr 

with 'l'(x) = e (lxl2IZlb); and vr = r�: 'V(s x) ds lay"i;, where, for 
the sake of simplicity, an infinite one-dimensional case is taken. With such 
a definition, it is easy to prove that if eP(x) is continuous and integrable, 
then lim1G"°'0EP(x, lJ) E:P(x). Therefore, as expected, as la --,,. 0, a classical 
continuum is recovered and (25) represents a consistent nonlocal approach 
[see de Borst et al. (1991)]. 

Then, after a simple change of variables inside the integral of (25), namely 
t = s - x, the rate plastic strain, eP(x + t), is expanded in Taylor series 
from t = 0. Since the weighting function is known, the integrals can be 
evaluated and the expression for the average-rate inelastic strain becomes 

(26) 

where a; = constants independent of x and la . Notice that all the odd terms 
disappear because the integral of an odd function is equal to zero. 

The former definition of the average-rate plastic strain in the gradient­
dependent model, (19), is readily obtained taking the two first terms in (26) 
and adjusting the definition of the weighting function by a constant such 
that oci = 1. However, this development assumes that all the higher order 
terms involving even powers of la and the corresponding derivatives of ;,p 
are negligible. It is based on the conjecture that la is small while the de­
rivatives are bounded. This is not vetified. In fact, the derivatives of eP 
grow at the same rate as la decreases. In statics for instance, the derivatives 
of the plastic strain are in the order of, or larger than, 10-2; for the i-term. 
Thus, they become unbounded as la - 0. This result should be expected 
in a classical continuum theory. 

According to equilibrium, the distribution of plastic strain rate is (de 
Borst and Mi.lhlhaus 1991) 

;,p = AP cos(kx) + BP (27) 
where AP and BP are constants, the former associated to the amplitude of 
the plastic strain, and the latter derived from integration. Clearly from (27) 
the i-term in the Taylor expansion, (26), is 

(28) 

Noticing that only wave numbers larger than the critical one are allowed, 
that is, k 2-: Illa, it is easy to show that 
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(29) 

which is not of the order of 11/. And even if a.; decreases, the assumption 
that all the higher order terms can be neglected is not rigorous. 

It must be concluded from this analysis that nonlocal and gradient lo­
calization limiters are not equivalent. Therefore, the localization modes and 
the influence of the internal length should be different in the integral and 
in the gradient limiter. This is illustrated for the damage model on Fig. 1, 
which shows the wavelength of the localized modes in statics for the damage 
model. The gradient version of the nonlocal-damage model has been ob­
tained by expanding the variation of the average energy-release rate up to 
second order in the same fashion as for the average plastic strain in (26) 

o
2
£}' = ££Of, + 12 ££0 _D ax2 (30) 

Note that this expansion is performed in the rate form and from the ho­
mogeneous state in order to exhibit the differences between the two reg­
ularization methods. Substitution into the equation of equilibrium with the 
definition of stress rate, (2), and damage rate, (4), yields 

ae dF (ae a3e) 
(1 D0)E - (££0)2 - + lb - = 0ax dY ax ax3 

(31) 

which admits harmonic stationary wave solutions with a wave number k

30 

21t 
20 

kfo 

10 

k = 
J

-(1 -_n o)_E_-_d_
d

�_(_E_£
0

-)
2 

dF 
12 --(££0)2

D dY 

differential approximation 

integral model 

(32) 

0+-������-+-������-+-������-1 

0.0002 0.0003 0.0004 0.0005 

Strain 

FIG. 1. Variation of Critical Wavelength with Initial State of Strain: Comparison 
of Integral and Differential Formulation 
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In the numerical calculations, F(Y) = 1 [1 + b1(Y - ¥0) + bz(Y -
¥0)2] 1 with E = 32,000 MPa; v = 0.2; b1 = 605 MPa 1; b2 = 5.42 x 104 

MPa 2
, and Y0 = 60 x 10 6 MPa, which correspond to the usual values 

for concrete in tension. The wavelength is normalized by the inverse of 
characteristic length on Fig. 1. The difference between the wavelengths of 
the integral and differential approximation models is of the order of 30%, 
which confirms that higher order terms in the expansion of (30) are not 
negligible [see also Lasry and Belytschko (1988)). 

In statics, the critical wave number is the parameter that sets the width 
of the localization zone. If this width is assumed to be a material property, 
it is clear that the internal length must be a model parameter that differs 
from one type of localization limiter to another. 

To compare quantitatively the nonlocal-damage model and the gradient­
plasticity model as far as discretization errors are concerned, the following 
methodology has been employed. 

First of all, the same stress-strain-evolution law is required for both 
models under monotonically increasing strain. In this case, each constitutive 
relation reduces to a local model since a 2EP/ax2  0 and Y  Y. The function 
Fin the nonlocal model, (3), is derived from this condition. That is, using 
(2), (3), (4), and (9), and recalling that in the present case, D0  F(Y) 
and Y = Y = EE0e, the stress-strain relation in rate form is 

a  [ 1 F E(E0)2 :; J EE (33) 

The same type of relation is derived for the plasticity model, from (17) and 
(20) with the previously cited condition, a2EP/ax2 = 0, namely 

. HE . 
cr

=

H+l E (34) 

Hence, equating (33) and (34), the evolution law for damage Fshould satisfy 
the following ordinary differential equation 

dF 1 
2Y 

dY 
+ F - 1 + H = 0 (35) 

The initial condition for this equation is defined as follows: at peak stress 
the material is still undamaged. The strain at peak str�ss is set equal to one 
(s* = 1); thus, the associated energy release rate is Y = E/2 and damage, 
or equivalently, F must be zero. Hence, with the initial condition F(E/2)
= 0, the solution of (35) is 

F(Y) = -

1- (1 - /2_)
1 + H VEY 

(36) 

The corresponding stress-strain response, for homogeneous strain, is plotted 
in Fig. 2. 

Second, even if this damage-evolution law induces the same stress rate 
for both limiters, the dispersion equation for the nonlocal damage model, 
(12), is still dependent on the initial strain field, while the one associated 
with the gradient-dependent model is independent of E

0
, (22). Another 

condition is then imposed. Since in statics, the first bifurcation is expected 
to set the width of the localization zone, the added condition is simply that 
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E* = 1 

FIG. 2. Stress-Strain Curve for Two Models under Monotonically Increasing Ho­

mogeneous Strain 

Cf Co 
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j / 
0.8 

0.6 

Gradient plasticity 

0.4 

0.2 

k 
0 . ...._1---+--+--+--+--t�t--+--+--+--+--t�t--+--+--+--+-

1. 2. 3. 4. 5. 6. 7. 8.

FIG. 3. Normalized Wave Velocities ate• versus Wave Number 

the same critical wave number [see (14) and (23)], must be obtained at this 
first bifurcation, namely at peak stress (E* = 1). A relation between the 
characteristic length of both models is then obtained 

(37) 
This result highlights again the previous remark that in order to obtain the 
same localization zone with two different models, even if they are relatively 
close, a different internal length must be used. In the following, the internal 
length is denoted ( generically for both models, although it is known for 
comparison purposes that the internal lengths in both models are not equal. 
Fig. 3 shows the waye velocities for both models normalized by the elastic 
wave speed, c0 = \/I!Jp, at the peak stress as a function of the wave number. 
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They present a similar behavior, although the nonlocal model reaches the 
elastic wave speed faster as the wave number increases. 

FINITE-ELEMENT REPRESENTATION: NONLOCAL MODEL 

In the previous section it was shown that propagation of loading waves 
is possible in the softening regime. However, this is demonstrated for a 
continuum domain f! and for disturbances defined in an infinite dimensional 
solution space. This section deals with the same problem (linearized dis­
turbance analysis by a von Neumann procedure) studied previously, but 
takes into account the finite-element representation, that is, the geometric 
and functional interpolation, as well as the integral-equation formulation. 

To clarify the presentation, the study is again restricted to one dimension; 
actually, an infinite bar is analyzed. The weak form of (10) is 

(38) 

Notice that following the previous discussion, the analysis is restricted to 
the strain softening subdomain {}. Forced boundary conditions are taken 
since the disturbance u is only valid in {}. The constitutive relationship, (2) 
and (9), can now be introduced into (38) to deduce the complete integral 
equation in a classical displacement formulation 

l iJ2u l [ dF(Y) - p&u - dx = &u (1 - n°)fi(x) - &0 ----
{I at2 {I dY 

[ W(s x) 0. ] 

· Jn Vr(x)
fa e(s) ds dx (39) 

At this point, a particular finite-element representation is chosen. It con­
sists of constant length elements of size h with linear interpolation functions. 
The integration of the mass matrix can be readily done. For the integration 
and special assembly of the discrete-stiffness matrix see Pijaudier-Cabot and 
Huerta (1991). After some algebraic deductions, the discrete equation of 
motion at node j is obtained 

iJ2(I (1 - D0)E . . .. 
ph -' = 

h
(Uj

i - 2Uj + 2Uj+ i) at2 

dF(Y) [ � . . . ] + (££0)2 

dY mf,_oc f3jm(Um 1 - 2Um + Um+l) (40)

where (J
j 

= interpolation of the disturbance at node j, that is, (J
j 

= u(x); 
the parameter 13

jm is simply 13
jm = hW(x

j 
xm)!Vr(xl The nonlocal term, 

the last integral in (39), has been integrated, as the others, by a one-point 
quadrature rule. 

Finally, the linearly interpolated form of the exact disturbance field de­
fined by (11) is substituted into (40), and the discrete von Neumann analysis 
can be performed. Notice that the aim is not to evaluate the accuracy of 
the time-integration technique, which is assumed to remain exact, but to 
study the influence of the spatial discretization. After some algebra, the 
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phase velocity of the disturbance is derived taking into account the finite­
element representation 

Y2[1 cos(kh )] 
C = Co kh 

dF(Y) +oc 
(1 DD) - (ED)2£ ---h L Pjme-ik(j-m)h 

dY m= -oc 

(41) 
This equation shows clearly, and as expected, that discretization intro­

duces numerical dispersion as a function of kh. This dispersion is geomet­
rically added to the one introduced by the regularization. Moreover, the
integral term of the nonlocal model requires numerical integration, and the
effects of such an approximation on the wave velocity are also included in
( 41 ). The summation in this equation is simply the discrete Fourier transform
of the averaging function. If this Fourier transform is computed exactly, the
phase velocity results in 

c 
= 

Co
Y2[1 

k:
os(kh)] 

J
(l - Do) - (Eo)2£ d��) 'l'(k) (42)

which is the exact phase velocity modified by the classical dispersion term
obtained for a discrete elastic medium. 

Fig. 4 shows the evolution of the phase velocity in the discrete model
normalized by the exact velocity denoted by c

e 
for wave number k = 1.5,

and an initial strain Eo = 1 = E* (strain field corresponding to the peak
stress). This figure shows that the finite-element discretization induces the
expected dispersion and large errors compared with the exact velocity. When 
an exact integration of the nonlocal term is performed, the ratio c/ce 

does 
not present a truncation even if it departs from 1 very rapidly. The discrete
Fourier transform induces the usual truncation and therefore larger errors.
Actually, some aliasing may be expected, although the size of the localization
prevents its influence in the numerical computations. Accurate results can 
only be expected when the size of the elements is smaller than the internal 

1.0 
C / Ce 

0.8 

0.6 

0.4 

0.2 

2. 

Nonlocal damage 
k=3 

discrete Fourier transform 

exact Fourier transform 

4. 6. 8. 10. 

FIG. 4. Damage Model: Discretization Influence at e0 = E• 
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length of the model l
e
; thus, in the microscale order, which is much smaller 

than the real structure size. 
Fig. 5 shows the evolution of the phase velocities as the wave number 

and the initial strain state e0 increase. Although Fig. S(a) shows that the 
error is constant for different wave numbers, ( 41) demonstrates the classical 
results, specifically, that the larger the wave number, the larger the expected 
error. This is exemplified in Fig. S(b), where calculations have been per­
formed for e0 = 6e*. When e0 is in the order of e*, the error introduced 
by the discretization seems to be partly compensated by the error in the 
discrete Fourier transform when k is growing. In finite-element computa-
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FIG. 5. Damage Model: Comparisons of Discretization Influence for Different Wave 
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tions, this presents no practical use, since damage is expected to grow rapidly 
along with the strain e0

. 

FINITE-ELEMENT REPRESENTATION: 

GRADIENT-DEPENDENT MODEL 

Due to the fact that second-order spatial derivatives of the inelastic strain 
field are needed in this model, the finite-element description differs from 
the previous example. The weak form of the equation of motion is standard 

l c
P
u l- pou - dx = oeE(e - eP) dx

-0- at
1 -0-

(43) 

The constitutive relations, and more specifically the yield condition, (18), 
is not local in space, but it is a second-order differential equation. A nu­
merical scheme proposed by de Borst and Miihlhaus (1992) relaxes the 
consistency condition at yielding and satisfies it through a weighted residual, 
that is, weak form 

i oeP [E(e - eP) - HfiP - HEit a
zep

] dx = o (44) 
-0- �2 

where the trial functions are arbitrarily chosen in the same space of the 
solution eP. The presence of second-order derivatives of eP in (44) requires 
continuous derivatives of the inelastic strain; thus, a Hermite interpolation 
for eP is taken. That is, for an element going from node j to j + 1 the 
perturbation of the inelastic strain is interpolated by 

fP 

eP(x) = [fii(x)Hz(x)fI/x)fiix)] · ( {Jx ) 
,+1 

ff+ l.x 

(45) 
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FIG. 6. Gradient-Plasticity Model: Discretization Influence on Phase Velocity 
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where PJ and I'1,x = nodal values at node j of the perturbation of the 
inelastic strain and its gradient, respectively. The interpolation functions 
can be found in Appendix I. The discrete equations for this model have 
been derived by de Borst and Miihlhaus (1992) using a linear interpolation 
for the nodal displacements. In the present disturbance analysis, where 
boundary conditions are purposely omitted since they do not modify the 
final result, the governing discrete ordinary differential equations reduce to 

(� �) {:iil + (;, ;,) {i} - O
a12 I 

(46) 

where M = consistent mass matrix; U = vector containing the interpolation 
of the disturbance at each node; fP = vector containing the nodal values 
of the plastic strain and the first spatial derivative. 

For each element, the matrix K is 2 x 2, KP is 2 x 4, and KPP is 4 x 4. 
In the particular case of constant-length elements, these matrices are iden­
tical for each element. Hence, after exact integration and matrix assembly, 
three linear algebra equations are obtained at each node 

+ �; I'f-1,x - :
2 

I'f,x � I'f+1 + �; I'f+ 1 .x) (47a)

Kf/f; i + (Kf 1 + K�3)if; + K�1if;+1 = Ki;,fff 1 + Ki;,if'f_1., 

+ (Kff + Ki;,nf'f + (Ki;,� + Kfntr,x + Kfi;,I'f+ 1 + Kf�I'f+i,x (47b)

Kf4if; 1 + (Ki4 + Kfi)if; + Ki2if;+1 = K?iff_1 + K�iI'f-i.x

+ (K�1; + Kmtf + (KZ + Kii)I'f.x + K�1;I'f+ 1 + K��I'f+i ,x (47c)

At this point, the exact disturbance solution needs to be replaced in ( 47). 
Simple considerations show that the solution must be of the form 

if. = Ae tk(x; ct) 
I 

ff = ikA1Ae-tk(x; c' l

fP. = -k2A Ae-tk(x; ct) 
J,X 2 

(48a) 

(48b) 

(48c) 

where A1 and A2 are unknown constants. Physically, A1 should represent 
the portion of the plastic strain over the total strain. After some algebra, 
the phase velocity of the disturbance in the softening region can be computed 
from 

c = c0 (k�)2 
{ 2[1 - cos(kh)] [ 1 + �; (kh)2 J - A1kh sin(kh)} (49)

which is deduced directly from the discrete form of the equilibrium equation, 
(47a). The two parameters A1 and A2 are deduced directly from the two 
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discrete equations ( 47 b) and ( 47c), one associated to the inelastic strain and 
one associated to the gradient of inelastic strain. They read 

h . [ 13 kHl2c,] 
6 

[1 - cos(kh)] = 2A1k sm(kh) 
420 

h2(1 + H) + -
2
-

{
h3 2 + 2A k2 

- (1 + H) hH/22 105 15 G 

[ 
(kh)2

] [ h
3 1 ]

} 
- 1 - -- -- (1 + H) - - Hl2 

2 1� � G (50a) 
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sin(kh)  2A1k {[ ;0 
h(l + H) + 5� HI� J cos(kh) + [ !! h(l + H)

- 5� Ht�]} + 2A2k2 [;:
o 

h2{1 + H) + 1
2
0 l�] sin(kh) (50b) 

The limiting analysis, h going to zero and k finite, may be done to check
the previous equations and verify the so-called exact values of both param­
eters A1 and A2 ; they are 

1 
Alexact = 1 + H[l ([Gk)2]'

A2exact = Alexact {51) 

The ratio between this "finite-element" wave velocity, (49), and the exact 
one c, is plotted in Fig. 6 for several wave numbers. The softening parameters 
is chosen such that H  0.1. The element size must be smaller than the 
internal length of the model if accurate results are desired. The wave number 
has a strong influence on the wave speed, too. For low wave numbers, the 
phase velocity can be overestimated. Convergence toward the exact solution 
is not monotonic. This is not surprising, since the weak formulation of the 
yield condition does not guaranty monotonic convergence. 

These conclusions can be extended to the evaluation of the plastic-strain 
rate and its gradient as shown in Fig. 7. The finite-element discretization 
exhibits an even larger error as the sign of the plastic strain can be opposite 
of the exact one ( continuous model). This numerical approximation suggests 
that plastic strains may simply decrease while the yield condition is satisfied. 

Obviously, the present results are dependent on the interpolation function 
and the intergration schemes. It can be noticed that matrix }(PP is not sym­
metric. However, ( 40) remains identical when the symmetric part of }(PP is 
employed instead of the original unsymmetrical matrix. It can be further 
suggested that the interpolation orders are not consistent, since a cubic 
polynomial is used for the plastic part of the disturbance, and a linear 
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interpolation is performed for the disturbance itself. Under-integration of 
the plastic strain may alleviate this inconsistency in the momentum equation, 
(43). Fig. 8 shows the error on the phase velocity when the plastic strain 
rate eP is under-integrated by a one point quadrature rule. Comparison 
with the exact integration scheme demonstrates that the error is even larger. 

Finally, Fig. 9 compares the phase velocities obtained for both models at 
three different wave numbers. The initial strain state is at the peak stress 
E

D = e*. 
Although slight differences exist, namely that the discretization of the 

gradient-dependent model captures waves with low wave numbers more 
accurately, both models require an element size that is smaller than their 

18



internal length. On the other hand, the plasticity model can overestimate 
the wave velocity, which is not the case in the integral model. 

CONCLUSIONS 

Two types of localization limiter have been compared. Although they 
seem to be relatively close, with the stress-strain response under monotonic 
loading and a constant homogeneous strain field the same, both models 
yield different dispersion equations. Moreover, for the damage model, the 
phase velocity is a function of the state of strain, and this is not the case in 
the plasticity model. 

Both constitutive relations contain an internal length scale that defines 
the width of the localization zone. However, given the width of the shear 
band, different internal lengths are derived for each model. This underscores 
the fact that the internal length must be viewed as a model parameter. In 
fact, the differences between the internal length parameters are associated 
with the manner in which the nonlocal information is introduced in the 
model, that is, averaging in the damage model and using a second-order 
gradient in the plasticity model. In fact, the previously suggested derivations 
of gradient models from nonlocal-integral models were not completely rig­
orous. The localization modes and the influence of the internal length should 
be different in each limiter. 

The finite-element discretization produces dispersion. With the nonlocal 
model, this dispersion can be divided into two parts: one is classical and it 
is associated to the usual discretization of elliptic operators; and the other 
is due to the nonlocal term and it is associated to a discrete Fourier trans­
form. 

The finite-element discretization with the gradient-plasticity model yields 
also a dispersion equation. Convergence toward the exact solution as the 
element size tends to zero is not monotonic. Large errors are observed in 
the plastic strain rate. 

The present study shows that, for both models, the size of the finite 
elements must be smaller than the internal length in order to achieve good 
accuracy. In transient finite-element analysis, which focuses on capturing 
accurately the propagation of the damage or plastic strain fronts, these 
results suggest that finite elements should be very small compared to the 
size of the structure. This underlines clearly the need for adaptive remeshing 
strategies at least in the localization area where the anelastic behavior may 
damp out any spurious reflections of short enough wavelengths [see Bazant 
(1978)]. 
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APPENDIX I. HERMITIAN INTERPOLATION OF THE PLASTIC STRAIN 

Consider a finite element of length h going from node j to node j + 1. 
The plastic strain disturbance is interpolated with the following polynomials: 
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with 

fl1 
1 3 ( X � Xjr + 2 ( X � Xjr

fl
2 [(

x� xj) 2
(

x� xlr+
(

x� xl
r]h

f/3 3 ( X � X1 r z ( X � Xj r 
f/4 [-(Yr+ (x � xj

Y] 
h 

in the global coordinate system where the initial coordinate of the first node 
is xj, h = xj+i xi and xis x s xi+l· 
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