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Abstract 

Although laminated materials have been used for decades, their employment has 

increased nowadays in the last years as a result of the gained confidence of the 
industry on these materials. This has provided the scientific community many 
reasons to dedicate considerable amount of time and efforts to address a better 
understanding of their mechanical behavior. With this objective both, experimental 

and numerical simulation have been working together to give response to a variety 
of problems related with these materials. 

 
Regarding numerical simulation, a correct modeling of the kinematics of 

laminated materials is essential to capture the real behavior of the structure. 
Moreover, once the kinematics of the structure has been accurately predicted other 
non-linear phenomena such as damage and/or plasticity process could be also 
studied. 

 
In consequence, in order to contribute to the constant development of simpler 

and more efficient numerical tools to model laminated materials, a numerical 
method for modeling mode II/III delamination in advanced composite materials 

using one- and two-dimensional finite elements is proposed in this work. In addition, 
two finite elements base on a zigzag theory for simulating highly heterogeneous 
multilayered beams and plates structures are developed here. 

 
The document is written based on results of four papers published in indexed 

journals. Copies of all these papers are included in Appendix. The main body of this 
thesis is constituted by Chapters 2 to 4. Chapter 2 deals with the numerical treatment 
of laminated beams and plates. Chapter 3 presents the formulation of the LRZ beam 
and the QLRZ plate finite elements based on the Refined Zigzag Theory. Finally, the 

main contribution of this thesis, the LRZ/QLRZ delamination model, is developed in 
Chapter 4. 

 

majesus
Nota adhesiva
Marked definida por majesus



 

XV 

Resumen 

Aunque los materiales laminados se han utilizado durante décadas, su uso ha 

aumentado en los últimos años como resultado de una mayor confianza por parte de 
la industria. Esto ha proporcionado a la comunidad científica muchas razones para 
dedicar una considerable cantidad de tiempo y esfuerzos en aras de una mejor 
comprensión de su comportamiento mecánico. Con este objetivo tanto la simulación 

experimental como numérica han estado trabajando juntos para dar respuesta a una 
variedad de problemas relacionados con estos materiales. 

 
En cuanto a la simulación numérica, un correcto modelado de la cinemática de 

los materiales laminados es esencial para capturar el comportamiento real de la 
estructura. Por otra parte, una vez que la cinemática de la estructura se ha predicho 
con precisión otros fenómenos no lineales como los proceso de daño y/o plasticidad 
podrían ser también estudiados. 

 
En consecuencia, con el fin de contribuir al constante desarrollo de herramientas 

numéricas más simples y eficaces para modelar materiales laminados, un método 
numérico para el modelado de la delaminación (modo II/III) en materiales 

compuestos avanzados utilizando elementos finitos de una y dos dimensiones es 
propuesto en este trabajo. Además, dos elementos finitos para la simulación de vigas 
y placas de varias capas altamente heterogéneos son desarrollados aquí. 

 
El documento está escrito en base a los resultados de cuatro artículos publicados 

en revistas indexadas. Copias de estos artículos se incluyen en el Apéndice. El 
cuerpo principal de esta tesis está constituido por los Capítulos 2-4. El Capítulo 2 
aborda el tratamiento numérico de vigas y placas laminadas. El capítulo 3 presenta 
la formulación de los elementos finitos de viga LRZ y placa QLRZ basados en la 

Teoría Zigzag Refinada. Finalmente, la principal contribución de esta tesis, el 
modelo de delaminación LRZ/QLRZ, se desarrolla en el capítulo 4. 
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1 Introduction 

A laminated material is an orderly stacking of a finite number of relatively thin 
layers perfectly linked together, designed for achieving, among other properties, 

improved strength, stability, energy absorption and resistance to fatigue and 
correction. Nowadays, the varieties of materials to be combined available on the 
market and the different techniques of manufacturing made their design extremely 
customizable according to the needs, which is the key attribute.   

 
Laminated or multilayered materials have a multitude of applications in a 

diversity of sectors. Aviation, astronautics, automotive, marine, civil engineering, 
sports equipment, musical instruments and information technology are a sample of 

them. Laminated materials are present in our daily life. For example, the modern 
windshields (Figure 1.1a), which generally consist of a sandwich of glass sheets 
with a plastic layer between them. Ballistic glasses (Figure 1.1b) are a special 
multilayered material, which are usually constructed by an alternation of plastic 
sheets and hard and soft glass layers that make the laminate stronger and more 

elastic. A very important laminated material in the electronic industry is the Printed 
Circuit Board (PCB) (Figure 1.2), which is a stacking of prepregs and copper layers. 
Laminated wood beams are also a multilayered material commonly used in civil 
engineering. These are constructed by stacking up wood plies bonded by adhesives. 

A special case of multilayered laminates are the sandwich-structured materials, 
which consist of two thin but stiff skins and a lightweight but thick core between 
them (Figure 1.3). One of the most interesting multilayered materials are the 
advanced composites (Figure 1.4). These are widely employed in many high-

performance applications where conventional materials cannot be used. Each layer 
of these laminates consists of a composite material known as fiber-reinforced 
polymer (FRP), which is made of continuous fibers surrounded by a polymeric 
matrix. 
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a) b) 

 

  
Figure 1.1 – Modern windshields for automobiles (a) (From: 

http://www.titanmotorsports.com) and ballistic glasses for windshields (b) (From: 
http://www.miller-holzwarthinc.com/). 

 

 
Figure 1.2 – Printed circuit board. From: http://www.clarydon.com/. 

 

a) b) c) 

 
Figure 1.3 – Sandwich laminated formed by an aluminium honeycomb as core with skins of 

aluminium (a), fiber-glass composites (b) and fiber-carbon composites (c). From: 
http://www.cel.eu/. 

 

 
Figure 1.4 – Advanced composites of carbon fibers (CFRP). From: http://www.zero-

carbon.com. 
 

http://www.titanmotorsports.com/
http://www.miller-holzwarthinc.com/
http://www.clarydon.com/
http://www.cel.eu/
http://www.zero-carbon.com/
http://www.zero-carbon.com/
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Although laminated materials have been used for decades, their employment has 
increased nowadays in the last years as a result of the gained confidence of the 
industry on these materials. This has provided the scientific community many 
reasons to dedicate considerable amount of time and efforts to address a better 
understanding of their mechanical behavior. With this objective both, experimental 

and numerical simulation have been working together to give response to a variety 
of problems related with these materials.  

 
Regarding numerical simulation, the subject covered in this work, a correct 

modeling of the kinematics of laminated materials is essential to capture the real 
behavior of the structure. Moreover, once the kinematics has been accurately 
predicted other phenomena such as damage process could be also studied.  

   

In order to correctly predict the kinematics of complex structures, 3D finite 
elements analysis can be the best alternative. However, the simulation of large 
multilayered structures with many plies can be unaffordable with 3D analyses 
because of the excessive computational cost, especially when non-linear studies are 

required. In addition, the discretization of very thin layers can lead to highly 
distorted elements carrying numerical issues.  

These difficulties made the simpler models [1, 2], such as the Equivalent Single 
Layer (ESL) or the Layer-Wise (LW), a proper alternative to model multilayered 

laminates. In ESL theories governing equations are written for the whole plate, 
which leads to a constant number of variables through the thickness. This 
characteristic makes ESL models very efficient. However, they suffer from 
limitations to correctly simulate the kinematics of highly heterogeneous laminates. 

Unlike ESL theories, LW models define each layer as an independent laminate 

which implies that the number of variables dependent on the number of analysis 
layers. Although LW theories accurately describe the behavior of multilayered 
laminates with independence of the level of transverse heterogeneity, they may 
result unattractive for simulating large laminated structures with many plies. 

A good compromise between the accuracy of LW models and the computational 
efficiency of ESL models are the Zigzag theories (ZZT). ZZT models are a special 
case of LW models where the number of unknowns is independent of the number of 
analysis layer.  

Among many other, the Refined Zigzag Theory (RZT) developed by Tessler et 
al. [3, 4] is a simple, efficient and robust ZZT theory to be considered for developing 
numerical tools able to simulate multilayered laminated materials. 
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According to the fracture process of advanced composites materials, different 
failure mechanisms can occur. These can be grouped into intra- and inter-laminar 
fracture modes, depending where the failure occurs: within or between the layers. 
The fiber fracture, the matrix cracking and the fiber-matrix shear failure (debonding) 
are distinguished as intra-laminar failure modes since they occur within the layer. 

Delamination, i.e. the relative displacement between neighboring layers, is a 
common inter-laminar failure mode that once it has been occurred the load carrying 
capacity of the composite member could be considerately reduced. Furthermore, this 
phenomenon may take place suddenly without any notice. These characteristics 

made delamination a really dangerous failure mechanism in advanced composite 
materials. 

 
During the design phases of composite laminates, may be important to know 

how the global response of the structure is affected by delamination. For this 
purpose, the numerical simulation results very helpful. 

Numerical techniques based on the linear elastic fracture mechanics (LEFM), 
the cohesive zone models (CZM) or the continuum damage mechanics (CDM) are 

usually applied for simulating delamination in a variety of engineering problems. 
Some applications examples are the skin-stiffness debonding [5] (CZM), the ply 
drop-off test [6] (CDM), the skin-core delamination and sub-laminate buckling [7] 
(LEFM) and the delamination in low-energy impact [8] (CZM). In these problems, 

the structures are discretized by means of 3D finite elements [6], by a combination 
between 3D elements and interface elements [8] or by employing shell elements and 
interface elements [5]. Although a detailed discretization of the structure is needed 
to accurately capture mix-mode delamination process in complex studies, simpler 
structural discretization may be enough for simulating delamination in cases where 

the opening mode (mode I) could be neglected. For instance, such case is found in 
low energy impact analyses, where fracture mode I appears usually after the shear 
modes (mode II and mode III) when the impact energy is considerably increased [8]. 
Thus, numerical methods based on a simpler discretization can be an acceptable 

approximation for modeling cases where delamination process is governed by the 
shear modes.  

 

1.1 Objectives 

This research aims at contributing to the development of simpler and more 
efficient numerical tools for simulating laminated materials.  
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Thus, this thesis is focused on two topics: the modeling of the kinematics of 
multilayered beam and plate structures (i) and the simulation of delamination in 
advanced composite materials (ii). At point (i), robust, efficient and effective finite 
elements are looked for. Regarding to point (ii), a simple delamination model that 
only uses reduced model to discretize the laminate is desired. 

 
The main goals of this thesis are: 
 

• The development of a numerical method based on one- and two-

dimensional finite elements for simulating delamination processes 
(mode II and mode III) in beams and plates of advanced composite 
materials. 

 
• The development of one- and two-dimensional finite elements based on 

the RZT theory in order to simulate the lineal behavior of highly 
heterogeneous multilayered beams and plates. 

 

1.2 Organization 
In order to achieve the objectives listed above, this work is structured as 

follows: 
 

• Chapter 2 deals with the numerical treatment of laminated beams and 
plates. A review of more common reduced models employed to 

simulate multilayered beam/plate structures is presented first. Then, a 
complete description of the RZT plate theory used for developing the 
beam (LRZ) and plate (QLRZ) finite elements is given. Furthermore, 
the influence on the zigzag in-plane displacement of both, the transverse 

anisotropy and the span-to-thickness ratio is analyzed. In the second 
part of the Chapter, the failure mechanisms in advanced composite 
materials are dealt. In particular, special attention is given to the 
delamination process. Moreover, the most common numerical methods 
to model the failure mechanisms are presented.  

 

• Chapter 3 presents the formulation of the LRZ beam and the QLRZ 
plate finite elements. The performance of these elements is studied 
through several numerical examples. Verification and convergence 

analyses are also performed. Furthermore, the problem of shear locking 
and the techniques employed to overcome it are addressed. 
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• Chapter 4 proposes the numerical model based on the LRZ and QLRZ 
finite element to model delamination process in advanced composite 
materials. A description about the isotropic damage model used for 

managing the onset and growth of delamination is also given. In 
addition, the modified Newton-Raphson scheme and the implicit 
integration algorithm used for solving the non-linear problem are 
presented. The performance of the method is analyzed by different 
numerical examples. The potential of this method to simulate multi-

delamination is also investigated. Moreover, the limitations of the 
model due to the LRZ/QLRZ kinematics are also studied. 
 

• Chapter 5 summarizes the main achievements of this work and gives 

some aspects which deserve future attention. 

 
• Appendix includes copies of all four papers on which this document is 

based. 
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2 Numerical treatment of laminated beam/plate 
structures 

In the first part of this Chapter, a review of reduced models for modeling 
multilayered beams and plates is presented. Furthermore, the Refined Zigzag Plate 
Theory (RZT) proposed by Tessler et al. [4] is fully described. Then, the influence 
on the zigzag in-plane displacement of the material transverse anisotropy and the 

laminate span-to-thickness ratio is studied.  
The second part is focused on advanced composite materials and their failure 

mechanisms. In particular, special attention is given to the inter-laminar damage or 
delamination. Moreover, usual damage models to simulate intra- and inter-laminar 

failure modes are treated.  
 

2.1 Multilayered beam/plate theories 

The most precise technique for simulating laminated structures are the micro-
models, where 3D finite elements are used for discretizing not only each ply but also 
the constituents within layer or even the interface between them. Although 
macroscopic approach at layer level could be considered, i.e. the constituents are not 

discretized, simulation of large laminated structures with many of plies can be 
unaffordable with 3D analyses due to the excessive computational cost, especially 
for non-linear analyses. In addition, the discretization of very thin layers can lead to 
highly distorted elements carrying numerical issues. 

 

Multi-scale approaches [9, 10] can be also used to model multilayered materials. 
In this method a macroscopic model is used to obtain the global response of the 
structure whereas the material behavior is solved with a microscopic model. 
Basically, the macro-model transfers the structural deformation field onto the micro-

model as boundary conditions. Then, within the micro-scale, the material response is 
evaluated and transferred back to the macroscopic model as a constitutive law. 
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Subsequently the structural equilibrium is found in the macro-scale and a new 
deformation field is computed and so forth. The simulation of large structures 
having complex geometries by means of this method results computationally 
unattractive. 

 

Thus, simpler and more efficient techniques than that above-mentioned are 
required for modeling laminated structures. 3D descriptions can be reduced to 2D 
models by introducing hypotheses on the displacements or/and on the stresses field, 
since laminate thickness is at least one order of magnitude lower than in-plane 

dimensions.  
However, in order to develop precise reduced models, the through-thickness 

discontinuity of mechanical properties within a laminated material has to be 
accounted for. From a qualitative point of view, the influence of the transverse 

anisotropy on the thickness distribution of the displacement and stress fields is 
schematized in Figure 2.1.  

The in-plane displacement, outlined in Figure 2.1a, could exhibit abrupt changes 
of their slope along the thickness direction at each interface because large 

differences on the transverse shear properties between layers exist. This slope 
change leads to an in-plane displacement with zigzag pattern whose amplitude and 
shape depend not only on the transverse anisotropy but also on the laminate span-to-
thickness ratio, as discussed in Section 2.1.4. Furthermore, all displacements are 

continuous along the thickness.  
Although in-plane stresses can be discontinuous at each interface (Figure 2.1b), 

transverse stresses must be continuous for equilibrium reasons (Figure 2.1c). 
However, like in-plane displacement, the first derivatives along z are discontinuous 
at each interface.  

As a result, it is desirable that multilayered models satisfy the following two 
conditions: zigzag pattern of in-plane displacements (ZZ condition) and the 
continuity of transverse stresses along the thickness direction (TC condition) [11].  

 

Many 2D approaches have been developed and improved since 19th century 
[12]. In order to facilitate their classification, they could be distinguished according 
what type of unknown variables is chosen (i) and how these variables are described 
(ii). At point (i), displacements are defined as variable in the so-called 

“displacement-based theories” (DB) whereas stresses are employed in “stress-based 
theories” (SB). In case of both, the displacement and the stress are considered as 
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unknown, a “mixed1 approach” (MB) is obtained. Regarding to point (ii), unknowns 
could be described by means of Equivalent Single Layer (ESL) or Layer-Wise (LW) 
descriptions.  

In ESL description, governing equations are written for the whole plate, i.e. 
unknown variables are not defined for each layer but for the whole laminate. Thus, 

the number of variables is independent of the number of analysis layers.  
On the contrary, each layer is treated as an independent plate in LW description, 

assuming separate displacement/stress field within each ply. In other words, 
governing equations are written for each layer. Moreover, in order to enforce 

compatibility conditions at the interface between layers, interface constraints on 
displacements and transverse stresses are required. Hence, the number of variables is 
dependent on the number of analysis layers.  

A special case of LW models where the number of unknowns is independent of 

the number of analysis layer are the Zigzag theory (ZZT).  
Useful overviews of available theories for modeling laminated plate structures 

have been written by Carrera [1] and Reddy [2]. 
 

 a) b) c) 

 
Figure 2.1 – Continuous zigzag in-plane displacement a), discontinuous in-plane stresses b), 

and continuous transverse stresses c).  
 

2.1.1 Equivalent Single Layer models 
Displacement-based models with ESL description (DB-ESL) have been widely 

developed for decades. An interesting review of DB-ESL models has been written 

by Wanji et al. [13].  
 
The most basic DB-ESL model is the Classical theory (CT) [12, 14], which 

propose that transversal sections remain plane and normal to the reference surface 

                                                 
1 Mixed approaches can be distinguished between full or partial models. In full mixed 
approaches all stresses are considered as variable whereas in partial mixed approach only the 
transverse shear stresses are accounted for.  
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after deformation, i.e. transverse shear strains are postulated to be negligible with 
respect to other strains. Because of these assumptions, the CT theory is limited to 
thin beams/plates where transverse shear effects can be neglected. In addition, this 
model despises the transverse normal deformation. The CT plate theory has only 5 
unknown variables. Classical beam and plate models are also known as Euler-

Bernoulli and Kirchhoff theories, respectively. 
 
An improvement of the CT model are the First Order Shear Deformation theory 

(FSDT) [15-17], which enhance the CT kinematics by adding shear effects. This 

model establishes that transversal sections remain plane but not necessarily normal 
to the axis after deformation. Therefore, the transverse shear strain is defined 
constant through the thickness but not zero as in the CT theory. Like the CT model, 
strain along the thickness is not accounted for. Also, the plate FSDT contains only 5 

unknown variables. However, in order to accurately compute transverse shear 
stresses, a shear correction factor2 is required. FSDT beam and plate models are also 
known as Timoshenko and Reissner-Mindlin theories, respectively. 

 

Although CT and FSDT theories are excellent alternatives to accurately model 
homogenous thin and thick structures, respectively, they gives poor predictions 
when applied to laminated structures having high level of transverse anisotropy. The 
cause is found in the linear thickness distribution of the axial displacement, which 

does not match the ZZ pattern schematized in Figure 2.1a.  
 
FSDT theory can be improved by adding high-order terms of thickness 

coordinate z to the in-plane and transverse displacement fields. These improvements 
are known as High Order Shear Deformation theories (HSDTs).  

One of first HSDTs model, where only the in-plane displacements are improved 
by a third-order polynomial, has been proposed by Reddy [18]. This model proposes 
a constant distribution of the transverse displacement. 

Usually, both, the in-plane and the transverse displacement fields are defined by 

means of third-order polynomials [19]. However, it is also possible to find HSDTs 
models where fifth- and ninth-order polynomials are employed to describe the 
displacement field [20].  

One advantage of HSDTs theories is that no shear correction factor is needed. 

Furthermore, those HSDTs models where a high-order description of the transverse 
displacement is used allow obtaining better through-thickness distribution of the 
transverse stresses.  

 
                                                 
2 This factor is equal to 5/6 for homogeneous rectangular transversal sections. 



Section 2.1 
 

11 

With the aim to accurately satisfy the continuity of the transverse stresses along 
the thickness, mixed formulations should be employed.  

For instance, Auricchio et al. [21] have proposed a partially mixed-based ESL 
model (MB-ESL) where the transverse shear stresses are a priori defined by means 
of the equilibrium equations assuming piecewise quadratic functions. Furthermore, 

the displacement field is described by the FSTD kinematics. Although the thickness 
distribution of transverse shear stresses is well predicted, the axial displacement 
does not match the ZZ form because of the linear FSTD kinematic. 

Another way to achieve through-thickness continuity of the transverse stresses is 

by integrating a posteriori of the equilibrium equations3. However, the accuracy of 
this method depends on how precise the displacement field is modeled. A 
comprehensive analysis of the available techniques for computing transverse stresses 
in multilayered plates has been presented by Carrera [22]. 

   
Summarizing, although the TC condition could be satisfied by some ESL 

models, any of them is able to capture the zigzag shape of in-plane displacements. 
 

2.1.2 Layer-Wise models 
A LW description of the in-plane displacement is an accurate alternative to 

fulfill the ZZ condition. Displacement-based LW models (DB-LW) employs ESL 
theories, such as the CT, FSDT and HSDTs, to describe the displacement field of 

each layer.  
Some DB-ESL and DB-LW models have been evaluated and compared by 

Reddy and Robbins [23]. 
Although the ZZ condition is satisfied by DB-LW models the TC condition is 

not fulfilled unless appropriate interface constraints are considered. For example, 
Robbins and Reddy [24] have improved a DB-LW theory by assuming a piecewise 
continuous distribution of the transverse strain, which allows to compute the inter-
laminar continuity of transverse stresses. 

 
Models that accurately fulfill the ZZ and TC conditions are those in which both, 

the displacement and the stress field are described by means of LW description. 
These models are known as mixed-based LW models (MB-LW).  

Among many works related with MB-LW theories, readers are referred to 
Carrera’s papers [25, 26] to go deeper on these models. 

 

                                                 
3 The equilibrium equations for computing “a posteriori” the transverse shear stresses are 
defined by div[ ] = 0σ , where σ  is the stresses tensor.  
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Although LW theories accurately fulfill both, the ZZ and the TC condition, the 
number of unknown variables is proportional to the number of analysis layers. As a 
result, these models yield not only a high level of accuracy but also an amount of 
unknown variables similar to the 3D analysis. For this reason, LW models may 
result unattractive for simulating large laminated structures with many plies. 

Therefore, these models should be employed to analyze complex problems where 
other less expensive approaches fail to give realistic predictions. 

 

2.1.3 Zigzag models 
A good compromise between the accuracy of MB-LW theories and the 

computational efficiency of DB-ESL models are the ZZT theories. One of the most 
important advantages of these theories is that the number of kinematics unknowns is 

independent of the number of analysis layers. 
In ZZT models the in-plane displacement is defined by a superposition of a 

piecewise continuous function, called zigzag function henceforth, over a linear, 
quadratic, cubic or even higher order displacement field. The zigzag functions allow 

these models to reproduce the abrupt change in the slope of the in-plane 
displacement at each interface, as shown in Figure 2.1a. Moreover, in order to fulfill 
the TC condition and to reduce the number of unknown variables, constraint 
equations at the interface between layers must be enforced.  

 

One of first attempt to refine an ESL model by means a zigzag function has 
proposed by Murakami [27]. In this model, the FSDT kinematics is enhanced by 
adding a piecewise linear zigzag function. It is important to remark that the slope of 
the Murakami’s zigzag function is defined positive for odd layers and negative for 

even plies, which implies that the shape of this function depends on the stacking 
sequence of the laminate only. Then, Murakami et al. [28] have also proposed an 
improvement of a high-order ESL theory.  

It should be mentioned that approaches where the displacement field is 

improved by means of the Murakami’s zigzag function are unable to a priori satisfy 
the TC condition.  

In order to provide the through-thickness continuity of the transverse shear 
stress, Carrera [29] has developed a refined FSDT plate model based on Murakami’s 

concepts [27]. In Carrera’s model the TC condition is fulfilled a priori by assuming 
a piecewise quadratic function and a set of equilibrium conditions at each interface. 

Demasi [30] has investigated the numerical performance of Murakami’s zigzag 
function by means of FEM analysis. 
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At around the same period Murakami was developing his refined FSDT model 
[27], Di Sciuva [31] was working in his ZZT model. He proposed a refinement of 
the FSDT theory by adding a linear zigzag function also. However, the transverse 
shear strain is defined as a kinematic variable instead of a bending rotation as in the 
FSDT model. Moreover, in order to compute the zigzag function, constant shear 

stresses along the thickness are enforced, which is a very strict constraint for 
simulating multilayered materials.  

Furthermore, Di Sciuva [32] and Cho et al. [33] have independently provided a 
refinement of a third-order ESL models by adding a linear zigzag function. 

 
Many ZZT theories, including those mentioned above, require C1-continuity 

when solved via finite element analysis, which implies a disadvantage versus 
simpler C0-continuity theories, such as the FSDT model.  

In order to overcome this drawback, Averill [34] formulated a refined linear 
zigzag theory where the FSDT model is used as its baseline. Then, the FSTD 
kinematics variables, i.e. the deflection, the axial displacements and the bending 
rotation, are considered as unknowns together with a kinematics variable associated 

with the zigzag function. All these variables can be interpolated with C0-continuious 
polynomials. Moreover, the through-thickness continuity of the transverse shear 
stress is enforced using a penalty method. A cubic zigzag model was also provided 
by Averill et al. [35]. Although C0-continuity is achieved, Averill’s theories suffer 

from their inability to model correctly clamped boundary conditions.  
 
With the goal to avoid these shortcomings and propose an amiable theory to 

formulate robust C0-continuity finite element, Tessler et al. [3, 4, 36, 37] have 
developed the Refined ZigZag Theory (RZT). The plate4 RZT theory proposed by 

Tessler et al. [36] is described below in next section.  
The RZT displacement field is defined by a superposition of a linear zigzag 

function over the FSDT kinematics. In these models, constraint conditions on the 
distribution of the zigzag functions are imposed, which leads to a constant piecewise 

distribution of transverse shear stress along the thickness. However, the TC 
condition of transverse shear stresses could be computed a posterior by using 
equilibrium equations [38, 39].  This post-process gives accurate results because the 
zigzag in-plane displacements are correctly predicted. On the other hand, transverse 

normal strain is despised. The RZT kinematics variables are the displacements and 
the bending rotations of the FSDT theory together with a variable associated with 
the zigzag function. The key attributes of the RZT are, first, the zigzag function 

                                                 
4 The beam RZT displacement field is easy obtained from the plate RZT theory by neglecting 
the in-plane transverse displacement v. 
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vanishes at the top and bottom surfaces of the laminate section. Second, it does not 
require full transverse shear stress continuity across the thickness coordinates. Third, 
in order to formulate finite elements, C0 continuous polynomials are needed for 
discretizing the kinematic variables. Fourth, all boundary conditions can be 
effectively simulated. Finally, the zigzag function is defined as a function of the 

transverse shear modulus of each layer, which results useful in non-linear material 
analysis [40, 41]. 

 
The simplicity, efficiency and effectiveness of the RZT theory allowed develop 

in this thesis two robust C0 continuous finite elements for simulating multilayered 
beams [38] and plates [39]. The formulation of these elements is presented in 
Chapter 3. Simultaneously, Gherlone et al. [42] and Versino et al. [43] have also 
formulated beam and plate finite elements based on the RZT theory.  

 
Recently, Barut et al. [44] have extended the RZT plate theory [4] for taking 

into consideration the transverse normal strain. In this model, the in-plane 
displacement consist of a piecewise quadratic function, whereas a quadratic 

polynomial is used for describing the transverse displacement component. Based on 
this extended RZT model, Barut et al. [45] have formulated a C0 continuous 
triangular plate element. 

 

2.1.3.1 Refined zigzag theory (RZT) 
Let us consider a laminated plate of uniform thickness h formed by N 

orthotropic layers of thickness hk (k  = 1, 2, … , N). The orthogonal Cartesian 
coordinates system (x,y,z) is employed as reference coordinates. The ordered pair 

(x,y) is set as the in-plane coordinates whereas z denotes the thickness coordinate 
which ranges from –h/2 and +h/2. The in-plane reference surface is placed at the 
middle plane for z = 0.0. 

 

The displacement field in the RZT plate theory is written as 

 

0

0

0

( , , ) ( , ) ( , ) ( , , )

( , , ) ( , ) ( , ) ( , , )

( , ) ( , )

k k
x

k k
y

u x y z u x y z x y u x y z
v x y z v x y z x y v x y z
w x y w x y

θ

θ

= − ⋅ +

= − ⋅ +

=

 2.1 

where the axial displacement zigzag function ku  and kv  are defined as 

 
( ) ( , )

( ) ( , )

k k
x x

k k
y y

u z x y
v z x y

φ ψ

φ ψ

= ⋅

= ⋅
 2.2 
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and superscript k  indicates quantities within the kth layer. The uniform axial 

displacements along the coordinate directions x and y are denoted by 0u  and 0v , 

respectively; xθ  and yθ  represent the average bending rotation of the transverse 

normal about the negative y and positive x directions; and 0w  is the uniform 

transverse deflection. k
iφ ( ),i x y=  denote the known piecewise linear zigzag 

function, and iψ  is a primary kinematics variable defining the amplitude of the 

zigzag function. Summarizing, the unknown variables are 

 0 0 0

T

x y x yu v w θ θ ψ ψ =  a  2.3 

where the uniform displacement 0u , 0v  and 0w , and the bending rotation xθ  

and yθ  are derivate from the FSDT theory, where the iψ  variables are associated 

with the added displacement zigzag functions ku  and kv . 

The in-plane ( k
pε ) and transverse shear ( k

tε ) strains are defined as 

 

0

0

0 0

( )

( )

( ) ( )

kx x
xk

x
y yk k

p y y

xy
y yk kx x

x y

u z z
x x x
v z z
y y y

u v z z z
y x y x y x

θ ψφ
ε

θ ψ
ε φ
γ

θ ψθ ψφ φ

 ∂ ∂ ∂ − +
∂ ∂ ∂    ∂ ∂∂   = = − +  ∂ ∂ ∂     ∂ ∂    ∂ ∂ ∂ ∂ + − + + +     ∂ ∂ ∂ ∂ ∂ ∂      

ε 2.4 

 
( )
( )

k k k
x x xxz xz x xk

t kk
yz yz y yy y y

w x

w y

θ β ψγ γ β ψ
γ γ β ψθ β ψ

 ∂ ∂ − +   +
= = =    +∂ ∂ − +        

ε  2.5 

being k
izγ  and k

iβ  ( ),i x y= , the transverse shear strain and the slope of k
iφ  in 

the thickness direction ( k k
i i zβ φ= ∂ ∂ ) for the k th layer, respectively. izγ  represent 

the average transverse shear strains of the FSDT ( iz iw iγ θ= ∂ ∂ − ). 

The stress-strain constitutive relationship for the k th orthotropic layer is written 
as 
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=  2.6 

or 

 k k k= Dσ ε  2.7 

where kD  is the constitutive matrix referred to the reference coordinate system 

(x,y,z). Matrix kD  is computed by Eq.(3.50) in Section 3.3.3. 

a)  b)  

 
Figure 2.2 – Strain (a) and stress (b) field. 

The zigzag functions k
iφ  are defined by piecewise linear continuous functions 

through the laminate thickness as 

 ( ) ( )
1 1

11 1
1 1

2 2 2 2

k k k k
k k k ki i i i
i i i

φ φ φ φφ ξ φ ξ φ ξ
− −

− + −
= − + + = +  2.8 

where k
iφ  and 1k

iφ
−  are the zigzag function valued at k  and k−1 interface, 

respectively, with 0 0N
i iφ φ= =  and 

( )1

2 1
k

k
k

z z
h

ξ
−−

= − .  

Figure 2.2 schematizes the zigzag function k
xφ , the zigzag displacements ku , 

and the axial displacements ku  along x direction for a four-layered laminate. Similar 
distributions of these values are found for the y direction. 

 

The computation of k
iβ  is obtained by computing the derivative of  k

iφ  (Eq.(2.8

)) with respect to the z coordinate as  
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( )1k kk

i ik i
i kz h

φ φφβ
−−∂

= =
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 2.9 

which result in piecewise constant functions. 
The piecewise linear zigzag functions of Eq.(2.8) can be written as functions of 

k
iβ  as 

 ( )1 1
2

k k
k k ki
i i

h βφ φ ζ−= + +  2.10 

Because the zigzag function vanishes on the top and bottom surfaces, the 

through-the-thickness integrals of the slope functions k
iβ  is equal to zero, i.e. 

 ( )
1

/2 /2 1 1

/2 /2
1 1

0
k

k

k kN Nh hk k k N ki i
i i i i ikh h

k k
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− −
= =

 −
= = − = − = 

 
∑ ∑∫ ∫  2.11 

Integrating the layer transverse shear strains of Eq.(2.5) across the laminate 
thickness and using Eq.(2.11) reveals that 

 
/2

/2

1 h k
iz iz i ih

dz w
h

γ γ θ
+

−
= = ∂ ∂ −∫  2.12 

which verifies that izγ  represent the average transverse shear strains of the 

FSDT. Moreover, Eq.(2.12) shows that the zigzag amplitude variables iψ  do not 

contribute to izγ . 

For convenience, a new difference function iη  is defined as 

 i iz iη γ ψ= −  2.13 

which leads to the following expression of the transverse shear strains for the 

kth layer as 

 ( )1k k
iz i i iγ η β ψ= + +  2.14 

Using Eqs.(2.14) and (2.6), the transverse shear stresses are written in matrix 

form as 
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11 12

21 22
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k
yt tyz yy
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βητ ψ
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=  2.15 

or, alternatively, they can be expressed as 
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In this equation, the first stress vector associated with iη  functions is 

independent of the zigzag functions. The second and third stress vectors contain the 

coefficients ( ){ }11 1 k
t xD β+  and ( ){ }22 1 k

t yD β+ , which are dependent on the 

zigzag functions. In this theory, both coefficients are set to be constant quantities, 

denoted as izG  ( ),i x y= , whose constraint leads to constraint conditions on the 

distribution of the zigzag function. Thus, the continuity of the transverse shear 

stresses at each layer interface, i.e. 1k k
iz izτ τ += , is not enforced. In addition, Eq.(2.16) 

revels that k
izτ  is piecewise constant across the thickness. 

The constraints give 

 
11

22

1

1

xz
k k

tx

yzy
k
t

G
D
G
D

β
β

 −    =      − 
 

 2.17 

where the explicit form of izG  is obtained by substituting Eq.(2.17) in the 

integral of Eq.(2.11), i.e. 
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The coefficients izG  are considered as an average transverse shear stiffness 

properties of the laminate referred to the reference coordinates system (x,y,z). 
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a) b) c) 

 

Figure 2.3 - Thickness distribution of the zigzag function k
xφ  a), zigzag displacement ku  b), 

and axial displacement ku c) in the RZT theory. 

2.1.4 Influence of the span-to-thickness ratio and the transverse 
heterogeneity on the zigzag pattern of the in-plane displacements 

The obective of this section it is to analyze how the amplitud and shape of the 

zigzag in-plane displacement is afected by not only the through-thickness anisotropy 
of transverse shear stiffness but also the laminate span-to-thickness ratio. 

 
In order to assess the objective, a clamped beam of thickness h = 1and span-to-

thickness ratio λ = 5, 10, 20 and 50 is studied. The beam is submitted under a unitary 

vertical displacement Δw at the free end (Figure 2.3a). The laminated material is 
formed by three layers of thickness hk = h/3 (k  = 1,2,3) with symmetry distribution 
(Figure 2.3b). Four levels of transverse heterogeneity are performed defining 
different transverse shear modulus for the middle layer (GM) (Table 2.1). 

Heterogeneity ranges from the “lowest” (H1) to the “highest” (H4) level for which 
the shear modulus of the middle layer is two to thousand times smaller than that of 
the top/bottom layers (GT/B), respectively. All cases were solved via plane stress 
analysis. 

a)  b)  

 
Figure 2.4 - Cantilever beam under vertical displacement a) and symmetric three-layered 

material b). 
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Transverse heterogeneities 

 GT/B / GM 

H1 2 

H2 10 

H3 100 

H4 1000 

Table 2.1 – Relation between the shear moduli of the top/bottom layer and the middle layer. 
The less and most heterogeneous configurations are the heterogeneity H1 and H4, 

respectively.    

 
Figure 2.4 show the normalized axial displacement for all span-to-thickness 

ratios.  

a) b) 

 

c) d) 

 
Figure 2.5 – Normalized axial displacement for span-to-thickness ratio λ = 5 a), λ = 10 b), λ 

= 20 c) and λ = 50 d). 

 
Figure 2.4a shows that only a difference of ten times (H2) between the shear 

moduli is enough to obtain a zigzag distribution of the axial displacement for the 

less slender beam (λ = 5). On the contrary, a difference of thousand times (H4) gives 
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a slight zigzag distribution for the most slender beam (λ = 50) (Figure 2.4c). Another 
interesting observation is that a difference of two orders of magnitude (H3) between 
the shear moduli provokes an almost linear distribution for the most slender beam 
and a slight zigzag pattern for the beam of λ = 20. Furthermore, a difference of one 
order of magnitude (H2) gives a zigzag kinematics for the less slender beam only 

where the lowest heterogeneity (H1) provokes a linear distribution for all span-to-
thickness ratios.  

Therefore, the amplitude of the zigzag in-plane displacement is increased 
according the transverse anisotropy of the shear modulus is higher whereas it is 

reduced according the laminate is more slender. 

2.2 Advanced composite materials and delamination 
phenomenon 

Advanced composites laminates are a stacking of fiber reinforced plastic (FRP) 
layers. FRP plies are composed of continuous fibers embedded in a polymeric 
matrix. Although there is a large bandwidth of fiber materials, carbon are the most 

widely used for high-performance applications. In addition, there are a countless 
number of different carbon fibers, e.g. high strength, high stiffness, surface treated 
or non-surface-treated, etc., and polymeric matrixes, e.g. thermosetting, 
thermostable or thermoplastic. This wide variety of material leads to an almost 

infinite number of potential mixtures. Moreover, the chance to orient the fibers 
according an optimum distribution of strength and stiffness provides a very 
customizable design. Furthermore, the use of very light and strong raw materials 
leads to lightweight laminates with a considerable high specific strength and 
stiffness5. Other well valued characteristics of these materials are the fatigue and 

corrosion resistance and the high energy absorption capacity. 
 
These features made the advanced composites a good alternative for 

applications where the weight saving implies substantial cost reductions. Moreover, 

they are also the material of choice for structures under high strengths. Aviation and 
astronautics are some examples of application. The use of advanced composites in 
aeronautics has been considerable increased in last decades [46]. For example, about 
25 and 50 percent of the airplanes Airbus A380 and Boing 787 Dreamliner are made 

of composite materials. In addition, composite materials represent about 80 percent 
of the structure weight in the construction of satellites. Automotive, marine, civil 
engineering, sport and medical industries are also interested in advanced composite 
materials. 
                                                 
5 The specific strength is the strength per unit weight. It is also known as the strength/weight 
ratio. The same holds for specific stiffness. 
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In order to define the load carrying capacity of the structure, the study of 

material fracture process is a very important topic. Advanced composite laminate 
may suffer from different failure mechanisms. These can be grouped into intra- and 
inter-laminar fracture modes, depending where the failure occurs: within or between 

the layers. The fiber fracture6, the matrix cracking7 and the fiber-matrix shear 
failure8 (debonding) are distinguished as intra-laminar failure modes since they 
occur within the layer. Delamination, i.e. the relative displacement between 
neighboring layers, is a common inter-laminar failure mode that once it has been 

occurred the load carrying capacity of the composite member could be considerately 
reduced. Moreover, this phenomenon may take place suddenly without any notice. 
These characteristics made the delamination a really dangerous failure mechanism in 
advanced composite materials. 

Although all these failure modes have to be accounted for accurately simulating 
the fracture behavior of advanced composites materials, this thesis is focused on the 
numerical simulation of delamination only. However, for the sake of completeness, 
the modeling of intra-laminar fracture modes is also treated below. 

 

2.2.1 Modeling of intra-laminar fracture modes 
In order to simulate intra-laminar fracture modes, intra-laminar damage models 

or also called failure models can be employed. These models consist of failure 

criteria, which evaluate if stress leads to the failure, and degradation models, which 
manage the material degradation.  

 
A simple and well known failure criterion is the maximum stress/strain criterion, 

which is computed by comparing the uni-axial stresses/strains with their threshold 
value for each component. Despite its simplicity, no interaction of stresses is taken 
into account.  

 

                                                 
6 Fiber fracture can be provoked by not only tensile but also compressive stresses. Failure 
due to tensile stress occurs when the fiber strength is achieved. Longitudinal compressive 
stress can induce micro-buckling of fiber if the matrix is unable to hold the fibers in their 
position.  
7 When matrix strength is exceeded a crack is produced which tends to propagate 
perpendicularly to the stress direction until the fiber. If fiber strength is enough strong the 
crack can be stopped, otherwise, the discontinuity will be continue causing fiber fracture. 
Furthermore, fracture can grow parallel to the fiber at the fiber-matrix interface, i.e. 
debonding. 
8 Debonding occurs when fibers are disjointed from the matrix due to the fiber-matrix 
interface is unable to support the shear stresses acting parallel to the fibers. 
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Failure criteria that consider interactions between stresses can be subdivided 
into two classes, namely the global criteria, which use only one equation for all 
failure modes, and the physically-based criteria, which employ different criteria for 
different failure modes.  

One of first attempts to develop a global criterion was presented by Hill [47], 

who proposed a single formula that take into account different strengths in various 
principal directions. Another very interesting global criterion has been proposed by 
Tsai and Wu [48], where a strength-based second order polynomial is proposed for 
all intra-laminar failures modes.  

Among hundreds of physically-based criteria, a well-known damage criterion 
and widely used by commercial finite element codes is the Hashin’s failure criterion 
[49]. This damage model is able to model fiber fracture and matrix cracking under 
tensile and compressive stress state. An improvement of the Hashin’s model was 

proposed by Goyal et al. [50] where fiber-matrix shear failure is also considered. 
Goyal’s model is also known as the extended Hashin’s model. Based on Hashin’s 
ideas, Puck [51] proposed a failure criterion where three different types of matrix 
cracking are considered. Dávila et al. [52] have developed a damage model, denoted 

LaRC03, that consists of six phenomenological failure criteria which can predict 
matrix and fiber failures without curve-fitting parameters. An improvement of the 
LaRC03 failure criteria, denoted LaRC04, was proposed by Pinho et al. [53].  

 

Intra-laminar material properties of FRP composite laminates, such as 
stiffness/strengths parallel and transverse to the fiber, can be characterized according 
the American [54, 55] and the European [56-58] standards. These experimental tests 
are carried out under tensile and compressive load states. 

 

Oller et al. [59] and Martínez [60] proposed another way for modeling the non-
linear mechanical behavior of FRP laminated structures. Their methods are based on 
the combination of the constitutive models of each phase, i.e. fibers and matrix, 
together with governing equations that control the mechanical behavior of the 

composite. In other words, the mechanical behavior of each component is treated 
separately whereas the global response of the composite is obtained by assembling 
all contributions of components. In order to separately model the phases in a uni-
directional (UD) composite material, the Classical mixing theory [61, 62] or the 

Serial/Parallel mixing theory [63] can be employed. 
 

2.2.2 Inter-laminar fracture mode - Delamination phenomenon 
 According to Bolotin [64], two kinds of delamination can be distinguished: 

internal and near-surface delamination. The first one is situated within the bulk of 
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material (Figure 2.5a) whereas the second one, as its name suggests, is placed near 
the surface of the laminate (Figure 2.5b).  

 
After near-surface delamination, delaminated part does not necessarily have the 

same deformation as the rest of laminate. That leads to a complex fracture process 

where have to be accounted for not only the delamination growth but also local 
stability of the delaminated part.  

 
Unlike near-surface delamination, the delaminated parts after internal 

delamination have similar deformation because of the interaction between them. 
Moreover, local instabilities are almost improbable to occur after internal 
delamination. However, this type of delamination may considerably modify the 
stiffness of the composite member provoking a substantial reduction of the load 

carrying capacity.  
 
Furthermore, many delamination processes can take place within the laminate, 

which is known as multi-delamination (Figure 2.5c).  

 
Local forces, thermal actions and low-energy impacts may serve as sources of 

delamination during transportation, storage, montage or service life of the structure. 
In addition, geometry discontinuities such as access holes, notches, free edges or 

bonded and bolted joints can also induce delamination due to high stress gradients.  

a) b) 

 

c) 

 
 

Figure 2.6 – Internal (a), near-surface (b) and multiple (c) delamination according to 
Bolotin. 

 
At a microscopic scale, delamination is preceded by the formation of micro-

cracks in a resin-rich zone between layers (Figure 2.6). Although micro-cracks could 
migrate through the plies [65], delamination is usually assumed to propagate parallel 
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to the ply planes within the interface, which is an acceptable idealization for its 
numerical modeling. Furthermore, according to fracture mechanics, delamination 
may occur as a single fracture mode I, mode II, mode III (Figure 2.7), or more likely 
as any combination of these (mixed mode). Mode I or opening mode corresponds to 
transverse normal tensile stress where mode II and III are provoked by the sliding 

and the scissoring shear stresses9, respectively. These stresses are known as inter-
laminar stresses also. 

 

 
Figure 2.7 – Photomicrograph of an advanced composite where resin-rich zones and 

delamination are shown, from Barut et al. [44].  

a) b) c) 

   
Figure 2.8 – Fracture mode I a), mode II b) and mode III c). 

 
Delamination process, i.e. the onset and the growth, are governed by two inter-

laminar properties, namely the strength and the fracture toughness (Gc). These 
properties depend on the delamination mode. The fracture toughness is also known 

as fracture energy, since it is defined as the amount of energy dissipated per unit 
area during the fracture process.  

 
Both inter-laminar properties can be characterized via experimental tests. The 

mode II strength can be determined by the American standard ASTM D2344 [66]. It 

is not clear to the author if exist experimental tests to characterize strength for 
modes I and III. However, mode I strength is usually considered equal to the in-
plane transverse tensile strength because the opening mode is matrix-dominated. 
Regarding to mode III strength, an assumption of safe design is to define it equal to 

mode II strength. 

                                                 
9 Sliding and scissoring shear stresses correspond to the transverse shear stresses parallel and 
transversal to fiber direction, respectively.  
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Fracture toughness for pure modes I (GIc) and II (GIIc) can be determined via the 

double cantilever beam (DCB) [67, 68] and the end notched flexure (ENF) [69] 
standardized tests, respectively. Mode III fracture energy (GIIIc) can be characterized 
via the no standardized edge crack torsion (ECT) test proposed by Lee [70].  

In order to compute the fracture toughness (Gc) for different mode mixing ratios 
(ρ = GII/GT)

10 from the pure mode I (DCB) to the pure mode II (ENF), the mixed 
mode bending (MMB) [71] standardized test can be employed. However, the 
experimental characterization of the fracture energy for all possible mixed mode 

results impossible to carry out. For this reason, the fracture toughness is usually 
determined by means of curves that approximately fit the data generated by 
experimental tests. For example, among many others [65, 72], the BK model [73], 
the power law model [74] and the polynomial curve [75] (Table 2.2) are some of the 

most common mixed mode criteria. The fracture energy characterization is 
schematized in Figure 2.8. 

 

Mixed mode criteria 

BK ( )c Ic IIc IcG G G G κρ= + −  

Power law 

1 2

1I II

Ic IIc

G G
G G

κ κ
   

+ =   
   

 

For 1 2κ κ κ= =  

1

1
c

Ic IIc

G
G G

κκ κ
ρ ρ

−
    − = +   
     

 

Polynomial 2
1 2c IcG G κ ρ κ ρ= + +  

Table 2.2 – Mixed mode criteria for computing the mixed mode fracture toughness. ρ  is 

the mode mixing ratio defined as GII/ GT , whereas 1κ , 2κ  and κ  are curve fitting 

parameters. 

 

                                                 
10 The mode mixing ratio ρ relates the mode II energy release rate (GII) with the total energy 
release rate (GT) in order to distinguish different mixed modes. This value ranges from 0 
(pure mode I - DCB) to 1 (pure mode II – ENF). 
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Figure 2.9 – Characterization of the fracture toughness for different mode mixing ratios. 

 

2.2.2.1 Modeling of delamination 
Methods based on the linear elastic fracture mechanics (LEFM), such as the 

Virtual Crack Closure Technique (VCCT) [7, 76], the J-integral method [77, 78] and 
the virtual crack extension method [79], have proved to be suitable for predicting 
delamination growth. These methods are used to compute the energy release rate by 
means of results obtained from finite elements analyses. Then, delamination 

propagation occurs when the energy release rate is higher than the fracture 
thoroughness. 

Nowadays, the VCCT technique is widely used to study several delamination 
cases, such as delamination buckling [80-82] and skin-stiffener debond [83-85], 

where the structure can be discretized with 3D, plane stress and/or plate finite 
elements. An interesting overview of this technique is presented by Kruger [7], 
where expressions to compute the energy release rate with different kinds of finite 
elements are also derived. 

LEFM-based methods can be also employed together with simpler models such 

as the LW theories. Recently, Saeedi et al. [86] formulated a delamination model 
based on a LW description where the energy release rate is computed via the VCCT 
technique. In addition, Saeedi’s model is contrasted with a 3D analysis that employs 
the J-integral method. Also, Barbero et al. [87] proposed a model based on a LW 

description where the virtual crack extension method is employed.  
Although the efficacy of these techniques to predict delamination growth is well 

known, an initial crack must be predefined since they are unable to predict 
delamination onset. This is a significant drawback for certain geometries and load 

cases where the predefined crack can be difficult to locate.  
 
Nowadays, cohesive or interface finite elements are other effective numerical 

method to fully simulate the delamination process. These elements are based on the 
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cohesive zone approach (CZM) proposed by Dudgale [88] and Barenblatt [89] 
where it is assumed that molecular forces or cohesive forces act in the close vicinity 
of the crack tip. As a result, the crack is extended within a fracture process zone 
where a softening process takes place instead of a sudden decohesion.  

The softening process is described by cohesive laws11 which use different 

criteria12 to control not only the onset but also the growth of delamination. Usually, 
onset criteria relate inter-laminar stress and strength whereas delamination growth is 
governed by the energy dissipated during the process13.    

Interface elements can be formulated based on solid-like [90, 91] or zero-

thickness [92-97] approaches.  
Solid-like interface elements are based on hexahedral solid elements with finite 

thickness. However, the transverse normal and shear stresses are accounted for only. 
All other stresses are set to zero. In addition, the initial thickness of the element has 

to be thin enough14 in order to avoid membrane effects.  
Unlike solid-like elements, zero-thickness elements are defined by two surfaces 

that are initially coincident, i.e. the thickness is equal to zero. These surfaces are 
held together by inter-laminar tractions as long as the interface is intact.  

Cohesive laws are usually written in stress-strain and traction-displacement 
relationships for solid-like and zero-thickness elements, respectively. An interesting 
comparison between both types of interface element can be found in Balzani’s PhD 
thesis [5].   

Cohesive elements do not require initial crack to provide delamination onset, 
which is an important advantages respect to the LEFM-based methods, but they 
have to be placed between the plies where delamination is expected to occur. Thus, 
in cases where delamination paths are unknown it would be necessary to place 
interface elements between all layers. As a result, the computational resources 

needed for carrying out the simulation is considerably increased, especially in 
laminates of many plies. For this reason interface elements are peculiar suitable for 
studies where delamination path is known a priori, such as skin-stiffener 
delamination problems [5, 94, 95, 98]. 

 
Methods based on the continuum damage mechanics (CDM) are also able to 

simulate delamination. Martinez et al. [6] successfully analyzed delamination in a 
ply drop-off test using 3D finite elements to discretize the laminate and an isotropic 

damage model to manage the material mechanical behavior.  
                                                 
11 Cohesive laws are frequently defined by means of bi-linear and exponential curves.  
12 These criteria are usually formulated taking into account mixed-mode delamination. 
13 When the area under cohesive law curve is equal to the fracture toughness complete 
decohesion occurs and delamination is propagated. 
14 A thickness of 1/100 of the thinnest layer thickness is usually adopted. 
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For this method, it is not necessary to know a priori where delamination is 
expected to occur because any layer can suffer from damage. However, 3D finite 
elements are required to describe the laminate. Because of this, the study of 
delamination in large laminated structures of many layers may be unaffordable with 
this method. In addition, the discretization of very thin layers can lead to highly 

distorted elements carrying numerical issues. 
 
Reduced models, such as those treated in Section 2.1, can be also employed to 

simulate delamination.  

ESL-based finite elements can be employed together with LEFM-based 
techniques [7] or interface elements [5, 91]. However, these elements cannot 
simulate delamination by themselves since their kinematics are unable to predict 
discontinuities in the displacement field. 

LW models can be also used in conjunction with LEFM-based methods [86, 87, 
99], as already mentioned. In addition, it is also possible to use interface elements in 
LW descriptions as proposed by Hosseini-Toudeshky et al. [100]. Furthermore, 
delamination can be simulated via LW models by incorporating constitutive laws to 

manage the non-linear behavior of the interface continuity condition [101]. 
However, the main disadvantage of LW-based models is that the number of variable 
depends on the number of analysis layers, which could result computationally too 
expensive to simulate large composite structures of many layers. 

To the knowledge of the author, the use of ZZT theories to model delamination 
in advanced composite laminates has been quite limited so far.  

Di Sciuva and Gherlone [102] developed a refined version of the cubic zigzag 
theory, where both, the displacement and the transverse shear stress are defined as 
variables on the surfaces of the laminate. This feature allows the model to be 

employed in sub-laminate approaches15 [103].  Although these approaches are able 
to simulate discontinuities on the displacement field, they may require excessive 
computational resources since the number of variables depends on the number of 
analysis layer. 

Icardi et al. [104-106] have proposed a model based on a refined 3D cubic 
zigzag theory to analyze damage induced by low velocity impacts on composites 
laminates. However, in order to overcome the C2 continuity requirement, FSDT-
based C0 plate elements are employed to approximate the solution. Then, stresses 

and other quantities of the zigzag theory are computed by a post-processing 
procedure based on strain energy updating from the FSDT model to the zigzag one. 

 

                                                 
15 Sub-laminate approaches are special cases of the LW description where the laminate 
thickness is conveniently divided in several sub-domains.  
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RZT theory is a good alternative to simulate laminate structures with highly 
transverse anisotropy. Among many reason, the efficiency and efficacy to capture 
the zigzag in-plane displacement are some of the most important, as already 
mentioned in Section 2.1.3. However, in order to predict the relative displacement 
between layers, the definition of the zigzag function is the key feature. This function 

depends on the transverse shear modulus of each layer, which provides to the RZT 
theory the ability of changing the shape of the in-plane displacement by simply 
modifying the shear properties of the plies. Thus, the relative displacement between 
neighboring layers can be modeled by simply locating a thin enough ply between 

them and then reduce the shear modulus of the added ply.  
Based on this idea, the author and advisors of this thesis have recently proposed 

a numerical model for predicting delamination in advanced composite beams [40] 
and plates [41] using the LRZ [38] and QLRZ [39] finite elements, respectively. 

This delamination model is presented in Chapter 4.  
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3 Formulation of the beam LRZ and the plate 
QLRZ multilayered finite elements 

Formulation of the two-noded beam LRZ [38] and four-noded plate QLRZ [39] 
finite elements are presented in this Chapter. These elements are based on the 
refined zigzag theory of Tessler et al. [4, 36] presented in Section 2.1.3.1. 

 

Both finite elements are formulated under the following consideration: 

• Small deformations and displacements. 

• Quasi-static application of loads and displacements. 

 

3.1 Weak form of equilibrium equations via the principle of 
virtual work 

The strong form of the differential equations is defined by the local Lagrangian 
equation of motion given by 

 [ ]div ρ+ − =b a 0σ  3.1 

being σ  the stresses tensor, b the body forces and ρa  the dynamics forces 

vectors. This equation must be satisfied at each point within the volume of the body, 

denoted by Ω . 
Now, boundary conditions have to be defined in order to formulate a complete 

boundary value problem. Thus, the stress-like (Newmann) and the displacement 

(Dirichlet) boundary condition, which are prescribed at the surfaces of the body tΓ   

and uΓ , respectively, are defined by 

 on and ont u= = Γ = Γt n t u uσ  3.2 

where n  is the unit normal vector. t  and u  are the external forces and 

displacement vector, respectively. 
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Eqs.(3.1) and (3.2) define a complete boundary value problem, where its weak 
form is obtained via the principle of virtual work (PVW) [107] as 

 d d d d 0
t

T T T T
tρ

Ω Ω Ω Γ
δ Ω+ δ Ω− δ Ω− δ Γ =∫ ∫ ∫ ∫a a a b a t ε σ  3.3 

Since dynamic effects forces are not considered in this work, Eq.(3.3) is 

rewritten as 

 d d 0
t

T T
tΩ Γ

δ Ω− δ Γ =∫ ∫ a tε σ  3.4 

where intd WT

Ω
δ Ω =∫ ε σ  is the internal work and extd W

t

T
tΓ

δ Γ =∫ a t  is the 

work of the external forces.  
Here, Eq.(3.4) is solved by the finite element method. Thus, the integrand of 

Eq.(3.4) is computed by the summation of the contribution of each finite element e 

as 

 ( )(e) (e)

(e) (e) (e) (e) (e)

1

d d d d 0
T T

t t

n
T T

t t
e

Ω Γ Ω Γ
=

δ Ω− δ Γ = δ Ω− δ Γ =∑∫ ∫ ∫ ∫a t a tε σ ε σ 3.5 

being (e)Ω  and (e)
tΓ  the volume and the contour of the element. Therefore, it is 

possible firstly to compute the stiffness matrix and the forces vector element by 
element and then assemble them all. 

 

3.2 LRZ beam finite element 
An isoparametric two-noded C0 beam element, named LRZ, with four kinematic 

variables per node based on the RZT theory is formulated in this Section. This 

element is able to simulate thick and thin beams of highly heterogeneous laminated 
materials. Since this element suffers of shear looking, as shown in Section 3.2.7.1, a 
selective numerical integration of the transverse stiffness matrices is employed to 
overcoming this effect. In order to evaluate the performance of the LRZ element for 

simulating laminated materials, convergence and comparison studies are carried out 
in Section 3.2.7.2 and 3.2.7.3, respectively.  

 

3.2.1 Beam RZT kinematics 
From Eq.(2.1), the RZT kinematics for a beam is obtained by considering the 

axial u displacement and the transverse deflection w only. Thus, the beam 
displacement field is defined as 
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 0

0

( , ) ( ) ( ) ( , )

( ) ( )

k ku x z u x z x u x z
w x w x

θ= − ⋅ +
=

 3.6 

with 

( ) ( )k ku z xφ ψ= ⋅  

The four kinematics variables of the RZT beam theory are 

 [ ]0 0

Tu w θ ψ=a  3.7 

 

3.2.2 Strain and generalized strain 

For convenience, the strain kε  of the k th layer is split into the in-plane ( k
pε ) and 

the transverse shear ( k
tε ) strains as 

0

0

( )

0

k
k xxk x

k p
kk

t x
x x

u zu z
xx xx

wu w
x zz x

ψθ φ
ε
ε φθ ψ

∂  ∂∂   ∂ −       ∂∂ ∂    = = = + + = ∂    ∂ ∂∂ ∂      −+      ∂  ∂ ∂ ∂ 

ε  

 
ˆ0

ˆ00

k k
mbb p pm

ss t t

φ

φ

εεε
εε

       
= + + = ⋅       
        

S

S

ε
ε

 3.8 

where mε , bε  and sε are the strain value duo to membrane, bending and 

transverse shear effects of the RMT theory, respectively. The in-plane and transverse 

shear strains values emanating from the RZT theory are denoted by mbφε  and sφε . 

ˆ pε  and ˆ tε  are the generalized in-plane and transverse shear strains vectors, 

respectively, defined as 
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1 1
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where ˆ( )•  denotes the generalized strain values. 

 

3.2.3 Stress-strain constitutive relationships 
The relationship between the in-plane and the transverse shear stresses and the 

strains for the k th layer are expressed in matrix form as 
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Dσ ε  3.10 

being Ek and Gk the Young and the shear modulus for the k th layer, respectively. 
 

3.2.4 Stress resultants 
According to the subdivision of the strains (Eq.(3.8)), the stress resultant vector 

σ̂  is subdivided into in-plane ˆ pσ  and transverse shear ˆ tσ  stress resultants as 
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where N , M  and Q  are the membrane force, the bending moment, and the 

transverse shear force of standard beam theory, respectively. Mφ  and Qφ  are 

respectively an additional bending moment and an additional shear force, which are 
derived from the RZT theory (Figure 3.1).  

a)  b)  

 

Figure 3.1 – Direction of stress resultants of standard beam theory (a) and those derived 
from the RZT beam theory (b). 
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The stress resultants for a beam are obtained by integrating stresses (Eq.(3.10)) 
over the transverse section A as 
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being ˆ
pD  and ˆ

tD  the generalized constitutive matrices given as 
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The generalized constitutive matrices D̂  are exactly computed using analytical 

integration. The kφ  function and its derivate kβ  within each layer k  are computed 

by Eqs.(2.10) and (2.17), respectively. Note that functions for x direction are only 

considered. Moreover, in case of beams, the parameter 11
k
tD  in Eqs.(2.17) and (2.18) 

is the shear modulus kG . 

 

3.2.5 Principle of virtual work 

Let us consider a beam of length L and transverse section A bh=  which is 

subjected to distributed q loads applied on the contour Γ  and point loads pi. For this 
case, the differential equations of equilibrium (Eq.3.4) is rewritten as 

 
V

1

dV d a p
T

pl
k k T

i i
i

Γ
=

δ = δ Γ + δ∑∫ ∫ a qε σ  3.14 

where the l.h.s. is the internal virtual work performed by the stresses kσ  and the 
r.h.s. is the external virtual work. 

Substituting Eq.(3.8) into the l.h.s. of Eq.(3.14) gives 

V V V
ˆ ˆdV dV dV

T T Tk k T k T k
p s x t t xzσ τδ = δ + δ∫ ∫ ∫S Sε σ ε ε  

Using Eqs.(3.8), (3.10), (3.12) yields 

V L L
ˆ ˆˆ ˆdV dL dL

Tk k T T
p p t tδ = δ + δ∫ ∫ ∫ε σ ε σ ε σ  
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Finally, the equilibrium equations of Eq.(3.4) can be written as 

 ( )
L

1

ˆ ˆˆ ˆ dL d a p
pl

T T T
p p t t i i

i
Γ

=

δ + δ = δ Γ + δ∑∫ ∫ a qε σ ε σ  3.15 

The integrands in Eq.(3.15) contain kinematic variables derivatives up to first 
order only, which allows to use C016 continuous finite elements. 

 

3.2.6 LRZ formulation 

3.2.6.1 Discretization of the displacement field 
The middle axis of the beam is discretized by using 2-noded isoparametric finite 

elements, where the kinematic variables a  of Eq.(3.7) are interpolated within each 
element as 

 [ ]
0

(e)
2

0(e) (e) (e)1
1 2

1 2

i i
i

u
w
θ
ψ

=

 
    = = = ⋅      
 

∑ n n

a
a N a N N = N a

a
 3.16 

where 

[ ](e)
4 0 0;

T
i i i i

N u w θ ψ= =N I a  

being ( )1i iN ξξ= +
1
2

(Table 3.1 and Figure 3.2) the linear shape function17 of 

node ith and 4I  is the 4x4 unit matrix. 

 

Node ξi 

1 -1 

2 1 

Table 3.1 - Values of ξi for each node. 

                                                 
16 In general, a finite element is Cm continuous if the displacement field and its m first 
derivatives are continuous between elements. Thus, a finite element is C0 continuous if the 
kinematic variables are inter-elements continuous only.   
17 In order to standardize the process of developing the elemental matrices, the shape 
functions Ni are established in the normalized natural coordinate system (ξ). In case of 
bilinear shape functions, Ni are normalized to the natural coordinate system (ξ,η). 
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Figure 3.2 – Linear shape functions of two-noded element. 

 
The element geometry is interpolated as 
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where ˆ
i iN N= , which leads to an isoparametric formulation18. 

Considering the length of the finite element defined by (e)
2 1L x x= −  and the 

form of iN , the value d dx ξ  is computed from Eq.(3.17) as 
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Thus, the derivatives of the shape functions with respect to the Cartesian 
coordinates are computed using the chain rule as 

 

1 1
(e) (e)

2 2
(e) (e)

d d d 1 2 1

d d d 2 L L

d d d 1 2 1

d d d 2 L L

N N
x x
N N
x x

ξ
ξ

ξ
ξ

= = − = −

= = =
 3.19 

3.2.6.2 Generalized strain field 

The interpolated generalized in-plane strains (e)ˆ pε  within each finite element are 

obtained by substituting Eq.(3.16) into Eq.3.9 as 

                                                 
18 The formulation is named isoparametric when kinematic variables as well as element 

geometry are approximated using the same shape function, e.g. ˆ
i iN N= . If the polynomial 

degree of ˆ
iN  is higher than that of Ni, then a super-parametric formulation is obtained; 

otherwise, the formulation is called sub-parametric. 
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(e)

0
0(e)

2 2
(e) (e) (e)

1 1

ˆ

ˆ ˆ

ˆ
i

i

m
i

p b p i p
i i

mb
i

i

Nu u
xx
N

x x
N

x x

φ

ε
θε θ

ε ψ ψ

= =

∂∂   
   ∂∂    
∂∂    = = = = =    ∂ ∂      ∂ ∂  

   ∂ ∂   

∑ ∑ nB a B aε  3.20 

where pB  and 
ipB  are the in-plane generalized strain matrices for the element 

e and the ith node, respectively. The matrix 
ipB  is split into membrane ( )m , 

bending ( )b  and zigzag ( )mbφ  contributions, which leads to 

 

0 0 0

0 0 0

0 0 0

i

i

m
i

p b

mb i i

N
x

N
x

N
x

φ

∂ 
 ∂   

∂   = =   ∂     ∂ 
 ∂ 

B

B B

B

 3.21 

In the same manner, the generalized transverse strains (e)ˆ tε  are obtained as 

 

(e)
(e)

0 2 2
0(e) (e) (e)

1 1

ˆ
ˆ

ˆ i

i
s ix

t t i t
i is

i i

Nw w N
xx

Nφ

ε θθ
ε

ψψ = =

∂∂     −−   = = = = =∂∂          
∑ ∑ nB a B aε 3.22 

where tB  and 
it

B  are the transverse generalized strain matrices for the element 

e and the ith node, respectively. Matrix 
it

B  is split into shear ( )s  and zigzag ( )sφ  

contributions as 

 
0 0

0 0 0
i

i
s i

t
s i

i

N N
x

Nφ

∂   − = = ∂       

B
B

B
 3.23 

3.2.6.3 Element stiffness matrix and nodal forces vector 
Considering Eqs.(3.5), (3.15), the beam element stiffness matrix and the nodal 

forces vector are obtained via the following equation 

 ( )(e) (e)

(e) (e) (e) (e)

L L
ˆ ˆˆ ˆ dL dL

T T T T

p p t tδ + δ = δ + δ∫ ∫ na q a pε σ ε σ  3.24 

being L(e) the length of the finite element. 
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Considering that 

(e) (e) (e) (e) (e) (e)ˆ ˆ
T T T T T TT T T

p p t tδ = δ ; δ = δ ; δ = δn n n na B a B a a Nε ε  

and substituting Eq.(3.12) into Eq.(3.24) gives 

( )(e) (e)

(e) (e) (e) (e)

L L

ˆ ˆˆ ˆ dL dL
T T T TT T T

p p p t t tδ + δ = δ + δ∫ ∫n n n n na B D a B D a N q a pε ε  

Then, substituting Eqs.(3.20), (3.22) into the previous equation yields 

( )(e) (e)

(e) (e) (e) (e) (e) (e)

L L

ˆ ˆ dL dL
T T T TT T T

p p p t t tδ + δ = δ + δ∫ ∫n n n n n n na B D B a a B D B a a N q a p  

Thus, the equation can be factored as 

( ){ } ( )(e) (e)

(e) (e) (e)

L L

ˆ ˆ dL dL
T TT T T

p p p t t t
 δ + = + δ ∫ ∫n n n na B D B B D B a N q p a  

( )(e) (e)

(e)

L L

ˆ ˆ dL dLT T T
p p p t t t

 + = + ∫ ∫n nB D B B D B a N q p  

Finally, Eq.(3.24) is reduced to 

 
(e)

(e) (e)

L
dLT= +∫n nK a N q p  3.25 

with  

 ( )(e)

(e)

L

ˆ ˆ dLT T
p p p t t t= +∫K B D B B D B  3.26 

Matrix (e)K  is the elemental stiffness matrix, which for convenience is 

computed as 

(e) (e) (e)
p t= +K K K  

being (e)
pK  and (e)

tK  the in-plane and the transverse elemental stiffness 

matrices, respectively, defined as 

 
(e)

(e)

(e)

L

(e)

L

ˆ dL

ˆ dL

T
p p p p

T
t t t t

=

=

∫
∫

K B D B

K B D B
 3.27 

To assess the influence of the reduced integration of matrix (e)
tK  for 

overcoming the shear locking of the solution, matrix (e)
tK  is split as follows 

 (e) (e) (e) (e) (e) T

t s s ss ssφ φ φ + + +  K = K K K K  3.28 

with  
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(e)

(e)

(e)

(e)
(1,1)L

(e)
(2,2)L

(e)
(1,2)L

ˆ dL

ˆ dL

ˆ dL

T
s s s s

T
s s s s

T
ss s s s

φ φ φ

φ φ

=

=

=

∫
∫
∫

K B D B

K B D B

K B D B

 3.29 

The external nodal forces vector extF  are defined by the r.h.s. of Eq.(3.25) as 

 
(e)

ext

L
dLT= +∫ nF N q p  3.30 

Considering Eq.(3.18), the integrals of Eq.(3.27) defined in the Cartesian 
coordinate are transformed to the natural coordinate as 

 
(e)

(e)

(e)
1(e)

L 1

(e)
1(e)

L 1

Lˆ ˆdL d
2

Lˆ ˆdL d
2

T T
p p p p p p p

T T
t t t t p t p

ξ

ξ

+

−

+

−

= =

= =

∫ ∫

∫ ∫

K B D B B D B

K B D B B D B

 3.31 

The derivatives of the shape functions with respect to the Cartesian coordinates 

contained into the generalized strain matrices B  are computed by Eq.(3.19). 

The integrals of the in-plane element stiffness matrix (e)
pK  (Eq.(3.31)) is exactly 

computed by using the one-point Gauss quadrature as 

 
(e) (e)

1(e)

1

L Lˆ ˆd
2 2 GP

T T
p p p p p p p GPW

ξ
ξ

+

−
 = =  ∫ ( )

K B D B B D B  

 (e) (e)

0.0

ˆL
GP

T
p p p p ξ

 =  ( = )
K B D B  3.32 

where 2GPW =  and 0.0GPξ =  are respectively the weighting factor and the 

natural coordinate of the center integration point (or Gauss points (GP)). Matrices 

B  are evaluated at 0.0GPξ = . 

 

The exact integration of matrix (e)
tK  is obtained by using two Gauss points. 

However, the full numerical integration of (e)
tK  leads to shear locking effects for 

slender beams. For this reason, a selective integration scheme is used, where 

matrices (e)
sK  and (e)

ssφK  are solved by employing a reduced integration (one 

integration point only) as 
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(e)
1(e) (e)

(1,1) (1,1)1 0.0

(e)
1(e) (e)

(1,2) (1,2)1 0.0

Lˆ ˆd L
2

Lˆ ˆd L
2

GP

GP

T T
s s s s s s s

T T
ss s s s s s s

ξ

φ φ φ ξ

ξ

ξ

+

−

+

−

 = =  

 = =  

∫

∫

( = )

( = )

K B D B B D B

K B D B B D B

 3.33 

and matrix (e)
sφK  (Eq.(3.29)) is full integrated using two Gauss point as 

 
(e) (e)21(e)

(2,2) (2,2)1
1

L Lˆ ˆd
2 2 GP

T T
s s s s s s s GP

GP
Wφ φ φ φ φ ξ

ξ
+

−
=

 = =  ∑∫ ( )
K B D B B D B  3.34 

Both natural coordinate GPξ  and weighting factor GPW  for the two-point Gauss 

quadrature are listed in Table 3.2. 

GP GPξ  GPW  

1 
1

3
−  1 

2 
1

3
+

 

1 

Table 3.2 – Natural coordinates and weighting factors of integration points. 

 

A study of the accuracy of the LRZ solution for modeling slender beams using 
this selective integration scheme is presented in Section 3.2.7.1. 

 

3.2.6.4 Boundary conditions 
The boundary conditions are: 

• Clamped side: 

0w u θ ψ= = = =  

• Simply supported side: 

0w =  

• Symmetry axis: 

0n n nu θ ψ= = =  

where “n” is the orthogonal direction to the symmetry axis. 
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3.2.6.5 Improved computation of transverse shear stresses 
Since the constitutive equation (Eq.(3.10)) yields a constant value of the 

transverse shear stress k
xzτ  into each layer, a discontinuous thickness distribution of 

xzτ  is obtained. A useful alternative to improve the computation of  xzτ  is to use the 

equilibrium equations 

 0x xz

x z
σ τ∂ ∂

+ =
∂ ∂

 3.35 

from which, the transverse shear stress at a point “P” located within the finite 
element is computed across the thickness by 

 
2

( )
z x

xz P h
P

z dz
x
στ

−

∂
= −

∂∫  3.36 

The axial stress xσ  at point “P” is calculated by the following approximation 

 
2

1

( ) ( )i
x i xP P

i
z N zσ σ

=

= ⋅∑  3.37 

where iN  is the shape function previously defined and i denotes the ith node. 

The nodal axial stress ( )i
x zσ  is obtained by the averaging of Gauss stresses from 

neighboring elements at the ith node.  
Finally, the thickness distribution of transverse shear stress is obtained by 

replacing Eq.(3.37) into Eq(3.36), 

 
2

2
1

( ) ( )
z ii

xz xP h
i P

Nz z
x

τ σ
−

=

 ∂
= − ⋅ ∂ 

∑∫  3.38 

3.2.7 LRZ studies 

3.2.7.1 Shear locking 
The selective integration scheme, as solution of the shear locking effects, is 

studied by analyzing a cantilever beam of length L subjected to a unit point load F = 
1 N (Figure 3.3). The beam is formed by a three-layered laminate, whose properties 
are listed on Table 3.3. 
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Figure 3.3 – Cantilever beam under point load. 

 

Laminated Material 

 
Layer 1 

(bottom) 

Layer 2 

(core) 

Layer 3 

(top) 

h [mm] 6.6667 6.6667 6.6667 

E [MPa] 2.19x105 2.19x103 2.19x105 

G [MPa] 0.876x105 8.80x102 0.876x105 

Table 3.3 – Material properties of shear locking study. 

 
The study is performed for four span-to-thickness ratios: λ = 5, 10, 50, 100 (λ = 

L/h) using a mesh of 100 LRZ beam elements. The reference solution was obtained 

by a plane stress analysis (PS) using a mesh of 27000 4-noded quadrilateral (Figure 
3.4). 

 
Figure 3.4 – Structured mesh of 27000 four-noded plane stress quadrilaterals elements. 

 

The ratio LRZ PSr w w=  between the vertical displacement at the free end 

computed with the LRZ element mesh ( LRZw ) and with the PS analysis ( PSw ) for 

each span-to-thickness λ is shown in Figure 3.5. Results for the LRZ mesh have 

been obtained using exact two-point integration for all terms of matrix (e)
tK  

(Eq.(3.28)) and a one-point reduced integration for the following three groups of 

matrices: (e)
sK ; (e)

sK  and (e)
sφK ; and all terms of (e)

tK . Labels “all”, “S”, “SPsi”, and 

“Psi” in Figures 3.5-3.8  refer to matrices (e)
tK , (e)

sK , (e)
ssφK , and (e)

sφK , respectively.  
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Figure 3.5 – r ratio versus λ for cantilever beam under point load. 

 
Figure 3.5 clearly shows that the LRZ element suffers shear locking when 

matrix (e)
tK  is full integrated. It is also shown that the finite element is shear 

locking-free when the reduced integration is used.  
 
The influence of the selective integration in the distribution of the transverse 

shear stress is also studied. Figures 3.6-3.8 show the thickness distribution of xzτ  in 

sections located at distances L/20, L/4, L/2 and 3L/4 from the clamped end for span-
to-thickness ratios λ = 5, 10 and 100. For this analysis, the Timoshenko solution 
(TBT) is also analyzed using a mesh of 300 standard 2-noded elements. A shear 

correction factor of 5 6  is used for all TBT results presented in this work.  

 
Results show that for thick beams (small values of λ) similar solutions are 

obtained for both, the reduced and the exact integration of matrix (e)
tK . For slender 

beams, however, results obtained using reduced integration of the three matrix 
groups are different.  

 

It is shown that slightly more accurate results are obtained when matrices (e)
sK  

and (e)
sφK  are integrated using a one-point quadrature, whereas matrix (e)

ssφK  is 

computed by using two Gauss points. Hence, this selective integration scheme is 

adopted to overcoming shear locking effects. 
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a) τxz, λ = 5 , at x = L/20 b) τxz, λ = 5 , at x = L/4 

 

c) τxz, λ = 5 , at x = L/2 d) τxz, λ = 5 , at x = 3L/4 

 
Figure 3.6 – Thickness distribution of the transverse shear stress for λ = 5 at different 

sections. 

a) τxz, λ = 10 , at x = L/20 b) τxz, λ = 10 , at x = L/4 

 

c) τxz, λ = 10 , at x = L/2 d) τxz, λ = 10 , at x = 3L/4 

 
Figure 3.7 – Thickness distribution of the transverse shear stress for λ = 10 at different 

sections. 
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a) τxz, λ = 100 , at x = L/20 b) τxz, λ = 100 , at x = L/4 

 

c) τxz, λ = 100 , at x = L/2 d) τxz, λ = 100 , at x = 3L/4 

 
Figure 3.8 – Thickness distribution of the transverse shear stress for λ = 100 at different 

sections. 

 

3.2.7.2 Convergence 
The beam of Figure 3.3 is studied for three laminated materials of different 

degree of heterogeneity. Materials properties are listed in Table 3.4. Material A is 
the most homogeneous one, while material C is clearly the most heterogeneous. 

 

Composite Materials 

  Layer 1 
(bottom) 

Layer 2 
(core) 

Layer 3 
(top) 

Composite A 

h [mm] 6.66 6.66 6.66 

E [MPa] 2.19x105 2.19x104 4.4E5 

G [MPa] 8.76x104 8.80x103 2.00E5 

Composite B 

h [mm] 6.66 6.66 6.66 

E [MPa] 2.19x105 2.19x103 2.19E5 

G [MPa] 8.76x104 8.80x102 8.76E4 

Composite C 

h [mm] 2 16 2 

E [MPa] 2.19x105 0.73x103 7.3x105 

G [MPa] 0.876x105 0.29x103 2.92x105 

Table 3.4 – Material properties of laminated materials used for convergence study. 
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In order to evaluate mesh convergence of the LRZ solution, six meshes ranging 
from 5 to 300 elements are used.  

Convergence is measured by the relative error defined as 

 6

6

i
r

m me
m
−

=  3.39 

where 6m  and im  are the values of the magnitude of interest obtained using the 

finest grid (300 elements) and the ith mesh (i = 1, 2, … 5), respectively. 

Table 3.5 and Figure 3.9 show the convergence for deflection w  and function 

ψ  at the free end, the maximum axial stress xσ  at the end section and the 

maximum shear stress xzτ  at the mid-section. 

 
Results clearly show that convergence is always slower for the most 

heterogeneous material. For the mesh of 25 elements the errors for all the 
magnitudes considered are less than 1% for materials A and B. For material C the 
maximum error does not exceed 5%. For the 50 element mesh errors around 1% 
were obtained in all cases. 

Results for the 10 element mesh are good for material A (errors less than 0.4%), 
relatively good for material B (errors less than around 5%) and unacceptable for 
material C (errors ranging from around 8% to 20%). 

a) b) 

 

c) d) 

 
Figure 3.9 – Convergence relative error for: a) w at x = L, b) ψ at x = L, c) maximum axial 

stress at x = L, d) and maximum shear stress at x = L/2. 
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 a)    b)  

(%)re  - w at x = L 
 (%)re  - ψ at x = L 

Number 
of 

elements 

Composites  Number 
of 

elements 

Composites 

A B C  A B C 

5 1.800 9.588 42.289  5 0.040 8.563 36.113 

10 0.506 2.901 19.277  10 0.003 1.814 8.042 

25 0.0860 0.499 4.913  25 0.000 0.259 0.328 

50 0.0191 0.123 1.406  50 0.000 0.063 0.033 

100 0.0048 0.031 0.339  100 0.000 0.016 0.007 

300 0.0000 0.0000 0.0000  300 0.000 0.000 0.000 

         

 c)    d)  

(%)re  -  ( )maxxσ  at x = L 
 

(%)re  -  ( )maxxzτ  at x = L/2 

Number 
of 

elements 

Composites  Number 
of 

elements 

Composites 

A B C  A B C 

5 -0.568 -6.923 -18.239  5 7.020 19.283 50.938 

10 -0.076 -2.704 -12.437  10 0.352 5.176 20.602 

25 -0.013 -0.568 -4.266  25 0.052 0.888 3.408 

50 -0.003 -0.131 -1.095  50 0.010 0.210 0.707 

100 0.001 -0.029 -0.250  100 0.003 0.049 0.147 

300 0.000 0.000 0.000  300 0.000 0.000 0.000 

Table 3.5 – Convergence relative error for: a) w at x = L, b) ψ at x = L, c) maximum axial 
stress at x = L, d) and maximum shear stress at x = L/2. 

 

3.2.7.3 Numerical examples 
Cantilever beam under an end point load 
The beam material is the highly heterogeneous laminate C defined in the 

previous analysis (Table 3.4). The span-to-thickness ratio is λ = 5. 
 
The reference solution is a PS analysis using the structured mesh of 27000 four-

noded quadrilaterals shown in Figure 3.4. TBT theory is also compared employing a 

mesh of 300 two-noded beam elements. Labels “LRZ-300”, “LRZ-50”, “LRZ-25”, 
and “LRZ-10” refer to the solution obtained by the LRZ meshes of 300, 50, 25 and 
10 elements, respectively. 
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Deflection w  along the beam length is shown in Figure 3.10. Very good 
agreement with the PS solution is obtained already for the LRZ-50 mesh. TBT 
results are considerable stiffer. Deflection value computed by TBT is about six times 
stiffer at the free edge. 

 

Figure 3.11 shows the distribution of the axial displacements at the top and 
bottom surfaces of the top layer along the beam length. Excellent results are again 
obtained with the LRZ-50 mesh. The TBT results are far from the correct ones. 

 

The thickness distribution for the axial displacement at sections located at 

distances L 4 , L 2  and 3L 4  from the clamped end are shown in Figure 3.12. 

Results for the LRZ element are in good agreement with the reference solution. The 
standard linear distribution of TBT theory is far from the correct zigzag results. 

 

Figure 3.13 shows the distribution of the axial stress xσ  at the top and bottom 

surfaces of the beam cross section along the beam length. Very good results are 
obtained for the LRZ-50 and LRZ-300 meshes. Results for the LRZ-25 mesh 
compare reasonably well with the PS solution except in the vicinity of the clamped 

edge. However, this error is corrected for the LRZ-50 and LRZ-300 meshes. The 
TBT results yield a linear distribution of the axial stress along the beam, as 
expected. This introduces large errors in the axial stress values in the vicinity of the 
clamped support. 

 

Thickness distribution for the transverse shear stress xzτ  at different sections are 

shown in Figure 3.14. LRZ results provide an accurate estimate of the average 

transverse shear stress value for each layer. The distribution of xzτ  across the 

thickness can be improved by using Eq.(3.38). 
 

Figure 3.15 shows the thickness distribution of the axial stress xσ  at the 

clamped end and at the center of the beam. LRZ results are well approximated to the 
reference solution. TBT results have an erroneous stress distribution for the top and 
bottom layers at the clamped end. These differences are less important at the central 
section. 

 

LRZ and TBT results for the distribution of the tangential shear stress xzτ  for 

each layer along the beam length are shown in Figure 3.16. 
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Figure 3.10 – Distribution of vertical displacement w along the beam length. 

a) b) 

 
Figure 3.11 – Axial displacement u at the upper (a) and lower (b) surfaces of the top layer 

along the beam length. 

a) b) 

 

c) 

 
Figure 3.12 – Thickness distribution of the axial displacement u at x = L/4 (a), x = L/2 (b), 

and x = 3L/4 (c). 
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a) b) 

 
Figure 3.13 – Axial stress at the upper (a) and lower (b) surfaces of the cross section along 

the beam length. 

 

a) b) 

 

c) d) 

 
Figure 3.14 – Thickness distribution of the transverse shear stress at x = L/20 (a), x = L/4 

(b), x = L/2 (c), and x = 3L/4 (d). 

 

a) b) 
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Figure 3.15 – Thickness distribution of the axial stress at x = 0 (a) and x = L/2 (b). 
 

a) b) 

 

c) 

 
Figure 3.16 – Transverse shear stress along the beam length for layer 1(a), layer 2 (b), and 

layer 3 (c). 
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Simple supported beam under uniformly distributed unit load 
Laminated material properties are listed in Table 3.6. The span-to-thickness 

ratio is λ = 5. 
 

Laminated Material 

 
Layer 1 

(bottom) 

Layer 2 

(core) 

Layer 3 

(top) 

h [mm] 6.6667 6.6667 6.6667 

E [MPa] 2.19x105 5.30x105 7.39x105 

G [MPa] 0.876x105 2.90x102 2.92x105 

Table 3.6 – Material properties. 

 
LRZ results are once more compared with those obtained with the TBT mesh of 

300 two-noded elements and with a structured mesh of 27000 4-noded plane stress 
quadrilateral elements. PS solution is obtained by fixing the vertical displacement of 
all nodes at the end sections and the horizontal displacement for the mid-line edge 
nodes only. No advantage of symmetry was taken into account. 

 
The distribution of the vertical deflection along the beam length is shown in 

Figure 3.17. For the finest LRZ mesh the central deflection is around 12% stiffer 
than the PS solution. The discrepancy is due to the difference in the way the simple 

support condition is modelled in beam and PS theories, as well as to the limitations 
of beam theory to model accurately very thick beams. TBT results are inaccurate, as 
expected. 

 
Figure 3.17 – Distribution of vertical displacement w along the beam length. 

 

Figure 3.18 shows the distribution of the axial stress xσ  along the beam at the 

top surface for the second and third layer. Results show an acceptable accuracy of 

the LRZ solution with a maximum error of 10% for the finest mesh. On the contrary, 
the TBT model gives a too poor solution. 
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a) b) 

 
Figure 3.18 – Axial stress at the top surface for the second (a) and third (b) layer along the 

beam length. 

 
Figure 3.19 shows the thickness distribution of the axial displacement at the left 

end section (x = 0) and at x = L 4 . The LRZ element captures very well the zigzag 

shape of the axial displacement field even for a coarse mesh of 10 elements. The 
TBT element yields an unrealistic linear distribution. 

 

a) b) 

 
Figure 3.19 – Thickness distribution of the axial displacement u at x = 0 (a) and x = L/4 (b). 

 

Thickness distribution of the axial stress (at x = L/4, L/2) and the transverse 
shear stress (at x = L/20, L/4) are shown in Figure 3.20 and Figure 3.21, 
respectively. The accuracy of the LRZ results is again noticeable (even for the 
coarse 10 element mesh). The TBT element fails to capture the zigzag distribution of 

the axial stress and gives a wrong value of almost zero shear stress at the core layer. 
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a) b) 

 
Figure 3.20 – Thickness distribution of the axial stress at x = L/4 (a) and x = L/2 (b). 

 

a) b) 

 
Figure 3.21 – Thickness distribution of the transverse shear stress at x = L/20 (a) and x = L/4 

(b). 

 
Figure 3.22 shows the distribution of the transverse shear stress along the beam 

for each ply obtained with the LRZ and TBT elements. 

 
Figure 3.23 shows a similar set of results for a moderately thick SS beam (λ=10) 

and the same material properties. The distribution of the deflection and the axial 
stress along the beam length are shown in Figure 3.23a and Figure 3.23b, 

respectively. The accuracy of the LRZ element is again noticeable. 
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a) b) 

 

c) 

 
Figure 3.22 – Transverse shear stress along the beam length for layer 1(a), layer 2 (b), and 

layer 3 (c). 

a) b) 

 
Figure 3.23 – Distribution of the vertical displacement w (a) and the axial stress at the top 

surface of second layer (b) along the beam length. 

 

Non-symmetric ten-layered clamped beam under uniformly distributed unit load 
In this example a ten-layered clamped slender beam (L = 100 mm, h = 5 mm, b 

= 1 mm, λ = 20) under uniformly distributed loading (q = 1KN/mm) is analyzed. 
Laminated material properties are listed in Table 3.7. 
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a)  b) 

Layer hi Material  Material E [MPa] G [MPa] 

1 0.5 IV  I 2.19x105 0.876x105 

2 0.6 I  II 7.30x105 2.92x105 

3 0.5 V  III 7.30x102 2.92x102 

4 0.4 III  IV 5.30x105 2.12x105 

5 0.7 IV  V 0.82x105 0.328x105 

6 0.1 III     

7 0.4 II     

8 0.5 V     

9 0.3 I     

10 1 II     

Table 3.7 – Layer distribution (a) and material properties (b). 

 
Figure 3.24 shows the deflection along the beam for LRZ meshes of 10 and 300 

elements (LRZ-10 and LRZ-300). LRZ results are compared with PS and TBT 

results. A mesh of 27.000 4-noded PS quadrilaterals and a mesh of 300 TBT 
elements are used. Even for the coarse 10 element mesh the LRZ deflection is good 
approximated to the PS solution. 

 
Figure 3.24 – Distribution of vertical displacement w along the beam length.  

 
Figure 3.25 shows the thickness distribution of the axial displacement and the 

axial stress for the section at x = L 4 . The accuracy of the LRZ results is once more 

remarkable. 

 
Thickness distribution of the transverse shear stress at x = L4 is shown in Figure 

3.26. Figure 3.26a shows the values obtained by the constitutive equation Eq.(3.10). 
These results are clearly better than those obtained with the TBT element but only 
coincide in an average sense with the plane stress FEM solution. The improved 

computation of the transverse shear stress using Eq.(3.38) is shown in Figure 3.26b, 
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where a very good approximation to the PS result is observed even for the coarse 
mesh of 10 LRZ elements. 

a) b) 

 
Figure 3.25 – Thickness distribution of the axial displacement u (a) and the axial stress (b) at 

x = L/4. 

a) b) 

 
Figure 3.26 – Thickness distribution of the transverse shear stress at x = L/4 computed by 

the constitutive equation 3.10 (a) and by the improved equation 3.38 (b). 

 

3.3 QLRZ plate finite element  
The formulation of an isoparametric four-noded C0 quadrilateral plate element, 

named QLRZ, with seven kinematic variables per node based on the RZT theory is 
presented in this Section. This element is designed for modeling thick and thin 
plate/shell structures of highly heterogeneous laminated materials. The original form 
of this element suffers of shear looking, as shown in Section 3.3.7.1, which is 
avoided by means of an assumed linear shear strain field. The performance of 

QLRZ is analyzed in three different studies: verification, convergence and 
comparison. The verification study (Section 3.3.7.2) aims at evaluating the 
performance of this element when the material is homogenous, i.e. when the zigzag 
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function vanishes. The influence of the material transverse heterogeneity on 
convergence and accuracy of the QLRZ element is analyzed in the convergence 
study (Section 3.3.7.3). Finally, the performance of the QLRZ element for modeling 
highly heterogeneous materials is evaluated in the comparison analysis (Section 
3.3.7.4). 

 

3.3.1 Plate RZT kinematics 
The QLRZ kinematics is defined by Eq.(2.1) in Section 2.1.3.1 as 
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 3.40 

where the axial displacement zigzag function ku  and kv  are defined as 
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 3.41 

The unknown variables for the plate RZT theory are 

 0 0 0

T

x y x yu v w θ θ ψ ψ =  a  3.42 

where the uniform displacement 0u , 0v  and 0w , and the bending rotation xθ  

and yθ  are derivate from the FSDT theory, where the iψ  variables are associated 

with the added displacement zigzag functions ku  and kv . 

3.3.2 Stain and generalized strain 

For convenience, the strain kε  of the k th layer is split into the in-plane ( k
pε ) and 

the transverse shear ( k
tε ) strains as 
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where mε , bε  and sε are the strain vectors duo to membrane, bending and 

transverse shear effects of the RMT theory, respectively. The in-plane and transverse 

shear strains vectors emanating from the RZT theory are denoted by mbφε  and sφε . 

ˆ pε  and ˆ tε  are the generalized in-plane and transverse shear strains vectors, 

respectively, defined as 
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where ˆ( )•  denotes the generalized strain vectors given by 

 

0

0 0 0 0

0

ˆ ˆ;

ˆ ˆ;

ˆ

T x
xz

m s
yz

y

T
xy yx x

b s
y

T
y yx x

mb

w
u v u v x

wx y y x
y

x y y x

x y y x

φ

φ

θ γ
γθ

ψθ θθ θ
ψ

ψ ψψ ψ

∂ −    ∂ ∂ ∂ ∂ ∂ = + = =    ∂∂ ∂ ∂ ∂     − ∂ 

∂ ∂   ∂ ∂
= + =   ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

ε ε

ε ε

ε

3.45 



Section 3.3 
 

61 

and matrix operators S  are defined as 
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In Eq.(3.45) izγ ( ),i x y= is the average transverse shear strain of RMT. Note 

that k
iφ  is piecewise linear, hence, its derivative 

k
ki
iz

φ β
 ∂

= ∂ 
 is constant within 

each layer. 
 

3.3.3 Stress-strain constitutive relationships 
The reduced elasticity matrix for the orthotropic k th layer is given by 
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 3.48 

being E and G the Young and the shear moduli, respectively, and υ  the 

Poisson’s ratio. It is important to note that the strains kε  are referred to the local 

coordinate system (x,y,z) whereas the k
ijD  magnitudes are referred to the material 

orientation (e1,e2,e3) (Figure 3.27). Direction e1 is parallel to the main in-plane 
direction19, e2 is the in-plane direction transverse to the e1, and e3 is the through-

                                                 
19 The main in-plane orientation e1 is coincident to that on which the higher in-plane Young's 
modulus is oriented. For advanced composite materials, direction e1 is parallel to the fibre 
orientation. 
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thickness direction that is coincident with the local vertical direction z. The relations 
between the basis vectors are defined by 

 

e1 x c s 0

e2 = y with = -s c 0

e3 z 0 0 1
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where ( )c cos α=  and  ( )s sin α= . 

 
Figure 3.27 – Local coordinate system (x,y,z) and material orientation (e1,e2,e3). The angle 

between vector x and e1 is defined by α. 

 
When material orientation is not correlated with local coordinate, e.g. the angle 

α  between vectors x and e1 is different to cero, a transformation of the constitutive 

matrix kD  to the local orientation has to be done by 
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with 
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2 2
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2 2 0 0
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Π =  

Note, if 0α = , that implies: 5Π = Ι  and k kD = D . 

Then, the stress-strain constitutive relationship of the kth layer referred to the 
local coordinate system (x,y,z) is defined as 
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where k
pσ  and k

tσ  are the in-plane and the transverse shear stresses vectors, 

respectively. 

Finally, the stresses kσ  and strains kε  vector referred to the material coordinate 
system (e1,e2,e3) for the k th layer are computed by 

 ( ) 1Tk k k k k

k k k

−
⋅ = ⋅

⋅

= D

=

σ Π σ ε

ε Π ε
 3.52 

Although layers are treated as isotropic or orthotropic material in this work, the 
mechanical behavior of each component within FRP laminates (e.g. fibers and 
matrix) can be separately modeled using the well-known Mixing theory [61, 62] or a 
more advanced mixing theory called Serial/Parallel [63]. 

 

3.3.4 Stress resultants 
Due to the subdivision of the strains (Eq.(3.43)) also the stress resultant vector 

σ̂  is subdivided into membrane forces ˆ mσ , bending moments ˆ bσ , transverse shear 

forces ˆ sσ , pseudo-bending moments ˆ mbφσ  and pseudo-shear forces ˆ sφσ  (Figure 

3.28). ˆ mσ , ˆ bσ , and ˆ sσ  derives from the standard plate theory, whereas ˆ mbφσ  and 

ˆ sφσ  are pseudo stress resultants from the RZT plate theory. 

a)  b)  

 
Figure 3.28 – Direction of stress resultants of standard plate theory (a) and those derived 

from the RZT plate theory (b). 
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The stress resultants for a plate are obtained by integrating stresses (Eq.(3.51)) 
over the thickness as 
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Bending moments ˆ bσ  
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Transverse shear forces ˆ sσ  
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and finally pseudo-shear forces ˆ sφσ  
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The matrix expression for the stress resultants σ̂  can be written as 
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where ˆ pσ  and ˆ tσ  contain the in-plane and transverse shear stress resultants, 

respectively, 
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and the in-plane and transverse shear generalized constitutive matrices, p
D  and 

t
D  respectively, are given by 
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Analytical integration is used to compute the generalized constitutive matrices 

D̂ . 
 

3.3.5 Principle of virtual work 
Let us consider a plate of volume V, which is subjected to the distributed 

surface q and line f loads applied on the surface AΓ  and the contour LΓ , 

respectively. Point loads pi are also acting on the plate. For this case, the differential 
equations of equilibrium (Eq.(3.4)) is rewritten as 

 
A L

A LV
1

dV d d a p
T

pl
k k T T

i i
i

Γ Γ
=

δ = δ Γ + δ Γ + δ∑∫ ∫ ∫a q a fε σ  3.61 

where the l.h.s. is the internal virtual work performed by the stresses kσ  and the 

r.h.s. is the external virtual work.  
 

Substituting Eq.(3.43) into the l.h.s. of Eq.(3.61) gives 
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s s t

k

s s

k

t

φ φ

φ φ

φ φ

φ φ

δ = δ + δ + δ +

+ δ + δ

= δ + δ + δ +

+ δ

δ

+ δ

∫ ∫
∫

∫
∫

∫ ε σ

ε σ ε ε ε σ

ε ε σ

ε σ ε σ ε σ

ε σ ε σ

S S S

S S

S S S

S S

 

Using Eq.(3.43), (3.51), (3.58) yields 

( ) ( )
V A A

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆdV dA dA
Tk k T T T T T

m m b b mb mb s s s sφ φ φ φδ = δ + δ + δ + δ + δ∫ ∫ ∫ε σ ε σ ε σ ε σ ε σ ε σ  

being A the in-plate area of the plate. 
Finally, the equilibrium equations of Eq.(3.4) can be written as 

 ( )
A L

A LA
1

ˆ ˆˆ ˆ dA d d a p
pl

T T T T
p p t t i i

i
Γ Γ

=

δ + δ = δ Γ + δ Γ + δ∑∫ ∫ ∫a q a fε σ ε σ  3.62 

Theses integrands contain kinematics variables derivatives up to first order only, 
which allows to use C0 continuous finite elements. 

 

3.3.6 QLRZ formulation 

3.3.6.1 Discretization of the displacement field 
The middle surface of the plate is discretized into 4-node planar isoparametric 

finite elements of quadrilateral shape.  

The kinematic variables a of Eq.(2.3) are interpolated within each element as 

 [ ]

0

(e)0

1
0 4

(e) (e) (e)2
1 2 3 4

1 3

4

x i i
i

y

x

y

u
v
w
θ
θ
ψ
ψ

=

 
 
   
   
   = = = ⋅ =   
   
     
 
 

∑ n n

a

a
a N a N N N N N a

a

a

 3.63 

Where 

(e)
7 0 0 0;

T

i i i x y x y i
N u v w θ θ ψ ψ = =  N I a  
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being ( )( )1 1i i iN ξξ ηη= + +
1
4

(Table 3.8 and Figure 3.29) the bi-linear shape 

function of node ith and 7I  is the 7x7 unit matrix. 

Node ξi ηi 

1 -1 -1 

2 1 -1 

3 1 1 

4 -1 1 

Table 3.8 - Values of ξi and ηi for each node. 

 
Figure 3.29 – Bi-linear shape functions of quadrilateral four-noded element. 

 
The element geometry is interpolated as 

 
4 4

1 1

ˆ ˆ;i i i i
i i

x N x y N y
= =

= =∑ ∑  3.64 

where ˆ
i iN N= , which leads to an isoparametric formulation. 

The Jacobian matrix (e)J  of the transformation from the natural coordinates to 

the Cartesian coordinates is obtained using the chain rule as 

i i i

i i i

N N Nx y
x y

N N Nx y
x y

ξ ξ ξ

η η η

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 

or in a matrix form 

 (e)

i i i

i ii

N x y N N
x x

N NN x y
y y

ξ ξ ξ

η ηη

∂ ∂ ∂  ∂ ∂     
       ∂ ∂ ∂ ∂ ∂       = ⋅ =

∂ ∂∂ ∂ ∂       
       ∂ ∂∂ ∂∂      

J  3.65 

where (e)J  is the Jacobian matrix. 
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1(e)

ii

i i

NN
x

N N
y

ξ

η

−

∂ ∂ 
   ∂∂     =  ∂ ∂  
  ∂ ∂   

J  

with  

1(e)

(e)

1

y y

x x
η ξ

η ξ

−

∂ ∂ − ∂ ∂   =  ∂ ∂ − ∂ ∂ 

J
J

 

being (e)J  the Jacobian determinant. Thus, 

 

(e)

(e)

1

1

i i i

i i i

N N Ny y
x

N N Nx x
y

η ξ ξ η

ξ η η ξ

∂  ∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂ ∂ 

∂  ∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂ ∂ 

J

J

 3.66 

The Jacobian determinant is also used to determinate the differential area in 

natural coordinates as 

 (e)dx dy d dξ η= J  3.67 

The term of (e)J  are computed using the isoparametric transformation of 

Eq.(3.64) as 

4 4

1 1

4 4

1 1

;

;

i i
i i

i i

i i
i i

i i

N Nx xx x

N Ny yy y

ξ ξ η η

ξ ξ η η

= =

= =

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂
∂ ∂∂ ∂

= =
∂ ∂ ∂ ∂

∑ ∑

∑ ∑
 

Thus, the Jacobian matrix is defined by 

 
4

(e)

1

i i
i i

i i i
i i

N Nx y x y

x y N Nx y

ξ ξ ξ ξ

η η η η
=

∂ ∂∂ ∂   
  ∂ ∂ ∂ ∂  = =

∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂   

∑J  3.68 
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3.3.6.2 Generalized strain field 
The interpolated generalized in-plane strains (e)ˆ pε  within each finite element are 

obtained by substituting Eq.(3.63) into Eq.(3.43) as 

 

(e)

0

0

0

0

0 0

0 0

(e)

(e)

ˆ

ˆ ˆ

ˆ

i

i

i i

x i
x

y i
m

p b
yx

mb

x

y

x

y

u N ux x
v N vy y

u v N Nu vy x y x

N
x x

N
y y

y x

x

y

y

x

φ

θ
θ

θ
θ

θθ

ψ

ψ

ψ

ψ

∂  ∂
 ∂ ∂ 

∂ ∂ 
 ∂ ∂ 
∂ ∂  ∂ ∂+ + ∂ ∂ ∂ ∂ 

 ∂  ∂
 ∂ ∂ 

∂  ∂   ∂ ∂   = = =  ∂ ∂  +   ∂ ∂ 
 ∂
 

∂ 
 ∂
 

∂ 
 ∂
 

∂ 
 ∂
 

∂ 

ε
ε ε

ε

4 4
(e) (e)

1 1
i

y

p i p
i ii i

x y

i
x

i
y

i
x

i
y

i

N N
y x

N
x

N
y
N
y

N
x

θ θ

ψ

ψ

ψ

ψ

= =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  = =
∂ ∂ + ∂ ∂
 
 ∂
 ∂ 

∂ 
 ∂ 

∂ 
 ∂ 

∂ 
 ∂ 

∑ ∑ nB a B a

 3.69 

where pB  and 
ipB  are the in-plane generalized strain matrices for the element 

and the ith node, respectively. The matrix 
ipB  is split into membrane ( )m , bending 

( )b  and zigzag ( )mbφ  contributions, which leads to 

 
i

m

p b

mb iφ

 
 =  
  

B

B B

B

 3.70 

with 
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0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i i

i

i i

i i
m b

i i i i

i

i

mb
i

i

N N
x x

N N
y y

N N N N
y x y x

N
x

N
y

N
y

N
x

φ

= =

=

   ∂ ∂
   
∂ ∂   

∂ ∂   
   ∂ ∂
   ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂   

∂ 
 ∂ ∂ 

∂ 
 ∂
 

∂ 
 ∂ 
  ∂

B B

B

 3.71 

Generalized transverse strains (e)ˆ tε  are also obtained by the same manner as 

 

(e)

0
0

(e)
4 40(e) (e) (e)

0

1 1

ˆ
ˆ

ˆ i

i
x i x

is
y i yt t i t

i is

x i x

y i y i

w N w N
x x

w N w N
y y

N
N

φ

θ θ

θ θ

ψ ψ
ψ ψ

= =

∂ ∂   − −   ∂ ∂   
∂ ∂     − −= = = = =     ∂ ∂

     
   
   
   

∑ ∑ nB a B a
ε

ε
ε

3.72 

where tB  and 
it

B  are the transverse generalized strain matrices for the element 

and the ith node, respectively. Matrix 
it

B  is split into shear ( )s  and zigzag ( )sφ  

contributions as 

 
i

s
t

s iφ

 
=  
 

B
B

B
 3.73 

where 
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i

i

i
i

s
i

i

i
s

i

N N
x

N N
y

N
Nφ

∂ − ∂ =
∂ − ∂ 

 
=  
 

B

B

 3.74 

3.3.6.3 Element stiffness matrix and nodal forces vector 
Considering Eqs.(3.5), (3.62), the element stiffness matrix and nodal forces 

vector are obtained via the following equation 

 ( )(e) (e) (e)

(e) (e) (e) (e) (e)

A A S
ˆ ˆˆ ˆ dA dA dS

T T T T T

p p t tδ + δ = δ + δ + δ∫ ∫ ∫ na q a f a pε σ ε σ  3.75 

being A(e) the element area and S(e) the element side where f is applied. 

Considering that 

(e) (e) (e) (e) (e) (e)ˆ ˆ
T T T T T TT T T

p p t tδ = δ ; δ = δ ; δ = δn n n na B a B a a Nε ε  

and substituting Eq.(3.58) into Eq.(3.75) gives 

( )(e) (e)

(e)

(e) (e) (e)

A A

(e) (e)

S

ˆ ˆ dA dA

dS

T T T

T T

T T T
p p p t t t

T

δ + δ = δ +

+ δ + δ

∫ ∫
∫

 ε εn n n n

n n n

a B D a B D a N q

a N f a p
 

Substituting Eqs.(3.69), (3.72) into previous equation yields 

( )(e) (e)

(e)

(e) (e) (e) (e) (e)

A A

(e) (e)

S

dA dA

dS

T T T

T T

T T T
p p p t t t

T

δ + δ = δ +

+ δ + δ

∫ ∫
∫

 

n n n n n n

n n n

a B D B a a B D B a a N q

a N f a p
 

Thus, the equation is factorized as 

( ){ } ( )(e) (e) (e)

(e) (e) (e)

A A S
dA dA dS

T TT T T T
p p p t t t

 δ + = + + δ ∫ ∫ ∫n n n n na B D B B D B a N q N f p a 

( )(e) (e) (e)

(e)

A A S
dA dA dST T T T

p p p t t t
 + = + + ∫ ∫ ∫n n nB D B B D B a N q N f p   

Finally, Eq.(3.75) is reduced to 

 
(e) (e)

(e) (e)

A S
dA dST T= + +∫ ∫n n nK a N q N f p  3.76 

with  

 ( )(e)

(e)

A
dAT T

p p p t t t= +∫K B D B B D B   3.77 
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Matrix (e)K  is the elemental stiffness matrix, which for convenience is split as 

(e) (e) (e)
p t= +K K K  

being (e)
pK  and (e)

tK  the in-plane and the transverse elemental stiffness 

matrices, respectively, defined as 

 
(e)

(e)

(e)

A

(e)

A

dA

dA

T
p p p p

T
t t t t

=

=

∫
∫

K B D B

K B D B





 3.78 

To facilitate subsequent shear locking studies, matrix (e)
tK  is split as follows 

 (e) (e) (e) (e) (e) T

t s s ss ssφ φ φ + + +  K = K K K K  3.79 

with 

 

(e)

(e)

(e)

(e)

A

(e)

A

(e)

A

ˆ dA

ˆ dA

ˆ dA

T
s s s s

T
s s s s

T
ss s ss s

φ φ φ φ

φ φ φ

=

=

=

∫
∫
∫

K B D B

K B D B

K B D B

 3.80 

The external nodal forces vector extF  are defined by the r.h.s. of Eq.(3.76) as 

 
(e) (e)

ext

A S
dA dST T= + +∫ ∫n nF N q N f p  3.81 

Considering Eq.(3.67) and dA = dx dy , the integrals of Eq.(3.78) defined in the 

Cartesian coordinate are transformed to the natural coordinate as 

 
(e)

(e)

1 1(e) (e)

A 1 1

1 1(e) (e)

A 1 1

dA d d

dA d d

T T
p p p p p p p

T T
t t t t t t t

ξ η

ξ η

+ +

− −

+ +

− −

= =

= =

∫ ∫ ∫
∫ ∫ ∫

K B D B B D B J

K B D B B D B J

 

 

 3.82 

Note that, the derivatives of the shape functions with respect to the Cartesian 

coordinates contained into the generalized strain matrices B  are computed by 
Eq.(3.66). The integrals of Eqs.(3.82) are solved via numerical integration using the 

Gauss quadrature as 

 

41 1(e) (e) (e)

1 1
1

41 1(e) (e) (e)

1 1
1

d d

d d

GP GP

GP GP

T T
p p p p p p p GP

GP

T T
t t t t t t t GP

GP

W

W

ξ η

ξ η

ξ η

ξ η

+ +

− −
=

+ +

− −
=

 = =  

 = =  

∑∫ ∫

∑∫ ∫

( , )

( , )

K B D B J B D B J

K B D B J B D B J

 

 

 3.83 
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where a 2x2 integration scheme is used for providing an exact integration of 

both, the (e)
pK  and the (e)

tK  matrices. The subscript GP indicates the actual 

integration point (the Gauss points) under consideration, which weighting factor is 

GPW . Matrices B  and the Jacobian determinant are evaluated at point GP. 

 

The natural coordinates and the weighting factor of each Gauss point GP GPξ η( , )  

are listed in Table 3.9.  

GP 
GP GPξ η( , )  

GPW  

GPξ  GPη  

1 
1

3
−  

1

3
−  1 

2 
1

3
+

 

1

3
−

 

1 

3 
1

3
+

 

1

3
+

 

1 

4 
1

3
−

 

1

3
+

 

1 

Table 3.9 – Natural coordinates and weighting factors of each Gauss point. 

 

However, when full Gauss integration is used, the QLRZ element suffers from 
shear locking for slender plates, which leads to too stiff solutions. Note that for 
homogeneous plate the QLRZ becomes to the 4-noded quadrilateral Reissner-
Mindlin finite element (QLLL), which is based on the FSDT theory. Taking into 
account that the QLLL element also suffers from shear locking it is reasonable to 

think that the causes of shear locking in the QLRZ element are the same as in the 
QLLL element. For the QLLL element, it is demonstrated [108] that according the 

plate is more slender the contribution of (e)
sK  (Eq.(3.79)) in the stiffness matrix 

(e)K  is progressively increasing until infinity in the limit case for h = 0. Thus, it is 

considered that the source of shear locking in the QLRZ element is also related to 

the shear stiffness contribution of (e)
sK , as showed below in this chapter.  

 
In order to avoid this numerical problem, a reduced integration of the shear 

contribution using a selective integration technique, where the (e)
sK  matrix is 
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integrated by using one Gauss point only, can be used. However, it may further lead 
to undesired hour-glassing, which can propagate through the finite element mesh. 
For this reason, it is has to be carefully used.  

 
Another robust technique is the assumed transverse shear strains approach 

developed by Dvorkin and Bathe [109, 110], which is adopted for overcoming the 
shear locking effects in the QLRZ element. This approach is based on the imposition 

of a special transverse shear strain ˆ sε  field, which satisfies the Kirchhoff condition 

for thin plate, e.g. ˆ 0s =ε . Note, ˆ sε  is the shear strain of the Reissner-Mindlin 

theory.  
 

The assumed elemental shear strain (e)ˆ sε  related to the Cartesian coordinate is 

defined as 

 (e) (e)ˆ s s n= B aε  3.84 

where sB  is the sought substitute transverse shear strain matrix. Thus, this 

technique leads to matrix sB  (Eq.(3.73)) being replaced by the substitutive matrix 

sB  of Eq.(3.96) . Therefore, the stiffness matrices (e)
sK  and (e)

sφK  (Eq.(3.80)) of 

(e)
tK are now computed by 

 
(e)

(e)

(e)

A

(e)

A

ˆ dA

ˆ dA

T
s s s s

T
ss s ss sφ φ φ

=

=

∫
∫

K B D B

K B D B
 3.85 

The computation of sB  is briefly explained at following. A detailed description 

of this technique can be found in [108].  

 

Computation of the substitutive shear strain generalized matrix sB  

The assumed natural transverse shear strain field is given by 

 

1

1 2 2'

3 4 3

4

1 0 0
ˆ .

0 0 1s
ξ

η

α
γ α α η αη
γ α α ξ αξ

α

 
 +       = = = =       +      
 

Aε α  3.86 
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where coefficients αi are obtained by sampling the natural shear strains at the 
four points I, II, III and IV. Points I and III are denoted by symbol + whereas points 
II and IV by x. Figure 3.30 shows the assumed strain field. 

The transverse shear strains in the Cartesian coordinate system are expressed as  

 1 'ˆ ˆxz
s s

yz

γ
γ

− 
= = 
 

Jε ε  3.87 

where J  is the 2D Jacobian matrix defined by Eq.(3.68). 

For convenience, a transverse shear stress along the predefined orientations iξ  

(Figure 3.31) is defined as 

 ( ) ( )1 2 3 4cos sin ; 1, 4
i

i i iξγ α α η δ α α ξ δ= + ⋅ + + ⋅ =  3.88 

where iδ  is the angle between direction iξ  and the natural axis ξ . The matrix 

form of Eq.(3.88) is written as 

 

1

2

3

4

1

2

3

4

1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1

ξ

ξ

ξ
ξ

ξ

γ α
γ α

αγ
αγ

  −           = = ⋅ =          −    

Pγ α  3.89 

where ξγ  contains the values of the assumed transverse shear strain at each 

sampling points (+ and x).  

From Eq.(3.89) 

 1
ξ

−= Pα γ  3.90 

where the strains 
iξ

γ  are related to 
jξ

γ  and 
jηγ  ( , )j I IV=  by 
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Combining Eqs.(3.86), (3.90), (3.91) gives 

 ' 1 'ˆ ˆs
−= AP Tε γ  3.92 

The Cartesian transverse shear strains γ̂  at the sampling points are related to the 

natural transverse shear strains 'γ̂  by 

 

I I

II II'

III III

IV IV

ˆ

ˆ
ˆ ˆ ˆ;

ˆ

ˆ

xz
j

yz j

γ
γ

   
        = ⋅ = =           
   

J 0 0 0

0 J 0 0
C

0 0 J 0

0 0 0 J

γ
γ

γ γ γ
γ
γ

 3.93 

The Cartesian shear strains and the nodal displacements a are related as 

 ˆ s= B aγ  3.94 

where sB  is the original transverse generalized strain matrix (Eq.(3.74)) 

evaluated at the jth sampling point. Note that matrix C  is also evaluated at each jth 

point. 
Substituting Eqs.(3.92), (3.93), (3.94) into (3.87) yields 

 1 1ˆ s s s
− −= =J AP TCB a B aε  3.95 

where sB  is the sought substitute transverse shear strain matrix given by 

 1 1
s s

− −=B J AP TCB  3.96 

 
Figure 3.30 – Assumed transverse shear strain field. 

 

 
Figure 3.31 - QLRZ element. Evaluation points of the kinematics variables and the assumed 

shear strains. 
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3.3.6.4 Boundary conditions 
The boundary conditions are: 

• Clamped side: 

0

0

0
x x

y y

w
u
v

θ ψ
θ ψ

=
= = =
= = =

 

• Simply supported side: 
Hard Support 

0s s sw u θ ψ= = = =  

Soft Support 

0w =  

where “s” is the direction of the side. 

• Symmetry axis: 

0n n nu θ ψ= = =  

where “n” is the orthogonal direction to the symmetry axis. 
 

3.3.6.5 Improved computation of transverse shear stresses  

Whereas in-plane stresses ( ), andx y xyσ σ τ  are well predicted by Eq.(3.51), the 

transverse shear stresses ( )andxz yzτ τ  are not. The reason is that the constitutive 

yields a constant value into each layer, leading to a discontinuous thickness 

distribution of andxz yzτ τ . A useful alternative is to compute xzτ  and yzτ  from the 

in-plane stresses using the equilibrium equations 

 

0

0

xyx xz

xy y yz

x y z

x y z

τσ τ

τ σ τ

∂∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

 3.97 

from which, the transverse shear stresses at a point “P” within the finite element 

across the thickness coordinates z are computed by 
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2 2

2 2

( )

( )

z z xyx
xz P h h

P P

z zy xy
yz h hP

P P

z dz dz
x y

z dz dz
y x

τστ

σ τ
τ

− −

− −

∂∂
= − −

∂ ∂

∂ ∂
= − −

∂ ∂

∫ ∫

∫ ∫
 3.98 

The in-plane stresses at point “P” are approximated by 

 

4

1

4

1

4

1

( ) ( )

( ) ( )

( ) ( )

i
x i xP P

i

i
y i yPP

i

i
xy i xyPP
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z N z

z N z

σ σ

σ σ

τ τ

=

=

=

= ⋅

= ⋅

= ⋅

∑

∑

∑

 3.99 

where iN  is the shape function and i denotes the ith node. The nodal stresses 

( )i
x zσ , ( )i

y zσ  and ( )i
xy zτ  are obtained by the averaging of Gauss stresses from 

neighboring elements at the ith node. Finally, the transverse shear stresses are 
obtained by replacing Eq.(3.99) into Eq.(3.98), 

 

4 4

2 2
1 1

4 4

2 2
1 1

( ) ( ) ( )

( ) ( ) ( )

z zi ii i
xz x xyP h h

i iP P

z zi ii i
yz y xyP h h

i i PP

N Nz z z
x y

N Nz z z
y x

τ σ τ

τ σ τ

− −
= =

− −
= =

  ∂ ∂
= − ⋅ − ⋅    ∂ ∂   

   ∂ ∂
= − ⋅ − ⋅    ∂ ∂  

∑ ∑∫ ∫

∑ ∑∫ ∫
 3.100 

3.3.7 QLRZ studies 

3.3.7.1 Shear locking 
In order to show the efficiency of the assumed transverse shear strain technique 

for overcoming shear looking effects, a simply supported (SS) square plate of length 

side 2L =  under a uniformly distributed load of unit value ( 1q = ) is analyzed 

(Figure 3.32). 

Moreover, the selective integration technique of (e)
tK  matrix is analyzed. 

Considering that  

(e) (e) (e) (e) (e) T

t s s ss ssφ φ φ + + +  K = K K K K  

it is possible to define the following three different combinations of selective 
integration 
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Integration combinations 

Combinations Exact  Reduced  

C1 
(e) (e);s ssφ φK K  (e)

sK  

C2 (e)
sφK  (e) (e);s ssφK K  

C3 - (e)
tK  

Table 3.10 – Integration combinations used to assess the selective integration of Kt . 

 
Figure 3.32 – Simply supported square plate under uniformly distributed load. 

 

The analysis is performed for four span-to-thickness ratios: 

5,10,50,100L hλ = = . A 3-layer composite material is used, whose properties 

are listed in Table 3.11. 
 

Laminated Material 

 
Layer 1 

(bottom) 

Layer 2 

(core) 

Layer 3 

(top) 

hi [mm] L 4λ  L 2λ  L 4λ  

E [MPa] 2.19x105 2.19x104 4.40x105 

G [MPa] 0.876x105 8.80x104 1.76x105 

Table 3.11 – Material properties of shear locking study. 

 
Only one quarter of the plate is studied due to symmetry (Figure 3.32) using a 

mesh of 16x16 QLRZ elements (Figure 3.33a) with 289 nodes and 1445 DOFs. The 
reference solution is obtained by a 3D finite element analysis using a mesh of 
10x10x9 (3 elements per ply) of 20-noded hexahedral elements (HEXA20) 
involving 4499 nodes and 13497 DOFs (Figure 3.33b). 
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a) b) 

 

 

 
Figure 3.33 – Meshes used for the analysis of one quarter of the SS plate. 16x16 QLRZ 

elements (a) and 10x10x9 HEXA20 elements (b). 

Figure 3.34 shows the r ratio defined as 

 
3

QLRZ

D

w
r

w
=  3.101 

where QLRZw  and 3Dw  are the middle (z = 0) deflection at the plate center 

obtained with the QLRZ element and the 3D finite element analysis, respectively. 

The QLRZ element results have been obtained with exact integration of matrix (e)
tK  

(exact), employing the three selective integration listed in Table 3.10 (C1, C2, and 
C3), and finally using the assumed transverse shear strain field technique (QLRZ). 

a) b) 

 
Figure 3.34 – r ratio vs. span-to-thickness ratio L hλ = . Simply supported square plate 

under uniformly distributed load. Figure a): exact integration (exact) and the three integration 
combinations (C1, C2, and C3) of Table 3.10. Figure b): exact integration and assumed 

transverse shear strain fields (QLRZ). 
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Figure 3.34 clearly shows shear locking defects when exact integration of (e)
tK  

is used. However, it is shown that this defect disappears for both techniques. 
Figure 3.35 shows the distribution of the vertical deflection w along the plate 

central line BC (Figure 3.32). Figure 3.35a reveals the existence of mechanisms 
when reduced integration is used. These mechanisms do not appear if the assumed 
transverse shear strain technique is used (Figure 3.35b). 

a) b) 

 
Figure 3.35 - Vertical deflection w along BC. Clamped square plate ( 10λ = ) under a center 

point load. Figure a): exact integration (exact) and the three integration combinations (C1, 
C2, and C3) of table AI-1. Figure b): exact integration, assumed transverse shear strain fields 

(QLRZ), and 3D analysis (HEXA20). 
 

3.3.7.2 Verification 
The accuracy of the QLRZ element for isotropic homogeneous material is 

studied in this section. The aim is to evaluate the behavior of the QLRZ element 
when ϕi (i = x, y) vanishes which leads to ψi = 0 and the RZT kinematics becomes 
the RMT displacement field.  

 
This study consists in analyzing a SS and a clamped square plate of side length 

L = 2 and thickness h = 0.05 (λ = L/h = 40) under a uniformly distributed load q = 1 
and a point load P = 4 acting at the center (Figure 3.36). Isotropic homogeneous 

material properties are assumed with: E = 0.219, μ = 0.25, and G = E/2(1+ μ). 
 
Assuming symmetry along both axes, only one quarter of the plate is analyzed. 

Five different meshes of QLRZ elements whose properties are listed in Table 3.12 
are employed (Figure 3.37). 
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a) 

 

b) 

 
Figure 3.36 – Square plate ( 40λ = ) for verification and convergence analysis. SS plate (a) 

and clamped plate (b) under uniformly distributed load and central point load. 

 

QLRZ meshes properties 

Mesh N Elements Nodes DOFs 

1 2 4 9 45 

2 4 16 25 150 

3 8 64 81 405 

4 16 256 289 1445 

5 32 1024 1089 5445 

Table 3.12 – QLRZ meshes properties. 

 

a) b) c) d) e) 

 
Figure 3.37 – Meshes of nxn QLRZ elements employed for verification and convergence 

analysis. (a) n = 2; (b) n = 4; (c) n = 8; (d) n = 16; (e) n = 32. 

 
The reference solution was obtained by a finite element analysis using a mesh of 

32x32 4-noded quadrilateral Reissner-Mindlin (FSDT) element with substitute shear 
strain fields [111]. 
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In order to assess the element accuracy, the following relative error is defined 

 i RMT
r

RMT

w we
w
−

=  3.102 

where iw  is the vertical deflection at the center point computed with the ith 

QLRZ mesh ( )1,2,...,5i =  and RMTw  is the reference solution. The RMTw  values 

for all cases are listed in Table 3.13. 
 

Reissner-Mindlin solutions 

Boundary Load RMTw  

SS 
Distributed 0.02680 

Point 0.07730 

Clamped 
Distributed 0.00841 

Point 0.03790 

Table 3.13 – Reissner-Mindlin solutions using a mesh of 32x32 four-noded quadrilateral 
elements. 

 
The QLRZ solution of the problem and the relative error are listed in Table 3.14. 
 

Relative error (er% ) of w at center point 

Load Mesh  
SS Clamped 

w er (%) w er (%) 

D
is

tr
ib

ut
ed

 

2x2 0.026150 -2.43 0.0080239 -4.59 

4x4 0.026638 -0.60 0.0082998 -1.31 

8x8 0.026744 -0.21 0.0083747 -0.42 

16x16 0.026770 -0.11 0.0083939 -0.19 

32x32 0.026776 -0.09 0.0083988 -0.13 

Po
in

t 

2x2 0.076049 -1.62 0.0322470 -14.92 

4x4 0.076392 -1.17 0.0360900 -4.78 

8x8 0.076767 -0.69 0.0371910 -1.87 

16x16 0.076966 -0.43 0.0375650 -0.88 

32x32 0.077097 -0.26 0.0377400 -0.42 

Table 3.14 – Relative error er  of w at center point. 
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 Figure 3.38 shows the behavior of the error. Labels “SS-P”, “SS-q”, “C-P”, and 
“C-q” refer to simply-supported-point-load, simply-supported-distributed-load, 
clamped-point-load, and clamped-distributed-load, respectively. 

 

 
Figure 3.38 – Relative error er  of central deflection. 

 

Figure 3.38 clearly shows the convergence of the QLRZ solution to the 
Reissner-Mindlin solution for all cases. Good accuracy is obtained already for the 
4x4 mesh (er less than 2.5%) except for the C-p case (er approximately equal to 5%). 
Results for the SS case (error < 2.5%) are better than for the clamped one. The worst 

result is obtained for the clamped plate under central point load for the 2x2 mesh 
(er=-14.92%). 

 

3.3.7.3 Convergence 
In order to study the influence of the heterogeneity of the laminated material on 

the convergence and accuracy of the QLRZ element, a SS and a clamped square 
plates of length side L = 2m and thickness h = 0.1m (λ = 20) under uniformly 
distributed load q = 1N/m2 (Figure 3.36a and Figure 3.36c) are analyzed. Three 

different laminated materials, whose properties are listed in Table 3.15, are 
considered for each example. The material heterogeneity increases from composite 
C1 to C3. 

 

Taking advantage of symmetry only one quarter of plate is analyzed using the 
QLRZ meshes shown in Figure 3.37. The reference solution was obtained by a 3D 
finite element analysis using a mesh of 10x10x9 (3 elements per ply) 20-noded 
hexahedral elements involving 4499 nodes and 13497 DOFs (Figure 3.39). 
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Composite Materials 

  Layer 1 
(bottom) 

Layer 2 
(core) 

Layer 3 
(top) 

Composite C1 

hi h/3 h/3 h/3 

E [MPa] 2.19x10-1 2.19x10-2 4.40x10-1 

υ 0.25 0.25 0.25 

Composite C2 

hi h/3 h/3 h/3 

E [MPa] 2.19x10-1 2.19x10-3 2.19x10-1 

υ 0.25 0.25 0.25 

Composite C3 

hi h/10 4h/5 h/10 

E [MPa] 2.19x10-1 7.25x10-4 7.30x10-2 

υ 0.25 0.25 0.25 

Table 3.15 – Composite material properties. 

 

a) b) 

 

 

 

 
Figure 3.39 – 10x10x9 HEXA20 meshes employed to compute the reference solution for 

composite C1 and C2 (a), and composite C3 (b). 

 
Convergence is quantified by the relative error defined as 

 3

3

i D
r

D

m me
m
−

=  3.103 

where im  and 3Dm  are the magnitudes of interest obtained with the ith QLRZ 

mesh (i = 1,2,…,5) and the 3D reference solution, respectively. The magnitudes 
studied m are: the middle (z = 0) vertical deflection w at the center point C (Figure 

3.36), the axial stress σx on the top surface of ply 1 at point E, and ψx at point E. 
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Since ψx does not appear in 3D finite element analyses, mi and m3D are the values of 
this magnitude obtained with the ith QLRZ mesh (i = 1,…,4) and the finest mesh 
(32x32), respectively. The results obtained are listed in Table 3.16 and Table 3.17, 
and Figure 3.40 and Figure 3.41. 

 

It is clearly seen that convergence is always slower for the most heterogeneous 
material and for the clamped plate.  

For the clamped plate and the three materials (Table 3.16) errors are less than 
10% for the 16x16 mesh for all variables. For the SS plate (Table 3.17) errors are 

less than 2.3% for the 8x8 mesh in all cases. 
 
For composite C1 (the most homogeneous) errors are less than 2.9% for the 8x8 

mesh in all cases and less than 6.3% for the 4x4 mesh in all cases except for σx in the 

clamped plate.  

 
For the most heterogeneous material (composite C3), the difference in the 

results between the SS and the clamped plate is larger. For the SS plate (Table 3.17) 
errors are less than 2.3% for the 8x8 mesh in all variables. For the clamped plate 

(Table 3.16) errors are less than 23% for the 8x8 mesh and less than 10% for the 
16x16 mesh in all cases. The quality of results obtained for the composite C2 is 
between that of composites C1 and C3. 

 

 Relative error re (% ) in clamped plate 

Mesh 
w at point C σx at point E ψx at point E 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

2x2 11.71 50.28 60.99 99.99 100 100 26.13 80.09 86.48 

4x4 4.65 30.16 43.47 20.86 44.14 45.53 6.28 43.34 54.80 

8x8 1.60 12.32 22.44 2.90 14.35 17.24 1.47 13.68 18.58 

16x16 0.29 3.67 9.25 -1.21 -0.40 -1.15 0.30 2.58 2.22 

32x32 -0.14 0.69 2.85 -2.22 -4.70 -4.62 0.00 0.00 0.00 

Table 3.16 – Clamped square plate ( 20λ = ) under uniformly distributed load. Relative 

error re (%) for w, xσ , and xψ . 
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Relative error re (% ) in SS plate 

Mesh 
w at point C σx at point E ψx at point E 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

2x2 2.69 19.36 25.83 26.98 32.89 33.24 9.11 41.06 51.92 

4x4 0.68 6.50 10.14 4.86 7.70 9.05 3.99 8.95 13.67 

8x8 0.25 1.54 2.22 -0.30 -0.79 0.44 0.71 0.40 1.84 

16x16 0.15 0.38 0.35 -1.55 -3.04 -1.92 0.07 0.45 1.44 

32x32 0.12 0.12 -0.02 -1.86 -3.49 -2.07 0.00 0.00 0.00 

Table 3.17 – SS square plate ( 20λ = ) under uniformly distributed load. Relative error 

re (%) for w, xσ , and xψ . 

a) b) c) 

 
Figure 3.40 – Clamped square plate ( 20λ = ) under uniformly distributed load. Relative 

error re (%) for w (a), xσ  (b), and xψ  (c). 

a) b) c) 

 
Figure 3.41 – SS square plate ( 20λ = ) under uniformly distributed load. Relative error 

re (%) for w (a), xσ  (b), and xψ  (c). 
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3.3.7.4 Numerical examples 
Comparison for SS square and circular composite laminated plates 
In order to show the performance of the QLRZ element for highly 

heterogeneous composite material, a square SS plate of length L = 2m and thickness 

h = 0.1m, and a circular SS plate of diameter D = 2m and thickness h = 0.1m are 
studied. The structures are loaded under a uniformly distributed load, q=10000N/m2 
(Figure 3.42).  

a) b) 

 
Figure 3.42 – Square SS plate (a) and circular SS plate (b) under uniformly distributed load. 

Each plate is studied for different composite laminated materials with properties 

listed in Table 3.18 and Table 3.19. The square plate is analyzed for composites C4-
7 and the circular plate for composites C6-7. 

 
Do to symmetry only one quarter of plate is analyzed with the QLRZ meshes 

shown in Figure 3.43 whose properties are listed in Table 3.20. The reference 
solution is a 3D finite element analysis using HEXA20 elements. The different 3D 
meshes for each case are shown in Figure 3.44. Details of each mesh are listed in 
Table 3.21. 

 

Layer material properties 

 A B C D 

E1 157.9x102 19.15 

0.104 x102 104.1 x102 E2 9.58 x102 19.15 

E3 9.58 x102 191.5 

μ12 0.32 6.58 x10-4 

0.30 0.31 μ13 0.32 6.43 x10-8 

μ23 0.49 6.43 x10-8 

G12 5.93 x102 42.3 x10-7 
0.04x102 39.73 x102 

G13 5.93 x102 36.51 

G23 3.23 x102 124.8   

Table 3.18 – Layer material properties. E and G are given in MPa. 
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Composite laminated materials 

Composite Layer distribution hi / h 

C4  (A/C/A)  (0.1/0.8/0.1) 

C5 (A/B) (0.5/0.5) 

C6 (A/B/C/D) (0.1/0.3/0.5/0.1) 

C7 (A/C/A/C/B/C/A/C/A) (0.1/0.1/0.1/0.1/0.2/0.1/0.1/0.1/0.1) 

Table 3.19 – Layer distribution of composite materials. 

 

QLRZ meshes properties 

Mesh nxn 
Number  

of elements 
Nodes DOFs 

a 8x8 64 81 567 

b 16x16 256 289 2023 

c -- 40 53 371 

d -- 168 193 1351 

Table 3.20 – QLRZ meshes properties. 

a) b) 

 

c) d) 

 
Figure 3.43 – QLRZ meshes. Square plate: 8x8 (a) and 16x16 element (b). Circular plate: 40 

(c) and 168 (d) elements. 
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HEXA20 mesh properties 

Mesh Composite 
Number  

of elements 
Nodes DOFs 

a C4 640 3285 9855 

b C5 512 2673 8019 

c C6 768 3897 11691 

d C7 1728 8487 25461 

e C6 602 3094 9282 

f C7 1161 5824 17472 

Table 3.21 – HEXA20 meshes properties. 

a) b) 

 

 

 

  

c) d) 

 

 

 

  

e) f) 

 

 

 

 
Figure 3.44 – HEXA20 reference meshes. Square meshes for composites C4 (a), C5 (b), C6 

(c), C7 (d), and circular meshes for composites C6 (e) and C7 (f). 
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The RMT results for the square plate of composite C4 are also shown in Figure 
3.45. The RMT solution was obtained by using a mesh of 16x16 four-noded QLLL 
plate element [108, 112]. 

 
Figures 3.45-3.50 show the computed vertical deflection w (a), the thickness 

distribution of the axial displacement u (b), the axial stress σx (c), the transverse 
shear stress τxz (d) for each plate under study. 

 
The vertical deflection is accurately captured. At the center of plate, the 

maximum error (14%) is given by the circular plate of composite C6 for the 40-
element mesh (Figure 3.46a). The errors are less than 10% for the finest mesh (168 
elements). 

 

The thickness distribution of the axial displacement is accurately predicted in all 
cases. The ability to capture the complex kinematics of laminated composite 
materials is a key feature of the QLRZ plate element. The successful axial 
displacement prediction leads to accurate axial stress values as shown in Figures c). 

Figures d) displays the good results for the thickness distribution of the transverse 
shear stresses computed by means of Eq.(3.100).  

 
Figure 3.45 shows the inaccurate results when modeling a composite laminated 

plate using QLLL elements based on RMT. The deflection at the plate center is three 
times stiffer than the reference solution (Figure 3.45a). The RMT solution also 
yields an erroneous linear thickness distribution of the axial displacement (Figure 
3.45b), which leads to a distorted distribution of the axial stress (Figure 3.45c). 
Finally, the RMT is unable to capture the correct transverse shear stress distribution 

(Figure 3.45d). 
 
 
 

 
 
 
 

 
 
 
 

 



Section 3.3 
 

93 

a) b) 

 

c) d) 

 
Figure 3.45 – SS square plate under uniformly distributed load. Composite C4. (a) Vertical 
deflection along central line BC. Thickness distribution of: (b) axial displacement u at point 

B, (c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 

c) d) 

 
Figure 3.46 – SS square plate under uniformly distributed load. Composite C5. (a) Vertical 
deflection along central line BC. Thickness distribution of: (b) axial displacement u at point 

B, (c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 

c) d) 

 
Figure 3.47 – SS square plate under uniformly distributed load. Composite C6. (a) Vertical 
deflection along central line BC. Thickness distribution of: (b) axial displacement u at point 

B, (c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 

c) d) 

 
Figure 3.48 – SS square plate under uniformly distributed load. Composite C7. (a) Vertical 
deflection along central line BC. Thickness distribution of: (b) axial displacement u at point 

B, (c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 

c) d) 

 
Figure 3.49 – SS circular plate under uniformly distributed load. Composite C6. (a) Vertical 
deflection along line BC. Thickness distribution of: (b) axial displacement u at point D, (c) 

axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point D. 
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a) b) 

 

c) d) 

 
Figure 3.50 – SS circular plate under uniformly distributed load. Composite C7. (a) Vertical 
deflection along line BC. Thickness distribution of: (b) axial displacement u at point D, (c) 

axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point D. 
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4 Numerical model of delamination using the 
beam LRZ and the plate QLRZ finite elements 

 A numerical model to simulate mode II/III delamination in advanced composite 
beams and plates based on the RZT theory is presented in this Chapter.  

The method uses the LRZ and QLRZ finite elements for describing the whole 
laminated material including the resin-rich zone at the interface between plies where 

delamination occurs. In other words, no additional technique for modeling the 
delamination paths is required. 

Some limitations of the model are discussed below in Section 4.1. 
 

The key attribute of the RZT theory that makes it able to capture relative 
displacement between layers is that the zigzag function depends on the transverse 
shear modulus of each layer. This feature allows changing the shape of the zigzag 
in-plane displacement by modifying the shear properties of plies. With this in mind, 

the relative displacement between neighboring layers can be modeled by simply 
discretizing the resin-rich interface zone between them (Figure 2.6) with an 
additional thin enough ply and then considerately reduce its shear modulus in 
comparison with those of neighboring layers. It is important to note that no 

additional kinematics variables are introduced in the model by incorporating these 
interface plies. 

The additional layers, which describe the delamination path, are also named as 
cohesive layers (cl) henceforth. Moreover, layers that make up the laminate are 
named as material layers (ml). 

  
The resin-rich zone at the interface is considered as an isotropic material. 

Therefore, the mechanical behavior of “cl” layers is controlled by an isotropic 
damage model which is developed below in Section 4.2. Note that delamination 

process is described by the intra-laminar damage of the “cl” ply.  
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Intra-laminar failure mechanisms within “ml” layers are not considered. The 
mechanical behavior of these layers is considered as linear elastic. As a result, 
delamination cannot migrate through layers but it can propagate parallel to the ply 
planes within the “cl” layers. Although failure mechanisms of material layers are 
despised in the present form of the LRZ/QLRZ delamination model, they can be 

accounted for in the future. 
 
The non-linear problem induced by the degradation process is solved by the 

modified Newton-Raphson method presented in Section 4.3. 

 

4.1 Kinematics limitations of the LRZ and QLRZ elements for 
simulation delamination 

The most relevant limitations of the LRZ/QLRZ delamination model proceed 
from the definition of the displacement field and the zigzag function.  

 
Definition of the through-thickness displacement: The model is unable to 

simulate opening fracture mode (mode I) because the vertical displacement is 
defined constant along the laminate thickness. Thus, sliding (mode II) and scissoring 
(mode III) fracture modes can be simulated only. Of course, fracture mode III is not 

accounted for in beams since the transversal in-plane displacement is not considered 
(Eq.(3.6)).  

 
Definition of the zigzag function: After delamination, the laminate is divided 

into sub-laminates with their own kinematics. According to Section 2.1.4, for a 

given structural slenderness ratio, if the transverse anisotropy of the resultant sub-
laminates is enough high, the in-plane displacement may describe a zigzag form, as 
shown in Figure 4.1b.  

Zigzag patterns of in-plane displacement within sub-laminates after 

delamination cannot be captured by the present model because of the zigzag 
function definition. The reasons are deducted immediately below. For simplicity, no 
distinction between orthogonal directions (x,y) is considered. 

The zigzag function is computed by Eq.(2.10) as 

( )1 1
2

k k
k k kh βφ φ ζ−= + +  

where the slope of kφ  function for the k th layer is computed by Eq.(2.17) as 
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1k
k
t

G
D

β = −  

being k
tD  and G  the transverse shear stiffness of the kth layer and the average 

transverse shear stiffness properties of the laminate, respectively. G  is defined by 

Eq.(2.18) as 

1

1

kN

k
k t

hG h
D

−

=

 
=  

 
∑  

In order to capture relative in-plane displacement between plies with the 
LRZ/QLRZ delamination model, the zigzag function must be updated by reducing 
the shear modulus of the damaged cohesive layer, as demonstrated below in Section 
4.4. Thus, when the transverse shear properties of a damaged layer d are reduced 

almost to zero, i.e. Dd → 0, G tends to zero. As a result, the slope of the zigzag 
function for all undamaged layers is approximately equal to the negative unit value, 
i.e. βk


-1, whereas the slope for the damaged layer is defined positive by           

βd


h / hd-1.  Therefore, the zigzag function is defined by a piecewise linear 

function, where its slope changes at the damaged ply only, as schematized in Figure 
4.2a. Thus, the in-plane displacement of the sub-laminates can be represented by a 
linear distribution only (Figure 4.2b) because similar slopes are computed for all 
undamaged layers.  

 
According to Section 2.1.4 and what has been previously stated, delamination in 

multilayered structures having low span-to-thickness ratio and high transverse 
anisotropy cannot be correctly simulated with the present model.  

However, that is not the case of advanced composite materials where the shear 

modulus does not differ generally in more than one order of magnitude between 
layers [113]. Moreover, laminated structures of composite materials are generally 
characterized by high slenderness ratios.  

Furthermore, delamination in three-layered laminates can be modeled with 

independence of the level of transverse anisotropy and the slenderness of the 
structures20 because the in-plane displacement within each sub-laminate presents a 
linear distribution. For these materials, sub-laminates consist of at most two layers 
where the linear kinematics is governed by the stiffer ply only. 

 Because of this, skin-core delamination in sandwich materials can be also 
modeled with the LRZ/QLRZ delamination model, as shown in Section 4.6.1. 

 

                                                 
20 In order to avoid tall beams/plates, the span-to-thickness ratio has to be at least 5. 
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a) b) 

 
Figure 4.1 – In-plane displacement before a) and after b) delamination. 

 

a) b) 

 
Figure 4.2 – Zigzag function a) and RZT in-plane displacement b) after delamination. 
 

4.2 Isotropic damage model 

The mechanical behavior of the cohesive layer is described by the isotropic 
damage model detailed below. 

 
Among different continuum damage models such as those found in Ref. [114-

117], the simple and robust isotropic damage model proposed by Oliver et al. [118] 
is used to manage the non-linear behavior of the “cl” layers.  

The level of damage or degradation is monitored through a single internal scalar 
variable d, which takes values ranged between 0 (no damage) and 1 (full damage). 
This variable represents the loss of the material stiffness as shown in Figure 4.3a. 

Physically, the degradation process is characterized by the presence and the growth 
of micro-cracks and -cavities within the solid which leads to a reduction of the 
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effective area of load transfer. Thus, the real stresses vector σ  of any isotropic layer 

is transformed to an effective one 0σ  as 

 
( )0 =
1 d−
σ

σ  4.1 

where d measures the degradation level of the isotropic layer in all direction.  

From Eq.(4.1), the real stresses vector is defines as 

 ( ) ( )0 0= 1 1d d− = − Dσ σ ε  4.2 

where ε  is the strain vector and 0D  is the undamaged isotropic constitutive 

matrix which can be easily obtained from Eq.(3.10) and Eq.(3.48) for beams and 
plates, respectively. 

In order to distinguish between a damage state and an undamaged one, it is 

necessary to define a damage criterion which is formulated here in the undamaged 
stress space as 

 ( ) ( ) ( )0 0, 0F d f c d= − ≤σ σ  4.3 

where f is a norm used to compare different states of deformation and c is the 
damage threshold. Note that f depends on the effective stresses whereas c is a 
function of the damage variable. Damage occurs when the value of f is larger than c. 
Damage starts for f  > c0, being c0 the initial damage threshold value, which depends 

on the material properties, defined as 

 0

0

tfc
E

=  4.4 

where tf  is the tensile strength and 0E  the Young modulus of the undamaged 

isotropic material. 

 
The norm f  adopted in this work is defined as 

 0:f = ε σ  4.5 

For convenience, a fully equivalent expression for Eq.(4.3) is defined as 

 ( ) ( ) 0F f c= Θ −Θ ≤  4.6 

where ( )Θ ⋅  is a suitable monotonic scalar function. 



Isotropic damage model 
 

104 

The evolution laws for the damage variable d and the damage threshold c are 
expressed as 

 ( )
c

fFd
f f

µ

µ

• •

• •

=

∂Θ∂
= =

∂ ∂

 4.7 

where μ is a damage consistency parameter which is used to define loading and 
unloading/reloading (Figure 4.3a) conditions according to the Kuhn-Tucker 
conditions 

 0 ; 0 ; 0F Fµ µ
• •

≥ ≤ =  4.8 
From Eq.(4.7), the evolution of variables d and c is obtained via integrating 

[119] as  

 
( )

{ }{ }0max ; max

d f

c c f

= Θ

=
 4.9 

In this work an exponential evolution law is adopted for ( )fΘ  (Figure 4.3b) as 

 ( ) 0

1
01

fB
ccf e

f

 
− 

 Θ = −  4.10 

Considering the norm of Eq.(4.5), the exponential softening of Eq.(4.10), and 

the initial damage threshold value 0c  (Eq.(4.4)), the parameter B is computed as 

 
( )

1

0

2*

1
0

2
f

t

G E
B

l f

−
 ⋅

= − ≥ 
 ⋅ 

 4.11 

being fG  the fracture energy per unit area and *l  a characteristic length, which 

is here defined as the influence length of each Gauss point for LRZ element and is 
equal to the square root of the influence area of each Gauss point for QLRZ element. 

a) b) 

 
Figure 4.3 – Uniaxial stress-strain curve with softening (a) and exponential damage variable 

evolution (b). 
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4.3 Non-lineal problem solution: modified Newton-Raphson 
method 
During a material degradation process, the structure stiffness suffers changes 

that induce a non-linear response of the structure. The resulting non-linear set of 
equilibrium equations can be written as 

 ( ) ( )ext int 0− = =F F q R q  4.12 

where q , extF  and ( )intF q  are the discretization parameters, the external and 

the internal forces vectors, respectively. ( )R q  is the residual forces vector. Note, 

dynamic forces are not considered. 
The solution of Eq.(4.12) is achieved by using an incremental-iterative method 

employing sufficiently small increment from a known solution. Thus, the non-lineal 

problems is formulated as the solution of 

 ( ) ( )ext int 0n n n− = =F F q R q  4.13 

for the nth increment and from the last known solution 

 ext ext
1 1 1; ; 0n n n− − −= = =q q F F R  4.14 

The well-known iterative Newton-Raphson method proposes a linear 

approximation of Eq.(4.13) via the truncated Taylor series as 

 

1

1 0
i

i i i
n n

n

d
−

−  ∂
≈ + = ∂ 

R
R R q

q
 4.15 

where dq  is the increment of the nodal DOF at ith iteration. 

 
From Eq.(4.13) 

 

11 int
1

T

ii
i

n n

−−

−   ∂∂
= − = −  ∂ ∂   

FR
K

q q
 4.16 

where TK  is the tangent stiffness matrix at i-1th iteration. 

Substituting Eq.(4.16) into Eq.(4.15) gives 

 1 1
T

i i i
n d− −R = K q  4.17 

or 

 ( ) 11 1
T

i i i
nd

−− −q = K R  4.18 
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Finally, the solution is found by updating the nodal DOF q  as 

 1= i i i
n n d− +q q q  4.19 

or 

 1= i i
n n− + ∆q q q  4.20 

with  

 
1

i
i m

m
d

=

∆ ∑q = q  4.21 

The process is repeated until the convergence criterion extς≤R F  is 

satisfied being ς  a predefined error tolerance [120]. 

In this work a modification of the Newton-Raphson method is used, where the 

tangent stiffness matrix TK  is approximated by 

 1 1
T d

i i− −≈K K  4.22 

where dK  is the damaged stiffness matrix defined as 

 1 1
d d di T i− −

ω
= ω∫K B D B  4.23 

with  

 1 1 1 1
d d d dd

Ti i k i k i k

ζ
ζ− − − − =  ∫D S D S  4.24 

being 1
d

i k− D  and dD  the damaged constitutive matrix for the kth layer computed 

by Eqs.(3.10, 3.48) and the damaged generalized constitutive matrix of the whole 

laminate defined by Eqs.(3.13, 3.60), respectively. The integration domains ω and 

ζ  depend on the finite element employed.  

 

Note, the subscript d indicates damaged quantities which are computed by 
reducing the mechanical properties of those layers where damage occurs. In order to 

capture delamination, the zigzag function has to be updated. Thus, the matrix 1
d

i k− S  

is set as a damaged quantity since it contains the zigzag function. 
 
Furthermore, the solution at the first iteration of a new nth step has to be 

calculated by means of the damaged stiffness matrix Kd computed at the last 
iteration of the previous n-1th step. 
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Figure 4.4 schematizes the original and the modified Newton-Raphson method.  

a) b) 

 
Figure 4.4 – Original (a) and modified (b) Newton-Raphson method. 

 

4.4 Update of the zigzag function to simulate delamination  
In order to capture relative displacements between layers, a technique based on 

updating the zigzag function during the degradation process of the “cl” plies is 

employed by the LRZ/QLRZ delamination model. The basics of this strategy are 
explained below. 

 
In 3D finite element analyses, the nodal internal forces are obtained by 

integrating stresses over the finite elements volume. When a finite element suffers 
from softening because the damage threshold is reached, stresses within that 
damaged element are reduced. As a result, a lack of equilibrium between the internal 
forces of the damaged element and the neighboring elements happens, which 

induces nodal residual forces. These forces generate the relative displacement 
between layers that typically occurs during a delamination process. Then, 
equilibrium is achieved with an iterative process such as that of Section 4.3. This 
process is schematized in Figure 4.5a. 

 
The kinematic variables (Eq.(2.3)) and stress resultants (Eqs.(3.11),(3.58)) of 

the LRZ/QLRZ finite elements are computed at the in-plane middle surface of the 
element (z = 0). Because of this, there are no forces within the laminate able to 
induce relative displacements between plies. Consequently, the LRZ/QLRZ 

elements are unable to provoke any change on the zigzag shape of the in-plane 
displacement by reducing stresses only.  

In case stresses are reduced only, a variation of the amplitude of the previous 
displacement field is obtained, instead of capturing a delaminated kinematics. That 

is because the LRZ/QLRZ kinematics variables are not able to modify by 
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themselves the shape of the zigzag displacement, but they can vary the amplitude 
only. This is outlined in Figure 4.5b – Without ϕ update. 

 
The kinematics of the RZT theory is defined by a superposition of a linear 

piecewise zigzag function over the linear FSDT displacement fields (Figure 2.2). As 

a result, the zigzag shape of the in-plane displacement is governed by the zigzag 
function ϕ only. Comprehensibly, in order to modify the zigzag form of the RZT in-
plane displacement, the zigzag function must be updated according with the 
delamination process. Taking into account that the zigzag function depends on the 

transverse shear stiffness of each layer, the update of this function by reducing the 
shear properties of the damaged layer is a natural manner for provoking changes in 
the zigzag pattern of the in-plane displacement. 

 Taking into account that only “cl” plies are able to suffer damage in the 

LRZ/QLRZ delamination model and the degradation level is measured by the 
damage variable d, the update of the zigzag function is proposed by reducing the 

initial elastic shear moduli 0
clG  of the damaged cohesive layers “cl” as 

 ( ) 0= 1cl cl cl
dG d G−  4.25 

which leads to the definition of the average transverse shear stiffness izG  as  

 

1

1 111

1

1 122
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  

∑ ∑

∑ ∑
 4.26 

where Nml and Ncl denote the number of material and cohesive layers, 
respectively. The slope of zigzag function for the material layer “ml” and the 
cohesive layer “cl” are computed by 

 
11

22

1 1

;

1 1

xz xz
ml clml cl

t dx x

yz yzy y
ml cl
t d

G G
D G
G G
D G

β β
β β

   − −         = =            − −   
   

 4.27 

This simple update procedure of the zigzag function allows the method to 
capture the relative displacement between layers.  
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Figure 4.5 schematizes all mentioned above. The implicit algorithm proposed to 
compute delamination with the LRZ/QLRZ model is shown in Figure 4.6.  

a) 

 

b) 

 
Figure 4.5 - The delaminated displacement field is achieved by the residual forces (R) in a 

plane stress analysis (PS) (a). Delaminación can be captured with the LRZ/QLRZ finite 
element when the zigzag function φ  is updated by reducing the shear modulus of the 

damaged layer (b). 
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# Loop over load increments 
 

Update external forces  extF  
 

# Iterative process   
 

If ith iteration = 1   
1 ext

d
1 −= ⋅a K F  
1 k k 1

d= S B aε  

Note that for the first iteration 1
d
−K  and k

dS  are computed at the last 

iteration of the previous load increment. 
Else 

1 1
d

i i id − −= ⋅a K R  
1i i id−= +a a a  

1i k i k i
d

−= S B aε  

Remember that 1i k
d

− S  contains the updated φ  function of the i-1th 

iteration. As a consequence, the strain field i kε  corresponds to the 
delaminated kinematics. 

End if 
 

         Evaluate undamaged stresses:     

          0
i k k i k= ⋅Dσ ε       

 

Damage evaluation in cohesive layers: 
          Compute damage variable:  

          0

1
0

0with1 :

i fB
ci cl i i cl i cl

i

cd e f
f

 
− 

 = − = ε σ     

          Correct stresses and shear moduli: 
          ( ) ( )0 0= 1 ; = 1i cl i cl i cl i cl i cl i cl

dd G d G− −σ σ                        
 

Update zigzag function: 
          Compute average transverse shear stiffness: 

1

1 111

1

1 122

ml clNml Ncl

i ml i cl
ml clt dxz

ml clNml Nclyz

ml i cl
ml clt d

h hh
D GG

G h hh
D G

−

= =

−

= =

  
 + 

    =   
    +  

  

∑ ∑

∑ ∑
 

 

Figure 4.6 - Algorithm for solving the non-linear problem by means of the modified 
Newton-Raphson. Note that the zigzag function is updated at each iteration. Figure continued 

on the page. 
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          Compute zigzag slope:  
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          Compute zigzag function: 

( ) ( )1 11 ; 1
2 2

k i kk i k
yi k k k i k k kx

x x y y

hh ββφ φ ζ φ φ ζ− −= + + = + +  

 

Computation of the damaged stiffness matrix and internal forces: 

d d
ˆi T i

A
dA∫K = B D B  

inti T i T i k

V
dV= ∫F B S σ  

 

Verification of convergence criteria 
ext inti i− =F F R  

exti ς≤R F  
 

# END iterative process   
 

# END loops over load increments 

Figure 4.6 - Continuation. 

 

4.5 Multi-delamination modeling with the LRZ/QLRZ 
delamination model  

The simulation of multi-delamination with the LRZ/QLRZ delamination model 
is investigated in this section.  

 
In the LRZ/QLRZ model, relative displacements are provoked by modifying the 

shape of the zigzag function using Eqs. (4.25)-(4.27). The alteration of this function 
is motived by reducing the shear modulus of damaged cohesive layers during 
degradation process. Note that these equations are written to simulate multi-
delamination, i.e. several “cl” plies can be damaged. However, in order to capture 
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more than one relative displacement with the LRZ/QLRZ delamination model, some 
cares have to be accounted for when updating the zigzag function.  

 
In order to analyze the potential of the QLRZ/LRZ model for simulating multi-

delamination, a sandwich clamped beam with two possible delamination paths is 

studied.  
The beam is subjected to a vertical displacement Δw = 1mm at the free end 

(Figure 4.7a). The length and thickness of the beam are L = 100mm and h = 
20.02mm, respectively. The laminated material consists of two skins (the top and the 

bottom layers) and a less stiff core between them (the middle ply). The top and 
bottom delamination paths between skins and core are described by the cohesive 
layers “cl-1” and “cl-2”, respectively (Figure 4.7b). Thickness and mechanical 
properties of each layer are listed in Table 4.1. 

a) b) 

 
Figure 4.7 - Cantilever beam under vertical displacement a) and sandwich three-layered 

material b). 
 

Thicknesses  and material properties 

 Top  

Skin 

Core Bottom 
Skin 

Cohesive 
layers 

h [mm] 2 16 2 0.01 

E [MPa] 2.19x105 7.30x102 7.3x105 7.30x102 

G [MPa] 0.876x105 2.90x102 2.92x105 2.90x102 

Table 4.1 – Layer properties for multi-delamination study. 
 

In this case, the damage of each interface layer is induced by reducing the shear 
modulus from G = 2.9x102 MPa to G = 2.9x10-8 MPa. Note that the reduction of the 
“cl” shear modulus is applied over the whole beam length.  

 

The reference solution is computed by a plane stress analysis (PS) using a mesh 
of 3200 4-noded quadrilateral finite elements (Figure 4.8). The beam length is 
discretized with 100 elements whereas the thicknesses of the skins and core are 



Section 4.5 
 

113 

described with 3 and 24 finite elements, respectively. Only 1 finite element is 
required to define the cohesive layers. 

 

 
Figure 4.8 - Four-noded quadrilateral finite element mesh for the PS analysis. 

 
Figure 4.9 shows the thickness distribution of the axial displacement u at the 

free end for the undamaged beam (a), after first delamination at the top cohesive 
layer “cl-1” (b) (single-delamination) and after second delamination at the bottom 
layer “cl-2” (c) (multi-delamination). 

Despite the low span-to-thickness ratio and high transverse anisotropy of the 

beam, results clearly show a great agreement between the LRZ/QLRZ model and the 
PS analysis. It is appreciated that both, the single- (Figure 4.9b) and the multi-
delamination (Figure 4.9c) are well captured. 

a) b) 

 

c) 

 
Figure 4.9 - Axial displacement u at the free end for the undamaged beam (a), for single-

delamination at the cohesive layer “cl-1” (b) and for multi-delamination (c). 
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Before to continue analyzing results, it is important to remark that after 
delamination the slope of the zigzag function (Eq.(4.27)) is controlled by the 
average transverse shear stiffness of laminate (Eq.(4.26)) which in turn is governed 
by the smallest damaged shear modulus. 

With this in mind, once the top delamination has been occurred, the shape of the 

zigzag function is controlled by the “cl-1” ply only. After second delamination, 
however, the zigzag function could be governed by the “cl-1” (if Gcl-1 < Gcl-2), the 
“cl-2” (if Gcl-1 > Gcl-2) or both cohesive layers (if Gcl-1 ≈ Gcl-2). 

In consequence, the model was able to capture the second relative displacement 

at the bottom interface because the shear modulus of the “cl-2” ply have been 
reduced to the same value as the “cl-1” layer (Gcl-2 = Gcl-1 = 2.9x10-8 MPa). 
Otherwise, the model could predict wrong displacement field, as detailed below. 

 

With the aim to clarify the mentioned above, imagine a delamination process 
where the “cl-1” ply was full damage at the nth step by reducing its shear modulus 
to Gcl-1 = 2.9x10-8 MPa. As a result, the undamaged zigzag function (Figure 4.10a) 
has to be updated provoking a jump at the top cohesive layer (Figure 4.10b). This 

update of the zigzag function induces the top single-delamination of Figure 4.9b.  
Then, some steps later, the shear modulus of the bottom cohesive layer is also 

reduced to 2.9x10-8 MPa (Gcl-2 = Gcl-1). Consequently, the zigzag function is updated 
again leading to two jumps at top and bottom cohesive layers (Figure 4.10c). This 

new configuration of the zigzag function provokes the multi-delamination showed in 
Figure 4.9c.  

 
 

Now, imagine that the shear modulus of the “cl-2” layer is decreased to     
2.9x10-10 MPa instead of be reduced to 2.9x10-8 MPa, i.e. two orders of magnitude 
smaller than the shear modulus of the “cl-1” ply previously damaged.  

Therefore, the updated zigzag function has only one jump at the bottom 

interface (Figure 4.11a), instead of having two jumps like in Figure 4.10c. In 
consequence, a single-delamination path at the cohesive ply “cl-2” is computed 
neglecting the previous delamination at layer “cl-1”, as shown in Figure 4.11b. The 
reason is that the average transverse shear stiffness of laminate is now governed by 
the shear modulus of the “cl-2” because of Gcl-1 > Gcl-2. 

This situation is completely unreal since not only the double-delamination could 
not be captured, but also the in-plane displacement is modified to a new 
configuration which does not take into account the relative displacement at ply “cl-
1” previously computed. 
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Thus, in order to maintain previous delamination state, the reduced shear 
modulus of new damaged cohesive layers must not be smaller than that of the first 
degraded cohesive layer. 

 It is important to note that the difference of two orders of magnitude between 
the damaged shear moduli (arbitrarily chosen for this example) implies a difference 

of the damage variable d between both layers approximately equal to 9.9x10-9 % 
only. 

 
In addition, in order to capture new delamination paths, the sensibility of the 

zigzag function to be modified once first delamination has been occurred has to be 
studied.  

Thus, imagine that the “cl-2” shear modulus is decreased to 2.9x10-6 MPa 
instead of 2.9x10-8 MPa, i.e. two orders of magnitude larger than that of the “cl-1” 

layer previously damaged. As a result, the update of the zigzag function does not 
provoke significant changes on its previous delaminated shape (Figure 4.10b), as 
shown in Figure 4.12a. Therefore, the second delamination path at the “cl-2” ply 
cannot be captured (Figure 4.12b). The reason is that the average transverse shear 

stiffness of laminate is still governed by the shear modulus of the “cl-1” because Gcl-

2 is quite larger than Gcl-1.  
Consequently, although delamination process has begun at bottom interface 

layer (Gcl-2 = 2.9x10-6), it was not possible to capture the relative displacement at 

"cl-2" ply. 
Note that, for this case, the difference of two orders of magnitude between the 

shear moduli implies a difference of the damage variable d equal to 9.9x10-7 % only. 
 
Summarizing, in order to predict multi-delamination with the LRZ/QLRZ 

delamination model, the reduced shear properties of new degraded interfaces must 
be almost the same as that of the first damaged cohesive layer. This precaution 
allows the model to capture new relative displacement while maintaining previous 
delamination states. 

In consequence, it is necessary to development an strategy for controlling the 
degradation process of each cohesive layer at Gauss point level. This topic is 
proposed as future work. Thus, the model is actually able to simulate single-
delamination only. 
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a) b) 

 

c) 

 
Figure 4.10 – Zigzag function for the undamaged beam (a), for single-

delamination at the cohesive layer “cl-1” (b) and for multi-delamination (c). 
 

a) b) 

 
Figure 4.11 - Zigzag function (a) and axial displacement (b) for the case where the damage 

shear modulus of the bottom cohesive layer is smaller than that of the top damaged cohesive 
layer. 
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a) b) 

  
Figure 4.12 - Zigzag function (a) and axial displacement (b) for the case where the damage 
shear modulus of the bottom cohesive layer is higer than that of the top damaged cohesive 

layer. 
 

4.6 Numerical examples 

The performance of the LRZ/QLRZ delamination model is analyzed in this 
section. Only single-delamination cases are studied.  

 

Simulations are carried out under the following considerations: quasi-static 
application of vertical displacement, geometrically linear problem and small 
deformation. 

 

4.6.1 Delamination in beams 
Sandwich clamped beam under vertical displacement 
Skin-core delamination at the top interface (cl-1 ply) of the sandwich clamped 

beam of Section 4.5 is analyzed. The structure is subjected to a vertical displacement 

Δw = 10mm. Dimension, boundary conditions and layer stacking of the beam are 
schematized in Figure 4.7. Layer mechanical properties are listed in Table 4.1. 
Tensile strength and fracture energy of the “cl-1” layer are equal to ft = 2MPa and 
Gf=5x104kN/m, respectively. The LRZ mesh contains 25 elements.  

The reference solution is computed by a plane stress analysis (PS) using the 
mesh of Figure 4.8. The step increment is dw = 0.003mm for both solutions. The 
tolerance value is ζ = 1x10-3 for the LRZ analysis and ζ = 1x10-2 for the PS solution 
due to difficulties for getting convergence. 

 
Figure 4.13 shows the load-displacement curve. Load P corresponds to the total 

vertical reaction computed at the clamped support whereas displacement w is the 
imposed vertical displacement Δw.  
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Figure 4.13 - Load vs. displacement curves for single-delamination in sandwich laminated 

materials. 
 
Although the error at the end of simulation is approximately 12.0%, both, the 

onset and the growth of delamination are correctly predicted by the LRZ 
delamination model. Damage starts for Δw = 0.468mm and Δw=0.414mm for the PS 
and LRZ models, respectively.  

 
After onset delamination, the LRZ solution exhibits a load drop at 

Δw=0.519mm, which is related to the update of the zigzag function. 
At this increment, degradation of the “cl-1” layer is increased from dcl = 0.98 

(Δw=0.513mm) to dcl = 0.998, approximately. This relatively small variation (2% 
approx.) of damage variable induces a significant change of the zigzag function, as 
shown in Figure 4.14, which provokes the load drop of Figure 4.13.  

 

Figure 4.14a shows the zigzag function obtained with different degradation 
levels of the top cohesive layer. In other words, the sensibility of zigzag function to 
the damage variable is shown. It is observed that no major changes on the zigzag 
function are produced until damage variable d reaches values close to 0.998.  

 
In order to reduce the load drop of Figure 4.13, smaller step increments can be 

used, as shown in Figure 4.14b. In this figure two LRZ solutions computed using 
dw=0.003mm (LRZ) and dw=0.00003mm (LRZSI) are compared. 

Results show that immediately after onset delamination, i.e. at Δw = 0.417mm, a 
very small load drop is computed by the LRZSI solution when damage variable 
changes from 0.437 to 0.976 in a few number of finite elements. Although a 
degradation level of 0.976 does not induce relevant alterations in the zigzag 
function, it is enough to provoke a small fall. 
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a) b) 

 
Figure 4.14 - Undamaged and damaged zigzag function (a) and load vs. displacement curves 

obtained by the LRZ model for two different step increments (b). 
 
Figure 4.15 shows the evolution of the cl-1 damage variable for the LRZ and 

LRZSI solutions. The jump of d from 0.437 to 0.976 at Δw =0.417mm and from 0.98 

to 0.998 at Δw =0.519mm for the LRZSI and the LRZ solutions, respectively, can be 
observed.  

This figure also reveals that damage variable evolves faster for LRZSI than LRZ 
solution. The reason is that the strains ε used to calculate the predictor stresses (σ = 
D ε) are computed from the previous delaminated kinematics. Consequently, the 
greater is the relative displacement at the n-1th step the higher is the predictor 
stresses at the nth step. 

 

 
Figure 4.15 – Damage variable d of the “cl-1” ply at the Gauss point of the first finite 

element from the free end obtained by the LRZ model for two different step increments. 
 

Figure 4.16 shows the thickness distribution of the axial displacement u at the 
free end for three different steps: before (a) (Δw =0.393mm) and after delamination 
onset (b) (Δw =2.013mm) and at the end of simulation (c) (Δw=9.993mm). 

a)  b) 
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c) 

 
Figure 4.16 - Thickness distribution of the axial displacement u at the free end before (a) and 

after delamination (b) and at the end of simulation (c). 
 
Multilayered clamped beams under vertical displacement 
In this example single-delamination in multilayered beams is studied by 

modeling a beam of length L = 0.5m supported as shown in Figure 4.17. A vertical 

displacement Δw at the clamped support is imposed. The beam is analyzed for two 
laminates (L1 and L2) with properties listed in Tables 4.2- 4.4. Location of the 
cohesive layer for both laminates is shown in Figure 4.18. 

 
Figure 4.17 - Boundary conditions of the analyzed beam. 

a)  b) 

 
Figure 4.18 - Cohesive layer in laminate L1 a), and laminate L2 b). 
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Mechanical properties of linear-elastic plies [MPa] 

Material Young’s Modulus ( 0E ) Shear Modulus ( 0G ) 

A 157.9x105 5.93x105 

B 104.0x102 40.0x102 

C 5.3x102 2.12x102 

D 2.19x102 0.876x102 

E 0.82 x102 0.328 x102 

F 0.73 0.29 

G 7.3 x102 2.92 x102 

Table 4.2 - Mechanical properties of linear-elastic layers. 

 

Mechanical properties of cohesive plies (cl) 

Material 0E  

[MPa] 

0G    

[MPa] 

Tensile 
Strength 

( tf ) 

[MPa] 

Fracture Energy ( fG ) [kN/m] 

Ductile (
D

fG ) Fragile (
F

fG ) 

Hcl 104.0x102 40.0x102 6.5 5.0x105 1.0x10-1 

Icl 0.73 0.29 0.02 5.0x105 1.0x10-2 

Table 4.3 - Mechanical properties of cohesive layers (cl). 

Laminated materials 

Laminate Layer distribution hi / h 
h 

[mm] 

L1 (A/B/A/Hcl/A/B/A/B/A) (0.11/0.11/0.11/0.01/0.22/0.11/0.11/0.11/0.11) 9.1  

L2 (C/D/E/F/C/Icl/G/E/D/G) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0 

Table 4.4 - Layer distribution of laminated materials. 

 

In order to show the influence of the fracture energy Gf
cl in the delamination 

process, two values of this parameter (a larger one and a smaller one) are adopted 
for the cohesive layer in each laminate. For clarity, in the followings the largest 

value (Gf
D) is associated to a “ductile” property whereas the smallest (Gf

F) to a 
“fragile” one. 
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LRZ meshes of 2, 16, 128 finite elements are used in the analysis. The reference 
solution is obtained by means of a plane stress analysis (PS) using 4-noded 
quadrilateral finite elements and the isotropic damage model presented in Section 
4.2 for managing the degradation of the cohesive layer. The beam length, the 
thickness of the elastic layers and the thickness of the cohesive ply are discretized 

with 100, 2 and 1 finite elements, respectively. The discretization chosen leads to 
meshes of 1700 (Figure 4.19a) and 1900 (Figure 4.19b) 4-noded quadrilateral PS 
elements for the laminates L1 and L2, respectively. 

a) 

 

b) 

 
Figure 4.19 – Four-noded quadrilateral finite element meshes for laminate L1 a), and 

laminate L2 b). 

 
Figure 4.20 and Figure 4.21 show the load-displacement curves for the 

laminates L1 and L2, respectively. The load corresponds to the vertical reaction at 
the clamped support. The displacement corresponds to the incremental displacement 

Δw applied at the clamped end (Figure 4.17). The curves shown in Figures a) are 
obtained when the “ductile” (Gf

D)  fracture energy is considered. The response of the 
beam when the “fragile” (Gf

F)  fracture energy is used is shown in Figures b). The 
fracture energy values are listed in Table 4.3. 

 
Results reveal an admissible agreement between both solutions. The errors for 

the finest LRZ meshes at the end of simulation for the cases L1- Gf
D (Figure 4.20a), 

L1- Gf
F (Figure 4.20b), L2- Gf

D (Figure 4.20a) and L2- Gf
F (Figure 4.21b) are less 

than 11.0%, 2.5%, 7.5% and 2.9%, respectively. LRZ solution exhibits small drops 
of load for the case L1- Gf

D (Figure 4.20a), which are not present in the PS solution. 
The cause of these drops was mentioned in the previous skin-core delamination 
analysis. 
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a) Ductile material b) Fragile material 
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Figure 4.20 - Load vs. displacement curves for laminate L1 with ductile (a) and fragile (b) 

fracture energy. 

 

a) Ductile material b) Fragile material 
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Figure 4.21 - Load vs. displacement curves for laminate L2 with ductile (a) and fragile (b) 

fracture energy. 

When the “fragile” value of the fracture energy (Gf
F) is used, the cohesive layer 

completely loses its energy at the delamination onset, which provokes the sharp drop 

in the sample resistance, as shown in Figures b). The loss of resistance computed by 
the PS solution is around 56% for both laminates, whereas LRZ solution gives 60% 
and 70% for L1 and L2, respectively. 

 
The initial stiffness and the stiffness once delamination process has been started 

are very close to the stiffness obtained by 2D analysis in all cases. Also, is shown 
that delamination starts for similar values of displacement and load. 

 
The thickness distribution of the axial displacement u at the simply supported 

end, before and after delamination onset, is shown in Figure 4.22 and Figure 4.23 for 
laminates L1 and L2, respectively.  
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a) Undamaged b) Ductile material 

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
-4

0

1

2

3

4

5

6

7

8

9

Axial displacement u[mm]

T
hi

ck
ne

ss
 c

oo
rd

in
at

e 
z[

m
m

]

PS(1700)
LRZ(128)
LRZ(16)
LRZ(2)

-0.1 -0.05 0 0.05 0.1
0

1

2

3

4

5

6

7

8

9

Axial displacement u[mm]

T
hi

ck
ne

ss
 c

oo
rd

in
at

e 
z[

m
m

]

PS(1700)
LRZ(128)
LRZ(16)
LRZ(2)

 

b) Fragile material 
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Figure 4.22 - Thickness distribution of the axial displacement u at the simply supported end 

for laminate L1. This figure shows the undamaged kinematics a) and the damaged 
kinematics when the “ductile” b) and the “fragile” c) fracture energy is used. 

 

The undamaged kinematics is shown in Figures a), which make evident the very 
good match between PS and LRZ kinematics. Figures b) and c) show the 
delaminated kinematics at the end of simulation when the “ductile” and the “fragile” 
fracture energy values are used, respectively. In the “ductile” case, the LRZ 

elements are capable to capture the relative displacement with errors around 11% 
and 16% for laminates L1 and L2, respectively. In the “fragile” case, the errors are 
less than 3.3% for both laminates. 

Almost identical results are obtained with the quadratic LRZ beam element. 

 

Figure 4.24 shows the thickness distribution of the zigzag function φ  for 

laminate L1 (a) and laminate L2 (b). The solid line represents the initial zigzag 

function (undamaged), whereas the dashed and the dash-dot line correspond to the 
damaged zigzag function when the damage variable of cohesive layer is equal to 0.9 
and 1, respectively. As mentioned in Section 4.4, the ability of the LRZ element to 
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capture the relative displacement between plies during a delamination process lies in 
the zigzag function update according the layers are being damaged. 

a) Undamaged b) Ductile material 
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b) Fragile material 
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Figure 4.23 - Thickness distribution of the axial displacement u at the simply supported end 

for laminate L2. This figure shows the undamaged kinematics a) and the damaged 
kinematics when the “ductile” b) and the “fragile” c) fracture energy is used. 
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Figure 4.24 - Undamaged and damaged zigzag function for laminate L1 a) and laminate L2 

b). 
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In order to compare the performance of the PS and the LRZ analyses, the total 
increment numbers and the incremental displacement values as well as the tolerance 
value (ζ = 1x10-4) are the same for both methods. The total increment numbers are 
equal to 1000 and 7000 for laminates L1 and L2, respectively. The incremental 
displacement value applied in each increment is 1x10-3mm and 4x10-3mm for L1 and 

L2, respectively. Table 4.5 and Table 4.6 show the total number of iterations, the 
maximum number of iteration needed for achieving convergence in any increment 
and the total CPU time used in the simulation for L1 and L2, respectively. 

 

As expected, the computation time needed for the PS analysis is several times 
greater than that required for LRZ solutions. Comparing with the finest 128-LRZ 
mesh, PS uses at best around 67 times the time used by LRZ solution for laminate 
L2 and Gf

F =1.0x10-3 (Table 4.6). At worst, the time used by PS is 156 times greater 

than that required by the LRZ solution for laminate L1 and Gf
D =5.0x104  (Table 

4.5). If the comparison is made versus the 16-LRZ mesh, the time used by the PS 
solution is 530 and 1954 times of that needed by the LRZ solution at best and at 
worst scenarios, respectively. 

 

Computational cost of  the iterative process for laminate L1 

Finite element 

Gf = 5.0x104 (Ductile) Gf = 1.0x10-2 (Fragile) 

Total Iter. Max. Iter. 
Time 

[seg] 
Total Iter. Max. Iter. 

Time 

[seg] 

2D 1700 9308 485 3069.0 3465 254 1127.0 

LRZ 

2 1543 166 1.52 - - - 

16 1286 81 1.57 1009 9 1.27 

128 2291 225 19.61 1036 23 9.45 

Table 4.5 - Computational cost of the iterative process for laminate L1. 

 

Computational cost of  the iterative process for laminate L2 

Finite element 

Gf = 5.0x104 (Ductile) Gf = 1.0x10-3 (Fragile) 

Total Iter. Max. Iter. 
Time 

[seg] 
Total Iter. Max. Iter. 

Time 

[seg] 

2D 1900 18374 88 6967.0 10141 144 4223.0 

LRZ 

2 7298 76 8.10 - - - 

16 7131 53 8.11 7016 11 7.96 

128 7072 71 64.51 7372 101 65.46 

Table 4.6 - Computational cost of the iterative process for laminate L2. 
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4.6.2 Delamination in plates 
The capability of the QLRZ element for simulating the relative in-plane 

displacements (Mode II and III) between plies is studied by modeling a simply 
supported rectangular plate of length L=1.0m, depth D=0.5m and thickness 

h=0.025m with a center hole of radius R=0.0125m (Figure 4.25a). Taking advantage 
of symmetry, only one quarter of plate is studied (Figure 4.25b). The structure is 
subjected to bending by imposing a uniform vertical displacement Δw along the 

segment CF  (Figure 4.25b). The plate is analyzed for two laminates (L1 and L2) 

with properties listed in Tables 4.7- 4.9. The cohesive layers are denoted as Icl and Jcl 

for the L1 and the L2 laminate, respectively.  
 
The reference solution was obtained via a 3D finite element analysis using a 

mesh of 16416 8-noded hexahedral elements (HEXA8) involving 18620 nodes and 

55860 DOFs (Figure 4.26). One and two finite elements are used to discretize the 
thickness of the cohesive layer and the thickness of the elastic layers, respectively. 
This mesh was used for both laminates as they share the same geometry.  

 
Mesh convergence is studied using five QLRZ meshes of 44, 102, 216, 384 and 

964 finite elements with 60, 126, 250, 429, 931 nodes and 420, 882, 1750, 3003, 
6517 DOF, respectively, as shown in Figure 4.27. 

a) b) 

 

 

 
Figure 4.25 - Simply supported rectangular plate with a center hole. Whole structure 

dimensions a), quarter of plate under study with boundary conditions b). 
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Mechanical properties of linear-elastic plies [MPa] 

Mat. 
Young’s Modulus Shear Modulus Poisson 

Ex Exy Ez Gxy Gxz Gyz μ 

A 157.9x105 9.584x105 9.584x105 5.93x105 5.93x105 3.227x105 0.32 

B 19.15x103 19.15x103 19.15x104 42.3x10-4 36.51x103 124.8x103 6.58 x10-4 

C 104.0x102 40.0x102 0.30 

D 5.30x102 2.12x102 0.25 

E 2.19x102 0.876x102 0.25 

F 0.82 x102 0.328 x102 0.25 

G 0.73 0.29 0.25 

H 7.3 x102 2.92 x102 0.25 

Table 4.7 - Mechanical properties of linear-elastic layers. 

 

Mechanical properties of cohesive plies (cl) 

Materials 
E0  

[MPa] 

G0  

[MPa] 

Tensile 
Strength 

( tf ) [MPa] 

Fracture Energy  

( fG ) [kN/m] 

Icl 104.0x102 40.0x102 20.0 5.0x105 

Jcl 0.73 0.29 3.0 x10-3 5.0x105 

Table 4.8 - Mechanical properties of cohesive layers (cl). 

 

Laminated materials 

Laminate Layer distribution hi / h 
h 

[mm] 

L1 (A/C/A/C/B/Icl/C/A/C/A) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0 

L2 (D/E/F/G/D/Jcl/H/F/E/H) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0 

Table 4.9 - Layer distribution of laminated materials. 

 
 

 
 
 



Section 4.6 
 

129 

a) b) 

 
 

  
Figure 4.26 – HEXA8 mesh for both laminates. Isometric view a), top and side view b). 

 

a) b) c) 

   
 d) e)  
 

  

 

Figure 4.27 – QLRZ meshes of 44 a), 102 b), 216 c), 384 d) and 964 e) finite elements. 

 

The load-displacement curves for both laminates are shown in Figure 4.28. The 
curves are obtained with the HEXA8 element (solid line) and the finest QLRZ mesh 
(dashed lines). The load corresponds to the total vertical reaction computed at the 
simply supported end whereas the displacement is the imposed vertical displacement 

Δw (Figure 4.25b). Results show a good agreement between both solutions. In all 
cases, the lineal-elastic QLRZ stiffness is very close to that computed by means of 
3D analysis. Also, it is shown that delamination starts approximately at the same 
values of displacement and load.  

 

Figure 4.29 shows the convergence of the normalized load value at the end of 
the simulation as the number of DOF is increased. The error for the coarser QLRZ 
mesh reaches almost 35% and 65% for the L1 and the L2 laminates, respectively. 
However, the error is around 1% (L1) and 10% (L2) for the finest QLRZ mesh. 

 
The evolution of the transverse shear stress τxz for the cohesive layer for 

laminates L1 and L2 is shown in Figure 4.30 and Figure 4.31, respectively. For the 
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linear-elastic state, the HEXA8 solution gives about 12% (L1) and 30% (L2) higher 
maximum value of τxz as appreciated for Δw =0.01mm. Because of this, damage 
starts a little later for the QLRZ solution. This mismatch between both solutions is 
more evident for the L2 laminate where the τxz distribution obtained with the 
HEXA8 mesh at Δw =0.41mm is similar to that computed with the QLRZ mesh at 

Δw =0.51mm. For the L1 laminate, no great differences are observed between both 
solutions. In all cases, approximately the same values of τxz are predicted at the end 
of the simulation (Δw =2.51mm). 

 

Figure 4.32 and Figure 4.33 show the evolution of the transverse shear 
distribution along the segments AC and BD (Figure 4.25b) for the L1 and the L2 
laminate, respectively. Results along segment AC are influenced by the mesh 
topology especially for laminate L2 as shown in Figure 4.33 for Δw =0.01mm. 

However, this mesh dependence disappears once delamination has started.  
 
Taking into account that the degradation of the cohesive layer is governed by 

the transverse shear stress in these examples, the norm f of Eq.(4.5) can be 

approximated by  

2
0f Gτ  

Thus, equating the initial threshold c0 of Eq.(4.4) and the preceding equation, 
the transverse shear stress for which delamination starts is approx. computed by 

0 0 tG E fτ   

which reveals that delamination onset occurs for a transverse shear stress 
smaller than the tensile strength ft, as appreciated in Figure 4.32 and Figure 4.33. 

 
The gray-scale images shown in Figure 4.34 and Figure 4.35 illustrate the 

damage growth of the cohesive ply for laminates L1 and L2, respectively. The black 
color denotes a full damage state (d = 1). These images confirm that damage starts 

earlier when the HEXA8 finite elements are used, especially for the L2 laminate. 
However, the global response of the structure (Figure 4.28) is similar for both finite 
elements. Although the cohesive layer seems to be full damaged at the last step 
(Δw=2.51mm), the damage variable just reaches at most a value of 0.997. For this 

reason, the transverse shear stress τxz did not decrease as expected in a softening 
process. Surely, if the test continues until the ply is full damaged, the stresses will be 
reduced to zero. 

The thickness distribution of the axial displacement u  at points A, B and E 
(Figure 4.25b), before (Δw =0.01mm) and after (Δw =2.51mm) delamination, is 
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plotted in Figure 4.36 (L1) and Figure 4.37 (L2), respectively. The QLRZ element 
captures the relative displacement with errors less than 6% and 2% for laminates L1 
and L2, respectively. For all cases, a very good match between 3D and QLRZ 
kinematics was found. 

 

To emphasize the importance of the zigzag function update to capture relative 
displacement between layers during a delamination process, Figure 4.38 shows the 
change of the zigzag thickness distribution from an undamaged to a full damaged 
state for laminates L1 (Figure 4.38a) and L2 (Figure 4.38b). 

 
In order to compare the performance of the 3D solution and the QLRZ analysis, 

both, the total increment numbers and the incremental displacement values as well 
as the error tolerance value are the same for both methods. As expected, the 

computation time needed for the QLRZ solution is several times less than that 
required for the 3D analysis. The time used by the finest QLRZ mesh is 
approximately 20 and 12 times less than that required by the HEXA8 mesh for 
laminates L1 and L2, respectively. In addition, the computation storage space during 

the simulation is much greater for the 3D analysis as expected. 

a) b) 

  

Figure 4.28 – Load vs vertical displacement for laminate L1 a) and L2 b). 

 

 
Figure 4.29 – Mesh convergence. Normalized load value for both laminates and all meshes. 
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Transverse shear stress xzτ  of cohesive layer – Laminate L1 
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Figure 4.30 – Transverse shear distribution xzτ  of cohesive layer for laminate L1 computed 

with the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Δw 
increments. 
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Transverse shear stress xzτ  of cohesive layer – Laminate L2 
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Figure 4.31 – Transverse shear distribution xzτ  of cohesive layer for laminate L2 computed 

with the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Δw 
increments. 
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Transverse shear stress xzτ  of cohesive layer – Laminate L1 

 Along AC  Along BD  
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Figure 4.32 – Transverse shear distribution xzτ  of cohesive layer for laminate L1 along the 

segments AC  (left) and BD  (right), which were observed at four different Δw increments. 
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Transverse shear stress xzτ  of cohesive layer – Laminate L2 
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Figure 4.33 – Transverse shear distribution xzτ  of cohesive layer for laminate L2 along the 

segments AC  (left) and BD  (right), which were observed at four different Δw increments. 



Numerical example of single-delamination 
 

136 

  
Damage growth of cohesive layer – Laminate L1 

  
QLRZ (finest mesh) 
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Figure 4.34 – Damage level of cohesive layer for laminate L1 computed with the finest 

QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Δw increments. 
White color is a sing of non-damage and black color indicates full damage. 
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Damage growth of cohesive layer – Laminate L2 

  
QLRZ (finest mesh) 
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Figure 4.35 – Damage level of cohesive layer for laminate L2 computed with the finest 

QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Δw increments. 
White color is a sing of non-damage and black color indicates full damage. 
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 Thickness distribution of the axial displacement u  – Laminate L1 
 Δw = 0.01 mm Δw = 2.51 mm 
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Figure 4.36 – Thickness distribution of the axial displacement u at three different points for 

laminate L1. Figures show the undamaged kinematics (left - Δw = 0.01 mm) and the 
delaminated kinematics at the end of simulation (right - Δw = 2.51 mm). 

 
 
 

 
 
 



Section 4.6 
 

139 

 Thickness distribution of the axial displacement u  – Laminate L2 
 Δw = 0.01 mm Δw = 2.51 mm 
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Figure 4.37 – Thickness distribution of the axial displacement u at three different points for 

laminate L2. Figures show the undamaged kinematics (left - Δw = 0.01 mm) and the 
delaminated kinematics at the end of simulation (right - Δw = 2.51 mm). 
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a) b) 

  

Figure 4.38 – Undamaged and damaged zigzag function xφ  for laminate L1 a) and L2 b). 
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5 Conclusions and future work 

This thesis dealt with the modeling of laminated materials. The formulation of 
the beam (LRZ) and plate (QLRZ) finite elements based on the RZT theory for 
simulating highly heterogeneous multilayered laminates and the development of a 

numerical method based on these elements for modeling mode II/III delamination in 
advanced composite materials were the main goals.  

The contents and main achievements of the present work are summarized in the 
following. 

 

In Chapter 2, a review of more common beam/plate theories for modeling 
laminated materials was presented. In particular, the Refined Zigzag Theory (RZT) 
was described in detail since the finite elements here developed are based on this 
zigzag theory. Then, the influence on the zigzag in-plane displacement of both, the 

material transverse anisotropy and the laminate span-to-thickness ratio was also 
studied. Results showed that the amplitude of the zigzag kinematics is increased 
according the transverse anisotropy is higher whereas it is reduced according the 
laminate is more slender. Furthermore, advanced composite materials and their 

failure mechanisms were treated, with special attention on delamination. Common 
numerical methods to predict intra- and inter-laminar failure modes were discussed.  

 
Chapter 3 dealt with development of two simple, robust, shear locking free and 

accurate isoparametric finite elements based on the RZT theory for simulating 
laminated beam and plate structures, which constitute the first achievement. The 
LRZ beam element is a two-node element with four variables per node, whereas the 
QLRZ plate element is a four-node quadrilateral element with seven variables per 

nodes. Both elements were formulated on small deformation and displacement. 
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A key attribute of these elements is that the number of node variables is constant 
and independent of the analysis layers used to define the laminate. In order to 
overcome the shear locking defect, a selective numerical integration of the 
transverse stiffness matrix is adopted in the LRZ element, and a linear shear strain 
field is assumed in the QLRZ element.  

The performance of these elements was investigated through several studies. 
Results showed that the elements are able to accurately model highly heterogeneous 
laminated materials under different loads and boundary conditions. The influence of 
the transverse anisotropy on the convergence and accuracy of the LRZ/QLRZ 

solutions was also studied. It was found that as the transverse anisotropy is greater 
the LRZ/QLRZ solution gives worse results.  

A very important feature of these elements is their ability to accurately capture 
the through-thickness distribution of both, the zigzag in-plane displacement and the 

axial stress. On the contrary, however, the transverse shear stresses distribution is 
defined by the constitutive equations as a constant pricewise function, which is far 
from the real distribution. There, the post-processing computation of the transverse 
shear stresses by means of the equilibrium equations has demonstrated to be a 

suitable alternative. 
An acceptable agreement between the LRZ/QLRZ solutions and the reference 

solutions was observed in all cases studied.  
 

The development of a numerical model for modeling delamination in advanced 
composite materials was addressed in Chapter 4. The model uses the LRZ/QLRZ 
finite elements for describing the whole laminated material including the resin-rich 
zone at the interface between plies where delamination takes place. In other words, 
no additional technique for modeling the delamination paths is required. The 

interfaces are defined by means of additional layers (cohesive layer), which need to 
be enough thin to avoid membrane effect. It is important to mention that no 
additional kinematics variables are introduced in the model by incorporating 
interface layers. Their mechanical behavior is managed by an isotropic damage 

model. Thus, the relative displacement between two neighbor layers occurs when the 
transverse shear modulus of the cohesive layers between them is considerably 
reduced in comparison with those of the neighbor plies. 

Only the shear fracture modes (mode II and III) can be captured with the 

LRZ/QLRZ delamination model because the vertical displacement in the RZT 
theory is defined constant through the thickness.  

In addition, as a result of the definition of the zigzag function, the model cannot 
predict the zigzag pattern of the in-plane displacement of sub-laminates after 

delamination. This limitation causes that delamination in multilayered structures 
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having low span-to-thickness ratio or high transverse anisotropy of shear properties 
cannot be properly simulated with the LRZ/QLRL delamination model. However, 
that is not the case of advanced composite laminates where the shear modulus does 
not differ generally in more than one order of magnitude between layers [113]. 
Moreover, laminated structures of composite materials are generally characterized 

by high slenderness ratios. Furthermore, delamination in three-layered laminates can 
be modeled with independence of the level of transverse anisotropy and the 
slenderness of the structures, because the sub-laminates, for this kind of material, 
present a linear displacement distribution after delamination. Because of this, skin-

core delamination in sandwich materials can be also modeled with the model, as 
showed the results.  

It was demonstrated that, in order to simulate delamination with this model it is 
necessary to update the zigzag function. This update was performed by taking into 

account the level of degradation of the interface layer. 
It was also observed that, in order to predict multi-delamination with the 

LRZ/QLRZ delamination model the reduced shear properties of new degraded 
interfaces must be almost the same as that of the first damaged cohesive layer. 

Otherwise, the model may predict wrong displacements obviating previous 
delamination states or ignoring new delamination paths.  

The performance of the LRZ delamination model was analyzed through some 
single-delamination cases. The analyses include the skin delamination from the core 

in a clamped sandwich beam and the internal delamination within two different 
multilayered materials in a simple supported beam. Moreover, the influence on the 
structural response of the fracture energy of the cohesive layer was also analyzed.  

A comparison of the computational cost between the LRZ delamination model 
and the reference solution, i.e. the finite element plane stress (PS) analysis, was 

performed. As expected, the results showed that the computation time and the 
memory space needed by the LRZ model is several times less than that required by a 
PS analysis.  

The performance of the QLRZ delamination model has been studied by 

simulating internal delamination in a simply supported rectangular plate with a 
center hole subjected to bending. Two different multilayered materials were used 
and the results were compared with a reference solution obtained with a 3D finite 
element analysis.  

It was observed that the LRZ/QLRZ delamination model predicts with an 
acceptable precision the onset and growth of delamination. In addition, the in-plane 
displacement after delamination is also well predicted. 
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Summarizing, the main achievement of this work is the development of a 
preliminary numerical model based on the LRZ/QLRZ finite elements for predicting 
delamination in advanced composite materials as well as in sandwich laminates. In 
addition, the LRZ beam and the QLRZ plate finite elements based on the RZT 
theory are also contributions of this thesis. 

 
It should be noted that some aspects of the developments should be still 

improved in order to obtain more generality. The following are some of the most 
relevant aspects which deserve future attention. 

 
• The LRZ and QLRZ elements could be improved in order to obtain 

more generality. Membrane locking should be investigated. Finite 

displacements and rotations may be accounted for to simulate 
geometrically non-linear problems.  

 

• A better definition of the zigzag function is needed to capture zigzag 

patterns in sub-laminates after delamination with independence of the 
span-to-thickness ratio and the transverse anisotropy. 

 

• A strategy for controlling the degradation process should be developed 

in order to simulate multi-delamination with the LRZ/QLRZ 
delamination model. This strategy has to be applied at each integration 
points.  

 

• Although the adopted isotropic damage model demonstrated to be able 
to predict the onset and growth of delamination, it would be interesting 
to evaluate other damage laws which can simulate the delamination 
process as a combination of the fracture mode II and III, i.e. mixed 

mode delamination. 

 
• In order to simulate the complex fracture behavior of advanced 

composites materials, intra-laminar failure mechanisms should be also 
accounted for. 

 
All numerical tools developed in this thesis were implemented by the author in his 
own finite element code. The reference solutions were computed by using the PLCD 

[121] software developed by the International Center for Numerical Methods in 
Engineering (CIMNE). Pre- and post-process tasks were carried out employing the 
GID [122] software developed by CIMNE. 
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a b s t r a c t

In this work we present a new simple linear two-noded beam element adequate for the analysis of com-
posite laminated and sandwich beams based on the combination of classical Timoshenko beam theory
and the refined zigzag kinematics proposed by Tessler et al. [22]. The element has just four kinematic
variables per node. Shear locking is eliminated by reduced integration. The accuracy of the new beam ele-
ment is tested in a number of applications to the analysis of composite laminated beams with simple sup-
ported and clamped ends under point loads and uniformly distributed loads. An example showing the
capability of the new element for accurately reproducing delamination effects is also presented.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that both the classical Euler–Bernouilli beam
theory [1] and the more advanced Timoshenko theory [2] produce
inadequate predictions when applied to relatively thick composite
laminated beams with material layers that have highly dissimilar
stiffness characteristics. Even with a judiciously chosen shear cor-
rection factor, Timoshenko theory tends to underestimate the axial
stress at the top and bottom outer fibers of a beam. Also, along the
layer interfaces of a laminated beam the transverse shear stresses
predicted exhibit erroneous discontinuities. These difficulties are
due to the higher complexity of the ‘‘true’’ variation of the axial
displacement field across a highly heterogeneous beam cross-
section.

Indeed to achieve accurate computational results, 3D finite
element analyses are often preferred over beam models. For com-
posite laminates with hundred of layers, however, 3D modelling
becomes prohibitively expensive, specially for non linear and
progressive failure analyses.
ll rights reserved.

de Catalunya (UPC), Campus
Improvements to the classical beam theories have been ob-
tained by the so called equivalent single layer (ESL) theories that
assume a priori the behavior of the displacement and/or the stress
through the laminate thickness [3,4]. Despite being computation-
ally efficient, ESL theories often produce inaccurate distributions
for the stresses and strains (in particular the transverse shear
stress) across the thickness.

The need for composite laminated beam theories with better
predictive capabilities has led to the development of the so-called
higher order theories. In these theories higher-order kinematic
terms with respect to the beam depth are added to the expression
for the axial displacement and, in some cases, to the expressions
for the deflection. A review of these theories can be found in [3,4].

Accurate predictions of the correct shear and axial stresses for
thick and highly heterogenous composite laminated and sandwich
beams can be obtained by using layer-wise theory. In this theory
the thickness coordinate is split into a number of analysis layers
that may or not coincide with the number of laminate plies. The
kinematics are independently described within each layer and cer-
tain physical continuity requirements are enforced [3,4].

A drawback of layer-wise theory is that the number of kine-
matic variables depends on the number of analysis layers. The
layer displacements can be condensed at each section in terms of
the axial displacement for the top layer during the equation solu-
tion process [5,6]. The displacement condensation processes can
be however expensive for problems involving many analysis
layers.

http://dx.doi.org/10.1016/j.cma.2011.11.023
mailto:onate@cimne.upc.edu
http://www.cimne.com/eo
http://dx.doi.org/10.1016/j.cma.2011.11.023
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma
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Discrete layer theories in which the number of unknowns in the
model does not depend on the number of layers in the laminate are
described in [7–9]. In this class of discrete layerwise theories
(called zigzag theories) a piecewise linear in-plane displacement
function (the zigzag function) is superimposed over a linear
displacement field [7,8], a quadratic displacement field [10,11] or
a cubic displacement field [12–15] through the thickness of the
laminate.

Many zigzag theories require C1 continuity for the deflection
field, which is a drawback versus simpler C0 continuous FEM
approximations. Also many zigzag theories run into theoretical dif-
ficulties to satisfy equilibrium of forces at a clamped support.

Averill et al. [9,10,16,17] developed linear, quadratic and cubic
zigzag beam theories that overcame the need for C1 continuity.
The shear strain angle is introduced as a kinematic variable to-
gether with the deflection, the rotation and the zigzag function.
A C0 interpolation can be used for all these variables. The relation-
ship between the shear angle, the deflection and the rotation of
each layer is introduced as a constraint via a penalty method. This
also ensures the continuity of the transverse shear stress across the
laminate depth and the satisfaction of the shear traction boundary
conditions. However, Averill theories have difficulties to model
correctly clamped boundary conditions. For this reason, analytical
and numerical (FEM) studies based on Averill theory have mainly
focused on simple supported beams [16,17].

A 2-noded beam element based on Euler–Bernouilli beam the-
ory and an extension of Averill’s zigzag theory including a cubic
in-plane displacement field within each layer has been recently
proposed by Alam and Upadhyay [18]. Good results are reported
for cantilever and clamped composite and sandwich beams.

An assessment of different zigzag theories for beam is reported
in [19,20]. A review of zigzag theory for plate analysis can be found
in [21].

Tessler et al. [22,23] have developed a refined zigzag (RZ) theory
starting from the standard Timoshenko kinematic assumptions.
This allows one using C0 continuous interpolation for all the kine-
matic variables. Timoshenko beam theory also introduces naturally
shear deformation effect for the homogeneous material case,
which is advantageous for many problems. The zigzag functions
chosen have the property of vanishing on the top and bottom sur-
faces of a laminate. A particular feature of this zigzag theory is that
the transverse shear stresses are not required to be continuous at
the layer interfaces. This results in simple piecewise-constant func-
tions that approximate the true shear stress distribution. An accu-
rate continuous thickness distribution of the transverse shear
stress can be obtained ‘‘a posteriori’’ in terms of the axial stress
by integrating the equilibrium equations. This theory also provides
good results for clamped supports.

Gherlone et al. [24] have developed two and three-noded C0

beam elements based on the RZ theory for analysis of multilayered
composite and sandwich beams. Locking-free elements are ob-
tained by using anisoparametric interpolations that are adapted
to approximate the four independent kinematic variables that
model the beam deformation. A family of beam elements is
achieved by imposing different constraints on the original dis-
placement approximation. The constraint conditions requiring a
constant variation of the transverse shear force provide an accurate
2-noded beam element [24].

Quite simultaneously to the above work, Oñate et al. [25] pro-
posed a simple 2-noded beam element for composite laminated
beams based on the RZ theory. A standard linear displacement field
is used to model the four variables of the so called LRZ element.
Shear locking is avoided by using reduced integration on selected
terms of the shear stiffness matrix.

In this paper we present in detail the formulation of the LRZ
beam element originally reported in [25] and explore the capabil-
ities of the new element for multilayered beams and delamination
analysis. A study of the locking-free behavior of the LRZ element
for slender beams is presented. The good performance of the ele-
ment is demonstrated for simply supported and clamped compos-
ite laminated beams with different layers under point load and
uniformly distributed loads.

Finally, an example showing the capability of the LRZ element
to model delamination effects is presented.

2. General concepts of zigzag beam theory

The kinematic field in zigzag beam theory is generally written
as

ukðx; zÞ ¼ u0ðxÞ � zhðxÞ þ �ukðx; zÞ;
wðx; zÞ ¼ w0ðxÞ;

ð1aÞ

where

�uk ¼ /kðzÞWðxÞ; k ¼ 1;N ð1bÞ

is the zigzag displacement function (Fig. 1).
In Eqs. (1) N is the number of layers, superscript k indicates

quantities within the kth layer with zk 6 z 6 zk+1 and zk is the ver-
tical coordinate of the kth interface. In Eq. (1a) the uniform axial
displacement u0(x), the rotation h(x) and the transverse deflection
w0(x) are the primary kinematic variables of the underlying equiv-
alent single-layer Timoshenko beam theory. In Eq. (1b) function
/k(z) denotes a piecewise linear zigzag function, yet to be estab-
lished, and W(x) is a primary kinematic variable that defines the
amplitude of the zigzag function along the beam. Collectively, the
interfacial axial displacement field has a zigzag distribution, as
shown in Fig. 1c.

The strain–displacement relations are derived by substituting
Eq. (1a) into the expressions of classical Timoshenko beam theory,
i.e.

ek
x ¼

@uk

@x
¼ @u0

@x
� z

@h
@x
þ /k @W

@x
¼ ½1;�z;/k�

@u0
@x
@h
@x
@W
@x

8><>:
9>=>; ¼ Spêp; ð2aÞ

ck
xz ¼

@uk

@z
þ @w
@x
¼ @w0

@x
� hþ @/

k

@z
W ¼ cþ bkW ¼ ½1;bk�

c
W

� �
¼ St êt :

ð2bÞ

In Eqs. (2a) and (2b)

Sp ¼ ½1;�z;/k�; êp ¼
@u0

@x
;
@h
@x
;
@W
@x

� �T

;

St ¼ ½1; bk�; êt ¼ ½c;W�T ;
ð2cÞ

where êp and êt are the generalized in-plane and transverse shear
strain vectors, respectively. Vector êp contains the axial elongation
@u0
@x

� �
, the pseudo-curvature @h

@x

� �
and the derivatives of the amplitude

of the zigzag function @W
@x

� �
. In êt ; c ¼ @w0

@x � h is the average trans-
verse shear strain of Timoshenko beam theory and bk ¼ @/k

@z . Note
that since /k(z) is piecewise linear, bk is constant across each layer.

For major principal material axes that are coincident with the
beam x-axis, Hooke stress–strain relations for the kth orthotropic
layer have the standard form

rk
x ¼ Ekek

x ¼ EkSpêp; ð3aÞ
sk

xz ¼ Gkck
xz ¼ GkSt êt ; ð3bÞ

where Ek and Gk are the axial and shear moduli for the kth layer,
respectively.

In the above equations we have distinguished all variables
within a layer with superscript k.



Fig. 1. Thickness distribution of the zigzag function /k (a), the zigzag displacement function ~uk (b), and the axial displacement (c) in refined zigzag beam theory.
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3. Refined zigzag theory

3.1. Zigzag kinematics

The key attributes of the refined zigzag (RZ) theory proposed by
Tessler et al. [22] are, first, the zigzag function vanishes at the top and
bottom surfaces of the beam section and does not require full shear-
stress continuity across the laminated-beam depth. Second, all
boundary conditions can be modeled adequately. And third, C0

continuity is only required for the FEM approximation of the kine-
matic variables.

Within each layer the zigzag function is expressed as

/k ¼ 1
2
ð1� fkÞ�/k�1 þ 1

2
ð1þ fkÞ�/k ¼

�/k þ �/k�1

2
þ

�/k � �/k�1

2
fk; ð4Þ

where �/k and �/k�1 are the zigzag function values of the k and k � 1
interface, respectively with �/0 ¼ �/N ¼ 0 and fk ¼ 2ðz�zk�1Þ

hk � 1.
Collectively, function /k has the zigzag distribution shown in

Fig. 1a. Due to the dependence between the zigzag displacement
function ~uk and �/k (see Eq. (1b)), ~uk also vanishes at the top and
bottom layers. The axial displacement field is plotted in Fig. 1c.

The above form of /k gives the constant value of bk for each
layer as

bk ¼ @/
k

@z
¼

�/k � �/k�1

hk
ð5aÞ

andZZ
A
bkdA ¼ 0: ð5bÞ

The bk parameter is useful for computing the zigzag function as
explained in the next section.

3.2. Computation of the zigzag function

Integrating Eq. (2b) over the cross section and using Eq. (5b) and
the fact that W is independent of z yields

c ¼ 1
A

ZZ
A
ck

xzdA ð6Þ

i.e. c represents the average shear strain of the cross section, as
expected.

The shear strain–shear stress relationship of Eq. (3b) is written
as

sk
xz ¼ Gkgþ Gkð1þ bkÞW; ð7Þ
where g = c �W is a difference function.

Remark 1. Function W can be interpreted as a weighted-average
shear strain angle [22]. The value of W should be prescribed to zero
at a clamped edge and left unprescribed at free and simply
supported edges.

Eq. (7) shows that the distribution of sk
xz within each layer is

constant, as g is independent of the zigzag function and bk is
constant.

The distribution of sk
xz is now enforced to be independent of the

zigzag function. This can be achieved by constraining the term mul-
tiplying W in Eq. (7) to be constant, i.e.

Gkð1þ bkÞ ¼ Gkþ1ð1þ bkþ1Þ ¼ G; constant: ð8Þ

This is equivalent to enforcing the interfacial continuity of the
second term in the r.h.s. of Eq. (7).

Remark 2. We emphasize that this zigzag theory does not enforce
the continuity of the transverse shear stresses across the section.
This is consistent with the kinematic freedom inherent in the lower
order kinematic approximation of the underlying beam theory. An
accurate continuous distribution of the transverse shear stress
across the thickness of the laminate can be obtained ‘‘a posteriori’’
in terms of axial stresses by integrating the equilibrium equations
as explained in Section 7.3.

From Eq. (8) we deduce

bk ¼ G

Gk
� 1: ð9Þ

Substituting bk in the integral of Eq. (5b) gives

G ¼ 1
A

ZZ
A

dA

Gk

� ��1

¼ h
XN

k¼1

hk

Gk

" #�1

; ð10Þ

where h is the section depth. Substituting Eq. (9) into Eq. (5a) gives
the following recursion relation for the zigzag displacement func-
tion values at the layer interfaces

�uk ¼
Xk

i¼1

hibi with u0 ¼ uN ¼ 0: ð11Þ

Introducing Eq. (11) into (4) gives the expression for the zigzag
function as

/k ¼ hkbk

2
ðfk � 1Þ þ

Xk

i¼1

hibi: ð12Þ



Fig. 2. Cantilever beam under point load.
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Recall that superindex k denotes the number of each material
layer.

Remark 3. For homogeneous material Gk = G and bk = 0. Hence, the
zigzag function /k vanishes and we recover the kinematics and
constitutive expressions of the standard Timoshenko composite
laminated beam theory. This is a particular feature of this zigzag
theory.
Table 1
Symmetric 3-layered cantilever beam. Material properties for shear locking study.

Composite material properties
Remark 4. Note that differently from standard Timoshenko beam
theory, a shear correction parameter is not needed in the RZ
theory.
Layer 1 (bottom) Layer 2 (core) Layer 3 (top)

h [mm] 6.6667 6.6667 6.6667
E [MPa] 2.19E5 2.19E3 2.19E5
G [MPa] 0.876E5 8.80E2 0.876E5

Fig. 3. Mesh of 27,000 4-noded plane stress rectangular elements for analysis of
cantilever and simple supported beams.
3.3. Constitutive relationship

The in-plane bending and transverse shear resultant stresses
are defined as

r̂p ¼
N

M

M/

8><>:
9>=>; ¼

ZZ
A
ST

pr
k
xdA ¼

ZZ
A
ST

pSpEkdA
� 	

êp ¼ bDpêp; ð13Þ

r̂t ¼
Q

Q/

� �
¼
ZZ

A
ST

t s
k
xzdA ¼

ZZ
A
ST

t StG
kdA

� 	
êt ¼ bDt êt: ð14Þ

In vectors r̂p and r̂t , N, M and Q are respectively the axial force,
the bending moment and the transverse shear force of standard
beam theory, whereas M/ and Q/ are an additional bending mo-
ment and an additional shear force which are conjugate to the
new generalized strains @W

@x and W, respectively.
The generalized constitutive matrices bDp and bDt are

bDp ¼
ZZ

A
Ek

1 �z /k

�z z2 �z/k

/k �z/k ð/kÞ2

264
375dA; bDt ¼

Ds �g
�g g

� �
ð15aÞ

with

Ds ¼
ZZ

A
GkdA; g ¼ Ds � GA: ð15bÞ

In the derivation of the expression for bDt we have used the def-
inition of bk of Eq. (9).

The generalized constitutive equation can be written as

r̂ ¼
r̂p

r̂t

� �
¼ bDê ¼ bD êp

êt

� �
with bD ¼ bDp 0

0 bDt

" #
: ð16Þ
Fig. 4. r Ratio r ¼ wzz
wps


 �
versus L/h for cantilever under point load analyzed with the

LRZ element. Labels ‘‘all’’, S, SPsi and Psi refer to matrices Ke
t ; Ke

s ; Ke
sw and Ke

w ,
respectively.
3.4. Virtual work expression

The virtual work expression for a distributed load q isZZZ
V

dek
xr

k
x þ dck

xzs
k
xz

� �
dV �

Z
l

dwqdA ¼ 0: ð17Þ

The l.h.s. of Eq. (17) contains the internal virtual work per-
formed by the axial and tangential stresses and the r.h.s. is the
external virtual work carried out by the distributed load. V and l
are the volume and length of the beam, respectively.

Substituting Eqs. (3) into the expression for the virtual internal
work and using Eqs. (13) and (14) givesZZZ

V
dek

xr
k
x þ dck

xzs
k
xz

� �
dV ¼

ZZZ
V

dêT
pST

pr
k
x þ dêT

t ST
t s

k
xz


 �
dV

¼
Z

l
dêT

pr̂p þ dêT
t r̂t


 �
dx: ð18Þ
The virtual work is therefore written asZ
l

dêT
pr̂p þ dêT

t r̂t


 �
dx�

Z
l

dwqdx ¼ 0: ð19Þ
4. Two-noded LRZ beam element

The four kinematic variables are u0, w0, h and W. They can be
discretized using 2-noded linear C0 beam elements of length le in
the standard form as
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u ¼

u0

w0

h

W

8>>><>>>:
9>>>=>>>; ¼

X2

i¼1

Niai ¼ Nae ð20Þ

with

N ¼ ½N1I4;N2I4�; ae ¼
a1

a2

� �
; ai ¼

u0i

w0i

hi

Wi

8>>><>>>:
9>>>=>>>;; ð21Þ

where Ni ¼ 1
2 ð1þ nniÞ with n ¼ 1� 2x

le
are the standard one-dimen-

sional linear shape functions, ai is the vector of nodal kinematic
variables and I4 is the 4 � 4 unit matrix.
Fig. 5. Symmetric 3-layered cantilever thick beam under end point load.
Substituting Eq. (20) into the generalized strain vectors in Eq.
(2c) gives

êp ¼ Bpae; êt ¼ Btae: ð22Þ

The generalized strain matrices Bp and Bt are
Bp ¼ ½Bp1

;Bp2
�; Bt ¼ ½Bt1 ;Bt2 � ð23aÞ

with

Bpi
¼

@Ni
@x 0 0 0

0 0 @Ni
@x 0

0 0 0 @Ni
@x

26664
37775; ð23bÞ
Thickness distribution of shear stress for k = 5 at different sections.
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Bti
¼

0 @Ni
@x �Ni 0

�� �� �� ��
0 0 0 Ni

2664
3775 ¼

Bsi

��
Bwi

2664
3775; ð23cÞ

where Bpi
and Bti

are the in-plane and transverse shear strain matri-
ces for node i.

The virtual displacement and generalized strain fields are
expressed in terms of the virtual nodal kinematic variables as

du ¼ Ndae; dêp ¼ Bpdae; dêt ¼ Btdae: ð24Þ

The discretized equilibrium equations are obtained by substi-
tuting Eqs. (13), (14), (20), (22) and (24) into the virtual work
expression (19). After simplification of the virtual nodal kine-
matic variables, the following standard matrix equation is
Fig. 6. Symmetric 3-layered cantilever thick beam under end point load.
obtained

Ka� f ¼ 0; ð25Þ

where a is the vector of nodal kinematic variables for the whole
mesh.

The stiffness matrix K and the equivalent nodal force vector f
are obtained by assembling the element contributions Ke and fe gi-
ven by

Ke ¼ Ke
p þ Ke

t ð26Þ

with

Ke
pij
¼
Z

le
BT

pi
bDpBpj

dx;Ke
tij
¼
Z

le
BT

ti
bDtBtj

dx ð27Þ
Thickness distribution of shear stress for k = 10 at different sections.



Fig. 7. Symmetric 3-layered cantilever thick beam under end point load. Thickness distribution of transverse shear stress for k = 100 at different sections.

Table 2
Non symmetric 3-layered cantilever beams. Material properties for convergence
analysis.

Material properties

Layer 1(bottom) Layer 2 (core) Layer 3 (top)

Composite A h [mm] 6.66 6.66 6.66
E [MPa] 4.40E5 2.19E4 2.19E5
G [MPa] 2.00E5 8.80E3 8.76E4

Composite B h [mm] 6.66 6.66 6.66
E [MPa] 2.19E5 2.19E3 2.19E5
G [MPa] 8.76E4 8.80E2 8.76E4

Composite C h [mm] 2 16 2
E [MPa] 7.30E5 7.30E2 2.19E5
G [MPa] 2.92E5 2.20E2 8.76E4

Table 3
Non symmetric 3-layered cantilever thick beams under end point load (k = 5).
Relative error for w at x = L.

Number of elements Composites

A B C

er% � w at x = L

5 1.800 9.588 42.289
10 0.506 2.901 19.277
25 0.0860 0.499 4.913
50 0.0191 0.123 1.406

100 0.0048 0.031 0.339
300 0.0000 0.0000 0.0000
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and

fe
i ¼

Z
le

Niq½1;0;0;0�T dx: ð28Þ

Matrix Ke
p is integrated with a one-point numerical quadrature

which is exact in this case. Full integration of matrix Ke
t requires a

two-point Gauss quadrature. This however leads to shear locking
for slender composite laminated beams (Section 5).

In order to asses the influence of the reduced integration of ma-
trix Ke

t for overcoming the shear locking problem we split Ke
t as

follows:

Ke
t ¼ Ke

s þ Ke
w þ Ke

sw þ ½K
e
sw�

T ð29aÞ

with

Ke
sij
¼
Z

le
DsB

T
si

Bsj
dx; Ke

wij
¼
Z

le
gBT

wi
Bwj

dx; ð29bÞ

Ke
swij
¼
Z

le
ð�gÞBT

si
Bwj

dx;

where Bsi
and Bwi

are defined in Eq. (23c) and Ds and g are given in
Eq. (15b).

The new linear beam element based on the RZ theory is termed
LRZ.

A study of the accuracy of the LRZ beam element for analysis of
slender laminated beams using one and two-point quadratures for
integrating matrices Ke

s ; Ke
w and Ke

sw is presented in the next section.
Table 4
Non symmetric 3-layered cantilever thick beams under end point load (k = 5).
Convergence study. Relative error for W at x = L.

Number of elements Composites

A B C

er% �W at x = L

5 0.040 8.563 36.113
10 0.003 1.814 8.042
25 0.000 0.259 0.328
50 0.000 0.063 0.033

100 0.000 0.016 0.007
300 0.000 0.000 0.000

Table 5
Non symmetric 3-layered cantilever thick beams under end point load (k = 5).
Convergence study. (a) Relative error for the maximum value of rx at x = L and (b)
idem for sxz at x = L/2.

Number of elements Composites

A B C

(a) er% � (rx)max at x = L

5 0.568 6.923 18.239
10 0.076 2.704 12.437
25 0.013 0.568 4.266
50 0.003 0.131 1.095

100 0.001 0.029 0.250
300 0.000 0.000 0.000

(b) er% � (sxz)max at L
2

5 7.020 19.283 50.938
10 0.352 5.176 20.602
25 0.052 0.888 3.408
50 0.010 0.210 0.707

100 0.003 0.049 0.147
300 0.000 0.000 0.000
5. Study of shear locking for the LRZ beam element

We study the performance of the LRZ beam element for
the analysis of a cantilever beam of length L under an end point
load of value F = 1 (Fig. 2). The beam is formed by a symmet-
ric three-layered material whose properties are listed on
Table 1. The analysis is performed for four span-to-thickness ra-
tios: k = 5, 10, 50, 100 (k = L/h) using a mesh of 100 LRZ beam
elements. Results for the LRZ element are labeled ‘‘ZZ’’ in the
figures.

The same beam was analyzed using a mesh of 27,000 four-
noded plane stress rectangles for comparison purposes (Fig. 3).
Results for the plane stress analysis are labeled ‘‘PS’’ in the figures.

Fig. 4 shows the ratio r between the end node deflection ob-
tained with the LRZ element (wzz) and with the plane stress quad-
rilateral (wps) (i.e. r ¼ wzz

wps
) versus the beam span-to-thickness ratio

d ¼ L
h. Results for the LRZ element have been obtained using exact

two-point integration for all terms of matrix Ke
t (Eq. (27)) and a

one-point reduced integration for the following three groups of
matrices: Ke

s ; Ke
s and Ke

sw; and Ks; Ke
sw and Ke

w (Eqs. (29b)).
Labels ‘‘all’’, ‘‘S’’, ‘‘SPsi’’ and ‘‘Psi’’ in Figs. 4–7 refer to matrices

Ke
t ; Ke

s ; Ke
sw and Ke

w of Eq. (29a), respectively.
Results in Fig. 4 clearly show that the exact integration of Ke

t

leads to shear locking as expected. Good (locking-free) results are
obtained by one-point reduced integration of the three groups of
matrices.

The influence of reduced integration in the distribution of the
transverse shear stress was studied next for the three groups of
matrices. Figs. 5–7 show the thickness distribution of sxz in sec-
tions located at distances L

20 ;
L
4 ;

L
2 and 3

4 L from the clamped end
for span-to-thickness ratios of k = 5, 10 and 100. Results are com-
pared with the plane stress solution and also with results obtained
with a mesh of 300 standard 2-noded elements based on laminated
Timoshenko beam theory (labeled TBT in the figures). All TBT re-
sults presented in the paper have been used with a simple shear
correction factor of 5

6. Indeed a more accurate value of the shear
correction factor in TBT can be used for laminated sections [28].
The conclusion is that for small values of k the reduced or exact
reduced integration of matrix Ke

t leads to similar results. For slen-
der beams, however, results obtained using reduced integration for
Ke

s ; Ke
s and Ke

sw; and Ke
s ; Ke

sw and Ke
w are different. Slightly more

accurate results are obtained with the second choice for the section
at x = L/4 and k = 100 (Fig. 7b).

In conclusion, we recommend using a reduced one-point inte-
gration for matrices Ke

s and Ke
sw, while matrix Ke

w should be inte-
grated with a 2-point quadrature.

6. Convergence study

The same three-layered cantilever beam of Fig. 2 was studied
next for three different set of thickness and material properties
for the three layers as listed in Table 2. Material A is the more
homogeneous one, while material C is clearly the more
heterogeneous.

The problem was studied with six meshes of LRZ elements rang-
ing from 5 to 300 elements. Tables 3–5 show the convergence with
the number of elements for the deflection and function W at the
beam end, the maximum axial stress rx at the end section and
the maximum shear stress sxz at the mid section.

Convergence is measured by the relative error defined (in abso-
lute value) as

er ¼
v6 � v i

v6

���� ����; ð30Þ
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where v6 and vi are the values of the magnitude of interest obtained
using the finest grid (300 elements) and the ith mesh (i = 1,2, . . .,5),
respectively.

Results clearly show that convergence is always slower for the
heterogeneous material case, as expected.

For a mesh of 25 elements the errors for all the magnitudes con-
sidered are less than 1% for materials A and B. For material C the
maximum error does not exceed 5% (Table 5). For the 50 element
mesh errors of the order of 1% or less were obtained in all cases.

Results for a 10 element mesh are good for material A (errors
less than 0.4%), relatively good for material B (errors less than
around 5%) and unacceptable for material C (errors ranging from
around 8–20%).

7. Examples of application

7.1. Three-layered thick cantilever beam with non symmetric material
properties

We present results for a laminated thick cantilever beam under
an end point load. The material properties are those of Composite C
in Table 2. The span-to-thickness ratio is k = 5.

For the laminated sandwich considered the core is eight times
thicker than the face sheets. In addition, the core is three orders
Fig. 8. Non symmetric 3-layered cantilever thick beam under end point load (k = 5).
Distribution of the vertical deflection w for different theories and meshes.

Fig. 9. Non symmetric 3-layered cantilever thick beam under end point load (k = 5).
of magnitude more compliant than the bottom face sheet. More-
over, the top face sheet has the same thickness as the bottom face
sheet, but is about three times stiffer. Note that this laminate does
not possess material symmetry with respect to the mid-depth ref-
erence axis. The high heterogeneity of this stacking sequence is
very challenging for the beam theories considered herein to model
adequately.

As in previous section, the legend caption PS denotes the
reference solution obtained with the structured mesh of 27,000
four-noded plane stress quadrilaterals shown in Fig. 3. TBT denotes
the solution obtained with a mesh of 300 2-noded beam elements
based on standard laminated Timoshenko beam theory. LRZ-300,
LRZ-50, LRZ-25, LRZ-10 refer to the solution obtained with the
LRZ beam element using meshes of 300, 50, 25 and 10 elements,
respectively.

Fig. 8 shows the deflection values along the beam length. Very
good agreement with the plane stress solution is obtained already
for the LRZ-50 mesh as expected from the conclusions of the pre-
vious section.

TBT results are considerable stiffer. The difference with the
reference solution is about six times stiffer for the end deflection
value.

Fig. 9 shows the distribution of the axial displacements at the
upper and lower surfaces of layer 3 (top layer) along the beam
length. Excellent results are again obtained with the 50 element
mesh. The TBT results are far from the correct ones.

Fig. 10 shows the thickness distribution for the axial displace-
ment at sections located at distances L

4 ;
L
2 and 3L

4 from the clamped
end. Results for the LRZ element (LRZ-25, LRZ-50 and LRZ-300) are
in good agreement with the reference solution. The TBT results
have the standard linear distribution which is far from the correct
zigzag results.

Fig. 11 shows the distribution along the beam length of the axial
stress rx at the top and bottom surfaces of the beam cross section.
Very good agreement between the reference PS solution and the
LRZ-50 and LRZ-300 results is obtained. Results for the LRZ-25
mesh compare reasonably well with the PS solution except in the
vicinity of the clamped edge. This error is corrected for the LRZ-
50 and LRZ-300 meshes. The TBT results yield a linear distribution
of the axial stress along the beam, as expected. This introduces
large errors in the axial stress values in the vicinity of the clamped
edge, as clearly shown in Fig. 11.

Figs. 12 and 13 show the thickness distribution for the axial
stress rx at the clamped section and at the center of the beam.
LRZ results agree quite well with those of the reference solution.
Axial displacement u at the upper and lower surfaces of the top layer (layer 3).



Fig. 10. Non symmetric 3-layered cantilever thick beam under end point load (k = 5). Thickness distribution of the axial displacement u at x = L/4 (a), x = L/2 (b) and x = L (c).

Fig. 11. Non symmetric 3-layered cantilever thick beam under end point load (k = 5). Axial stress rx at upper (a) and lower (b) surfaces of the cross section along the beam
length.
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TBT results have an erroneous stress distribution for the top and
bottom layers at the clamped end. These differences are less
important for the central section.
Fig. 14 shows the thickness distribution for the transverse shear
stress sxz at different sections ( L

20 ;
L
4 ;

L
2 and 3L

4 ). LRZ results provide
an accurate estimate of the average transverse shear stress value



Fig. 12. Non symmetric 3-layered cantilever thick beam under end point load (k = 5). Thickness distribution of the axial stress rx at x = 0.

Fig. 13. Non symmetric 3-layered cantilever thick beam under end point load (k = 5). Thickness distribution of the axial stress rx at x = L/2.
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for each layer. The distribution of sxz across the thickness can be
substantially improved by using the equilibrium equations for
computing sxz ‘‘a posteriori’’ as explained in Section 7.3.

TBT results are acceptable for the central layer and clearly over-
estimate the transverse shear stress in sections far from the
clamped end.

LRZ and TBT results for the distribution of the (constant) tan-
gential shear stress sxz for each of the three layers along the beam
length are shown in Fig. 15. TBT results are clearly inaccurate
(except for the values at the clamped edge).

7.2. Three-layered simple supported (SS) thick beams under uniform
load

The next example is the analysis of a three-layered simple sup-
ported thick beam under a uniformly distributed load of unit value
(q = 1). The material properties and the thickness for the three lay-
ers are shown in Table 6. The material has a non symmetric distribu-
tion with respect to the beam axis. An unusually low value for the
shear modulus of the core layer has been taken, thus reproducing
the effect of a damaged material in this zone. The span-to-thick-
ness ratio is k = 5. Results obtained with the LRZ element are once
more compared with those obtained with a mesh of 300 2-noded
TBT elements and with the mesh of 27,000 4-noded plane stress
(PS) rectangles shown in Fig. 3. The PS solution has been obtained
by fixing the vertical displacement of all nodes at the end sections
and the horizontal displacement of the mid-line node at x = 0 and
x = L to a zero value. This way of approximating a simple support
condition leads to some discrepancies between the PS results and
those obtained with beam theory.

No advantage of the symmetry of the problem for the discreti-
zation has been taken.

Fig. 16 shows the distribution of the vertical deflection for the
different methods. The error in the ‘‘best’’ maximum central deflec-
tion value versus the ‘‘exact’’ PS solution is ’12%. The discrepancy
is due to the difference in the way the simple support condition is
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modeled in beam and PS theories, as well as to the limitations of
beam theory to model accurately very thick beams. TBT results
are inaccurate, as expected.

Fig. 17 shows the distribution of the axial stress rx along the
beam for the top surface of the second and third layer.

The accuracy of the LRZ results is remarkable with a maximum
error of 10% despite the modeling limitations mentioned above.
TBT results are incorrect.

Fig. 18 shows the thickness distribution of the axial displace-
ment at the left end section and at x ¼ L

4. The LRZ element cap-
tures very well the zigzag shape of the axial displacement field
even for a coarse mesh of 10 elements. The TBT element yields
an unrealistic linear distribution.
Fig. 14. Non symmetric 3-layered cantilever thick beam under end point load (k = 5). Th
(d).
Figs. 19 and 20 show the thickness distribution of the axial
stress and the transverse shear stress at the left end and mid sec-
tions. The accuracy of the LRZ results is again noticeable (even for
the coarse 10 element mesh). The TBT element fails to capture the
zigzag distribution of the axial stress (Fig. 19) and gives a wrong
value of almost zero shear stress at the core layer for the two sec-
tions chosen (Fig. 20).

Fig. 21 shows the distribution of the shear stress sxz along the
beam for each of the three layers obtained with the LRZ and TBT
elements. TBT results are accurate for the first and third layer
but are wrong for the core layer.

Fig. 22 shows a similar set of results for a moderately thick SS
beam (k = 10) and the same material properties. Results shown
ickness distribution of transverse shear stress sxz at L/20 (a), L/4 (b), L/2 (c) and 3L/4



Table 6
Thickness and material properties for 3-layered non-symmetric simple supported (SS) beam.

Thickness and material properties

Layer 1 (bottom) Layer 2 (core) Layer 3 (top)

h [mm] 6.6666 6.6666 6.6666
E [MPa] 2.19E5 5.30E5 7.30E5

G [MPa] 8.76E4 2.90E2 2.92E5

Fig. 16. Non symmetric 3-layered SS thick beam under uniformly distributed load (k = 5). Distribution of vertical deflection w along the beam length.

Fig. 15. Non symmetric 3-layered cantilever thick beam under end point load (k = 5). LRZ and TBT results for the transverse shear stress sxz along the beam. Layer 1 (a), layer 2
(b) and layer 3(c).
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Fig. 17. Non symmetric 3-layered SS thick beam under uniformly distributed load (k = 5). Distribution of axial stress rx at upper surface of layer 2 (a) and layer 3 (b).

Fig. 18. Non symmetric 3-layered SS thick beam under uniformly distributed load (k = 5). Thickness distribution of axial displacement at x = 0 (a) and at x = L/2 (b).

Fig. 19. Non symmetric 3-layered SS thick beam under uniformly distributed load (k = 5). Thickness distribution of axial stress rx at x = 0 (a) and at x = L/2 (b).
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Fig. 20. Non symmetric 3-layered SS thick beam under uniformly distributed load (k = 5). Thickness distribution of the shear stress at x = L/20 (a) and at x = L/4 (b).
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are the distribution along the beam of the deflection and the axial
stress at the top surface of layer 2. The accuracy of the LRZ element
is again noticeable.

7.3. Non-symmetric ten-layered clamped slender beam under
uniformly distributed loading

We present results for a ten-layered clamped slender rectangu-
lar beam (L = 100 mm, h = 5 mm, b = 1 mm, k = 20) under uniformly
distributed loading (q = 1 kN/mm). The composite material has
the non-symmetric distribution across the thickness shown in
Table 7.

Fig. 23 shows results for the deflection along the beam for LRZ
meshes with 10 and 300 elements (LRZ-10 and LRZ-300). Results
obtained with a mesh of 27.000 4-noded plane stress quadrilater-
als and with a mesh of 300 TBT elements are also shown for com-
parison. Note the accuracy of the coarse LRZ-10 mesh and the
erroneous results of the TBT solution.

Fig. 24 shows the thickness distribution of the axial displace-
ment and the axial stress (rx) for the section at x ¼ L

4. The accuracy
of the LRZ results is once more remarkable.

Fig. 25 shows the thickness distribution of the transverse shear
stress at x ¼ L

4. Results in Fig. 25a show the values directly obtained
with the LRZ-10 and LRZ-300 meshes. These results are clearly bet-
ter than those obtained with the TBT element but only coincide in
an average sense with the plane stress FEM solution.

LRZ results for the thickness distribution of sxz can be much im-
proved by computing sxz ‘‘a posteriori’’ from the axial stress field
using the equilibrium equation

@rx

@x
þ @sxz

@z
¼ 0: ð31Þ

The transverse shear stress at a point across the thickness with
coordinate z is computed by integrating Eq. (31) as

sxzðzÞ ¼ �
Z z

�h
2

@rx

@x
dz ¼ � @Nz

@x
; ð32Þ

where
Nz ¼
Z z

�h
2

rxdz ð33Þ

is the axial force (per unit width) resulting from the thickness
integration of rx between the coordinates � h

2 and z.
The space derivative of Nz in Eq. (32) is computed at a node i as

@Nz

@x
¼ 2

le þ le�1 Ne
z � Ne�1

z


 �
; ð34Þ

where le
;Ne

z

� �
and le�1

;Ne�1
z


 �
are the element length and the value

of Nz at elements e and e � 1 adjacent to node i, respectively. A va-
lue of sxz � h

2

� �
¼ 0 is taken. It is remarkable that the method yields

automatically sxzðh2Þ ’ 0.
Results for sxz obtained with this procedure are termed LRZ-10-

Nz and LRZ-300-Nz in Fig. 25. We note the accuracy of the ‘‘recov-
ered’’ thickness distribution for sxz, even for the coarse mesh of 10
LRZ elements.

7.4. Modeling of delamination with the LRZ element

Prediction of delamination in composite laminated beams is a
challenge for all beam models. A method for predicting delamina-
tion in beams using a Hermitian zigzag theory was presented in
[26,27]. A sub-laminate approach is used for which the number
of kinematic unknowns depends of the number of physical layers.
This increases the number of variables but it yields the correct an
accurate transverse shear stress distribution without integrating
the equilibrium equations.

Delamination effects in composite laminated beams can be
effectively reproduced with the LRZ element without introducing
additional kinematic variables. The delamination model simply im-
plies introducing a very thin ‘‘interface layer’’ between adjacent mate-
rial layers in the actual composite laminated section. Delamination
is produced when the material properties of the interface layer are
drastically reduced to almost a zero value in comparison with
those of the adjacent layers due to interlamina failure. This simple
delamination model allows the LRZ element to take into account
the reduction of the overall beam stiffness due to the failure of



Fig. 21. Non symmetric 3-layered SS thick beam under uniformly distributed load
(k = 5). LRZ and TBT results for the distribution of sxz along the beam for layer 1 (a),
layer 2 (b) and layer 3 (c).

Fig. 22. Non symmetric 3-layered SS moderately thick beam under uniformly
distributed load (k = 10). Distribution along the beam length of the vertical
deflection w (a) and the axial stress rx at the upper of layer 2 (b).

Table 7
Ten-layered clamped slender rectangular beam under uniformly distributed loading.
(a) Thickness and material number for each of the 10 layers. (b) Properties of each
material.

Layer hi Material

(a)

1 0.5 IV
2 0.6 I
3 0.5 V
4 0.4 III
5 0.7 IV
6 0.1 III
7 0.4 II
8 0.5 V
9 0.3 I

10 1 II

Material E [MPa] G [MPa]

(b)
I 2.19e5 0.876e5

II 7.3e5 2.92e5
III 0.0073e5 0.0029e5
IV 5.3e5 2.12e5
V 0.82e5 0.328e5
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the interface layer leading to an increase in the deflection and rota-
tion field. Moreover, the LRZ element can also accurately represent
the jump in the axial displacement field across the interface layer
and the change in the axial and tangential stress distributions over
the beam sections as delamination progresses.

Figs. 26–30 show an example of the capabilities of the LRZ beam
element to model delamination. The problem represents the anal-
ysis of a cantilever thick rectangular beam (k = 5) under an end
point load. The beam section has three layers of composite mate-
rial with properties shown in Table 8. Delamination between the
upper and core layers has been modeled by introducing a very thin
interface layer (h = 0.01 mm) between these two layers (Fig. 26).



Fig. 24. Ten-layered clamped slender beam under uniform loading. Thickness distribution of axial displacement (a) and axial stress rx (b) for x ¼ L
4.

Fig. 23. Ten-layered clamped slender beam under uniform loading. Distribution of the deflection along the beam.

Fig. 25. Ten-layered clamped slender beam under uniform loading. Thickness distribution of sxz at x ¼ L
4. (a) Comparison of LRZ-10 and LRZ-300 results with plane stress (PS)

and TBT solutions. (b) PS solution and LRZ-10-Nz and LRZ-300-Nz results for sxz obtained by thickness integration of the equilibrium equation using the LRZ-10 and LRZ-300
results (Eq. (32)).
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Fig. 26. Modeling of interface layer for delamination study in 3-layered thick
cantilever beam (k = 5) under end point load.

Fig. 28. Delamination study in 3-layered cantilever beam under end point load. Thickne
modulus at the interface layer (Models 5, 6, 8 and 11, Table 9).

ig. 27. Delamination study in 3-layered cantilever beam under end point load.
volution of end deflection with the shear modulus value for the interface layer
RZ-100 results and PS solution.
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Fig. 29. Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of rx at x ¼ L
2 for four decreasing values of the shear modulus at the

interface layer (Models 5, 6, 8 and 11, Table 9).
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The initial properties of the interface layer coincide with those of
the upper layer. Next, the shear modulus value for the interface
layer has been progressively reduced up to 11 orders of magnitude
from G2 = 8.76 � 104 MPa (Model 1) to G2 = 8.76 � 10�7 MPa
(Model 12) (Table 9).

We note that the reduction of the shear modulus has been
applied over the whole beam length in this case. However it can
applied in selected beam regions as appropriate.

Fig. 27 shows results for the end deflection in terms of the
shear modulus value of the interface layer for the LRZ-100 mesh.
Note that the deflection increases one order of magnitude versus
the non-delaminated case. It is also interesting that the end
deflection does not change after the shear modulus of the interface
layer is reduced beyond eight orders of magnitude (results for
Model 9 in Fig. 27). Results agree reasonably well (error ’ 10%)
with those obtained with the plane stress model of Fig. 3 introduc-
ing a similar reduction in the shear modulus of an ad hoc interface
layer.
Fig. 28 shows the thickness distribution for the axial displace-
ment at the mid section for four decreasing values of the shear mod-
ulus at the interface layer: G2 = 8.76, 8.76 � 10�1, 8.76 � 10�3 and
8.76 � 10�6 MPa. The jump of the axial displacement across the
thickness at the interface layer during delamination is well cap-
tured. We again note that the displacement jump at the interface
layer remains stationary after a reduction of the material properties
in that layer of six orders of magnitude. Results agree well with the
plane stress solution also shown in the figure.

Fig. 29 shows the thickness distribution of the axial stress (rx)
for the same four decreasing values of the shear modulus at the
interface layer. The effect of delamination in the stress distribution
is clearly visible. Once again the LRZ-100 results agree well with
the plane stress solution.

Fig. 30 finally shows the thickness distribution for the trans-
verse shear stress at x ¼ L

2 for the same four values of the shear
modulus at the interface layer. The three graphs show the PS
results, the LRZ-100 results and the solution obtained by inte-



Fig. 30. Delamination study in 3-layered cantilever beam under end point load. Thickness distribution of sxz at x ¼ L
2 for four values of G at the interface layer (Models 5, 6, 8

and 11, Table 9). LRZ-100 results, plane stress (PS) solution and LRZ-100-Sx results obtained by integrating the equilibrium equation (Eq. (32)) using the LRZ-100 results.

Table 8
Thickness and layer properties for delamination study in a 3-layered cantilever beam
under end point load. Layer 2 is the interface layer. G2 values are given in Table 9.

Composite material

Layer 1 Layer 2 Layer 3 Layer 4

h [mm] 2 0.01 16 2
E [MPa] 2.19E5 2.19E5 0.0073E5 7.30E5
G [MPa] 0.876E5 G2 0.0029E5 2.92E5

Table 9
Shear modulus values for the interface layer for delamination study in a 3-layered
cantilever beam. Values of G2 in MPa.

Model G2 Model G2 Model G2

1 8.76E+004 5 8.76E+000 9 8.76E�004
2 8.76E+003 6 8.76E�001 10 8.76E�005
3 8.76E+002 7 8.76E�002 11 8.76E�006
4 8.76E+001 8 8.76E�003 12 8.76E�007
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grating the equilibrium equation (via Eqs. (31)–(34)) using the
LRZ-100 results. Note the accuracy of the later solution versus
the standard LRZ-100 results as delamination develops and
the transverse shear stress progressively vanishes at the inter-
face layer.

Similar good results for predicting the delamination and the
thickness distribution of the axial and transverse shear stresses
are obtained over the entire beam length.

The example shows clearly the capability of the LRZ element
to model a complex phenomenon such as delamination in com-
posite laminated beams without introducing additional kinematic
variables. More evidence of the good behavior of the LRZ beam
element for predicting delamination in beams are reported in
[29].

8. Conclusions

We have presented a simple and accurate 2-noded beam
element based on the refined zigzag beam theory proposed by
Tessler et al. [22]. The element has four degrees of freedom per
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node (the axial displacement, the deflection, the rotation and the
amplitude of the zigzag function). A standard C0 linear interpola-
tion is used for all variables. The resulting LRZ beam element is
shear locking-free and has shown an excellent behavior for analy-
sis of thick and thin composite laminated beams with clamped and
simple supported conditions. Numerical results agree in practically
all cases with those obtained with a two-dimensional plane-stress
FEM using a far larger number of degrees of freedom. It is remark-
able that the zigzag distribution of the axial displacement and the
axial stress across the thickness, typical of composite laminated
beams, is very accurately captured with the basic approximation
chosen. The possibilities of the new LRZ beam element for predict-
ing delamination effects has been demonstrated in a simple but
representative example of application.

Acknowledgements

This research was partially supported by project SEDUREC of
the Consolider Programme of the Ministerio de Educación y Ciencia
of Spain.
References

[1] S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, third ed.,
McGraw-Hill, New York, 1959.

[2] S. Timoshenko, On the correction for shear of differential equations
for transverse vibrations of prismatic bars, Philos. Mag. Ser. 41 (1921) 744–
746.

[3] D. Liu, X. Li, An overall view of laminate theories based on displacement
hypothesis, J. Compos. Mater. 30 (14) (1996) 1539–1561.

[4] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells. Theory and
Analysis, second ed., CRC Press, Boca Raton, 2004.

[5] D.R.J. Owen, Z.H. Li, A refined analysis of laminated plates by finite element
displacement methods. Part I. Fundamentals and static analysis. II Vibration
and stability, Comput. Struct. 26 (1987) 907–923.

[6] S. Botello, E. Oñate, J.M. Canet, A layer-wise triangle for analysis of laminated
composite plates and shells, Comput. Struct. 70 (1999) 635–646.

[7] M. Di Sciuva, Bending, vibration and buckling of simply supported thick
multilayered orthotropic plates: an evaluation of a new displacement model, J.
Sound Vibr. 105 (1986) 425–442.

[8] H. Murakami, Laminated composite plate theory with improved in-plane
responses, ASME J. Appl. Mech. 53 (1986) 661–666.

[9] V.R. Aitharaju, R.C. Averill, An assessment of zig-zag kinematic displacement
models for the analysis of laminated composites, Mech. Compos. Mater. Struct.
6 (1999) 1–26.
[10] V.R. Aitharaju, R.C. Averill, C0 zig-zag finite element for analysis of laminated
composite beams, J. Engrg. Mech. ASCE (1999) 323–330.

[11] X. Li, D. Liu, An interlaminar shear stress continuity theory for both thin and
thick composite laminates, J. Appl. Mech. 59 (1992) 502–509.

[12] M. Di Sciuva, An improved shear-deformation theory for moderately thick
multilayered anisotropic shells and plates, J. Appl. Mech. 54 (1987) 589–
594.

[13] A. Toledano, H. Murakami, A higher-order laminate plate theory with
improved in-plane response, Int. J. Solids Struct. 23 (1987) 111–131.

[14] M. Cho, R.R. Parmerter, Efficient higher order composite plate theory for
general laminations configuration, AIAA J. 31 (1993) 1299–1306.

[15] S. Kapuria, P.C. Dumir, A. Ahmed, N. Alam, Finite element model of efficient
zigzag theory for static analysis of hybrid piezoelectric beams, Comput. Mech.
34 (6) (2004) 475–483.

[16] R.C. Averill, Static and dynamic response of moderately thick laminated beams
with damage, Compos. Engrg. 4 (4) (1994) 381–395.

[17] R.C. Averill, Yip Yuen Cheong, Development of simple, robust finite elements
based on refined theories for thick laminated beams, Comput. Struct. 59 (3)
(1996) 529–546.

[18] N.M. Alam, N.Kr. Upadhyay, Finite element analysis of laminated composite
beams for zigzag theory using MATLAB, Int. J. Mech. Solids 5 (1) (2010) 1–14.

[19] M. Savoia, On the accuracy of one-dimensional models for multilayered
composite beams, Int. J. Solids Struct. 33 (1996) 521–544.

[20] S. Kapuria, P.C. Dumir, N.K. Jain, Assessment of zigzag theory for static loading,
buckling, free and forced response of composite and sandwich beams, Compos.
Struct. 64 (2004) 317–327.

[21] E. Carrera, Historical review of zigzag theories for multilayered plate and shell,
Appl. Mech. Rev. 56 (3) (2003) 287–308.

[22] A. Tessler, M. Di Sciuva, M. Gherlone, A refined zigzag beam theory for
composite and sandwich beams, J. Compos. Mater. 43 (2009) 1051–1081.

[23] A. Tessler, M. Di Sciuva, M. Gherlone, A consistent refinement of first-order
shear-deformation theory for laminated composite and sandwich plates using
improved zigzag kinematics, J. Mech. Mater. Struct. 5 (2) (2010) 341–367.

[24] M. Gherlone, A. Tessler, M. Di Sciuva, C0 beam element based on the refined
zigzag theory for multilayered composite and sandwich laminates, Compos.
Struct. 93 (2011) 2882–2894.

[25] E. Oñate, A. Eijo, S. Oller, Two-noded Beam Element for Composite and
Sandwich Beams Using Timoshenko Theory and Refined Zigzag Kinematics,
Publication CIMNE PI346, CIMNE, Barcelona, October 2010.

[26] M. Di Sciuva, M. Gherlone, A global/local third-order Hermitian displacement
field with damaged interfaces and transverse extensibility: FEM formulation,
Compos. Struct. 59 (4) (2003) 433–444.

[27] M. Di Sciuva, M. Gherlone, Quasi-3D static and dynamic analysis of
undamaged and damaged sandwich beams, J. Sandwich Struct. Mater. 7 (1)
(2005) 31–52.

[28] E. Oñate, Structural analysis with the finite element method, Beams, Plates and
Shells, vol. 2, CIMNE-Springer, 2012.

[29] E. Oñate,A. Eijo, S. Oller, Modeling of Delamination in Composite Laminated
Beams Using a Two-noded Beam Element Based in Refined Zigzag Theory,
Publication CIMNE, PI367, November 2011.





INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2013; 95:631–660
Published online 20 May 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.4503

A four-noded quadrilateral element for composite laminated
plates/shells using the refined zigzag theory

A. Eijo*,†, E. Oñate and S. Oller

International Center for Numerical Methods in Engineering (CIMNE), Universitat Politècnica de Catalunya (UPC),
Gran Capitán s/n, 08034 Barcelona, Spain

SUMMARY

A new bilinear four-noded quadrilateral element (called quadrilateral linear refined zigzag) for the
analysis of composite laminated and sandwich plates/shells based on the refined zigzag theory is
presented. The element has seven kinematic variables per node. Shear locking is avoided by intro-
ducing an assumed linear shear strain field. The performance of the element is studied in several
examples where the reference solution is the 3D finite element analysis using 20-noded hexahedral elements.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The classical thin plate theory, known as Kirchhoff theory [1], and the more advanced Reissner–
Mindlin theory (RMT) [2,3], also called first order shear deformation theory (FSDT), were the first
simplified theories able to precisely model a plate structure of homogeneous material. However,
when applied to highly heterogeneous laminated composite plates, it is known that both theories
give poor predictions. The cause of this drawback is because these theories propose a linear thick-
ness distribution of the axial displacement, which is unable to represent the complex real kinematics
of a composite laminate.

Three-dimensional finite element analysis is the more appropriate tool to accurately model plates
and shells of laminated composite material. However, for composites with hundred of plies, 3D
analysis becomes prohibitively expensive.

Improved FSDT models have been obtained by the so-called higher order shear deformation the-
ory [4,5]. In these models, higher order kinematic terms with respect to the plate thickness are added
to the expression for the axial displacement. However, these models are not effective for complex
cases with localized loads or high transverse anisotropy.

More accurate models are given by the layerwise theories (LWT) [4, 6], in which the thickness
coordinate is divided into a number of analysis layers (that may be not coincident with the num-
ber of laminate physical layers) assuming separate displacement field expansions within each ply.
LWT yield high quality predictions. However, the number of unknowns depends on the number of
analysis layers, which largely increases the computational cost of the method.
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Politècnica de Catalunya (UPC), Gran Capitán s/n, 08034 Barcelona, Spain.
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An attractive alternative between the accuracy of LWT and the computational efficiency of FSDT
and some higher order shear deformation theory are the zigzag (ZZ) theories [4, 5, 7]. In ZZ theo-
ries, the in-plane displacement is a superposition of a piecewise linear displacement function (the
ZZ function) over a linear, a quadratic or a cubic displacement field along the thickness direction.
It is important to note that the number of kinematics variables in ZZ theories is independent of
the number of layers. Many of the ZZ formulations suffer from their inability to model correctly a
clamped boundary condition, which makes it difficult to satisfy equilibrium of forces at a support.
In addition, many ZZ theories require C1 continuity for the deflection field, which is a disadvantage
versus simpler C0 continuity plate theories, such as RMT.

Tessler et al. [8–12] have recently developed a refined zigzag theory (RZT) for beams and plates
that adopt Timoshenko and RMT displacement fields as the baselines for beam and plate analysis,
respectively. The key attributes of the RZT are, first, a linear piecewise ZZ function that vanishes
at top and bottom surfaces of the beam and the plate section. Second, it does not require full trans-
verse shear stress continuity across the laminated plate depth. Third, C0 continuity is only required
for the FEM approximation of the kinematic variables, and finally, all boundary conditions can be
effectively simulated [8, 9, 13, 14].

Oñate et al. [13] have taken the RZT as the basis for developing a simple two-noded C0

beam element named LRZ. The accuracy of the LRZ beam element for analyzing compos-
ite laminated beams has been demonstrated for simple support and clamped beams under dif-
ferent loads. The possibility of the LRZ beam element for modeling delamination effects has
also been tested [13]. Recently, anisoparametric two-noded and three-noded C0 beam elements
based on the RZT have been presented by Gherlone et al. [14]. More recently, a six-node and
three-node, C 0-continuous, RZT-based triangular plate finite elements have been developed by
Versino et al. [15].

In this work, we present the formulation of an isoparametric four-noded C0 quadrilateral plate
element named quadrilateral linear refined zigzag (QLRZ) [16] with seven kinematic variables per
node based on the RZT [8]. Shear looking is avoided by using an assumed linear shear strain
field. The good performance of QLRZ is shown in three different studies: verification, convergence,
and comparison. The verification section aims at evaluating the performance of this element when
the material is homogenous, that is, when the ZZ function vanishes. The influence of composite
material on the convergence and the accuracy of the QLRZ element is analyzed in the convergence
section. Finally, we present several examples of the good performance of the QLRZ element highly
heterogeneous materials in the comparison section.

2. GENERAL CONCEPTS OF ZIGZAG PLATE THEORY

2.1. Zigzag kinematics

The kinematic field in ZZ plate theory is generally written as

uk.x,y, ´/ D u0.x,y/� ´ � �x.x,y/C Nuk.x,y, ´/

vk.x,y, ´/ D v0.x,y/� ´ � �y.x,y/C Nvk.x,y, ´/

w .x,y/ D w0.x,y/

(1a)

where the axial displacement functions are

Nuk D �kx .´/ � x.x,y/ I k D 1,N

Nvk D �ky .´/ � y.x,y/
(1b)

and superscript k indicates quantities within the kth layer with ´k 6 ´ 6 ´kC1, ´k is the vertical
coordinate of the kth interface and N is the number of layers. The uniform axial displacements
along the coordinate directions x and y are u0 and v0, respectively; �x and �y represent the average
bending rotation of the transverse normal about the negative y and positive x directions and w0 is
the transverse deflection. �ki .i D x,y/ denotes a known piecewise linear ZZ function, and  i is a

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 95:631–660
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primary kinematic variable defining the amplitude of the ZZ function on the plate. Summarizing, the
kinematic variables are

aD
�
u0 v0 w0 �x �y  x  y

�T
(1c)

The ZZ displacement field of Equation (1a) is a superposition between the standard kinematics
of the first order RMT and the linear piecewise ZZ functions (Equation (1b)). Note that the ZZ
displacement vanishes for homogeneous materials leading to the displacement field of the RMT.
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where ©m, ©b , and ©s are the strain vectors duo to membrane, bending, and transverse shear effects
of the RMT, respectively. The in-plane and the transverse shear strain vectors emanating from the
RZT are denoted by ©mb� and ©s� , and O©p and O©t are the generalized in-plane and the transverse
shear strain vectors defined as

O©p D

24 O©m

O©b
O©mb�

35 I O©t D � O©sO©s�
�

Skp D
h
Sm Sb Sk

mb�

i
ISkt D

h
Ss Sks�

i (2b)
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where b../ denotes the generalized strain vectors given by

O©m D

�
@u0

@x

@v0

@y

@u0

@y
C
@v0

@x

�T
I O©s D

2664
@w0

@x
� �x

@w0

@y
� �y

3775D � �x´�y´
�

O©b D

�
@�x

@x

@�y

@y

@�x

@y
C
@�y

@x

�T
I O©s� D

�
 x
 y

�
O©mb� D

�
@ x

@x

@ y

@y

@ x

@y

@ y

@x

�T
(2c)

Sm D

24 1 0 0

0 1 0

0 0 1

35D I3ISb D�´ I3ISs D

�
1 0

0 1

�
D I2

Skmb� D

24 �kx .´/ 0 0 0

0 �ky .´/ 0 0

0 0 �kx .´/ �ky .´/

35 ISks� D
2664
@�kx
@´

0

0
@�ky

@´

3775
(2d)

where �i´ .i D x,y/ is the average transverse shear strain of RMT. Note that �ki is piecewise linear;

hence, its derivative

�
@�k
i

@´
D ˇki

	
is constant within each layer.

2.2. Constitutive relationships

The relationship between the in-plane and the transverse shear stresses and the strains for the kth
layer are expressed in matrix form as

¢k D

�
�p

¢t

�k
D

266664
�x
�y
�xy

�x´
�y´

377775
k

D

�
Dp 0

0 Dt

�k
�

�
©p
©t

�k
D Dk©k (3a)

with

Dkp D
1

1� �xy�yx

24 Ex �xyEx 0

�yxEx Ey 0

0 0 .1� �xy�yx/Gxy

35
Dkt D

�
Gx´ 0

0 Gy´

� (3b)

Note that the constitutive matrix D (Equation (3b)) is valid for homogeneous isotropic/orthotropic
materials only. For anisotropic composed materials, created by two or more substances, it should be
necessary to use other more advanced theories [17, 18].
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The resultant stress vectors are defined as

Membrane forces

O¢m D

24 Nx
Ny
Nxy

35D Z
´

Sm
T ¢kpd´

O¢m D

�Z
´

Sm
TDkpSmd´

	
O©mC

�Z
´

Sm
TDkpSbd´

	
O©b

C

�Z
´

Sm
TDkpSkmb�d´

	
O©mb�

O¢m D ODmO©mC ODmb O©b C ODmmb� O©mb� (3c)

ODm D
Z
´

Sm
TDkpSmd´

ODmb D
Z
´

Sm
TDkpSbd´

ODmmb� D
Z
´

Sm
TDkpSkmb�d´

Bending moments

O¢b D

24 Mx

My

Mxy

35D Z
´

Sb
T ¢kpd´

O¢b D

�Z
´

Sb
TDkpSmd´

	
O©mC

�Z
´

Sb
TDkpSbd´

	
O©b

C

�Z
´

Sb
TDkpSkmb�d´

	
O©mb� (3d)

O¢b D ODbmO©mC ODb O©b C ODbmb� O©mb�

ODbm D
Z
´

Sb
TDkpSmd´

ODb D
Z
´

Sb
TDkpSbd´

ODbmb� D
Z
´

Sb
TDkpSkmb�d´

Transverse shear forces

O¢s D

�
Qx´
Qy´

�
D

Z
´

Ss
T ¢kt d´

O¢s D

�Z
´

Ss
TDkt Ssd´

	
O©s C

�Z
´

Ss
TDkt Sks�d´

	
O©s�

O¢s D ODs O©s C ODss� O©s� (3e)

ODs D
Z
´

Ss
TDkt Ssd´

ODss� D
Z
´

Ss
TDkt Sks�d´

Next, we define the additional pseudo-bending moments and the pseudo-shear forces emanating
from the RZT, which are conjugate to the new generalized strains @ i

@j
.i , j D x,y/ and the variable

 i , respectively.
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The pseudo-bending moments are defined by

O¢mb� D

264
Mx�x

My�y

Mxy�x

Mxy�y

375D Z
´

Sk T
mb� ¢kpd´

O¢mb� D

�Z
´

Sk T
mb� DkpSmd´

	
O©mC

�Z
´

Sk T
mb� DkpSbd´

	
O©b

C

�Z
´

Sk T
mb� DkpSkmb�d´

	
O©mb�

O¢mb� D ODmb�mO©mC ODmb�b O©b C ODmb� O©mb� (3f)

ODmb�m D
Z
´

Sk T
mb� DkpSmd´

ODmb�b D
Z
´

Sk T
mb� DkpSbd´

ODmb� D
Z
´

Sk T
mb� DkpSkmb�d´

and the pseudo-shear forces by

O¢s D

�
Qx´ x
Qy´ y

�
D

Z
´

Sk
T

s� ¢
k
t d´

O¢s� D

�Z
´

Sk
T

s� Dkt Ssd´

	
O©s C

�Z
´

Sk
T

s� Dkt Sks�d´

	
O©s�

O¢s� D ODs�s O©s C ODs� O©s� (3g)

ODs�s D
Z
´

Sk
T

s� Dkt Ssd´

ODs� D
Z
´

Sk
T

s� Dkt Sks�d´

The overall constitutive expression for the resultant stresses can be written in matrix form as

O¢ D

�
O¢p

O¢t

�
D

"
QDp 0

0 QDt

#
�

�
O©p

O©t

�
(3h)

where O¢p and O¢t contain the in-plane and the transverse shear resultant stresses, respectively,

O¢p D

264 O¢m

O¢b

O¢mb�

375 I O¢t D � O¢s
O¢s�

�
(3i)

that is, the in-plane and the transverse shear generalized constitutive matrices, QDp and QDt , are
given by

QDp D

264 ODm ODmb ODmmb�
ODbm ODb ODbmb�
ODmb�m ODmb�b ODmb�

375 I QDt D " ODs ODss�
ODs�s ODs�

#

2.3. Principle of virtual work

The virtual work principle for a distributed load q and point loads fi can be stated as•
V

•©k
T
�kdV D

“
A

•aT qdAC
nplX
iD1

•ai
T fi (4a)
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where the l.h.s. of Equation (4a) expresses the internal virtual work performed by the stresses and
the r.h.s. is the external virtual work of the distributed and point loads. V is the volume of the plate,
A is the area of application of the distributed load, and npl is the number of point loads. Substituting
Equation (2a) into Equation (4a) gives•

V

•©kT ¢kdV D

•
V



•O©m

T Sm
T C •O©b

T Sb
T C •O©Tmb�Sk T

mb�

�
¢kp dVC

C

•
V



•O©s

T Ss
T C •O©s�

T Sk T
s�

�
¢kt dV

D

•
V



•O©m

T Sm
T ¢kp C •O©b

T Sb
T ¢kp C •O©

T
mb�Sk T

mb� ¢kp

�
dVC

C

•
V



•O©s

T Ss
T ¢kt C •O©s�

T Sk T
s� ¢kt

�
dV

By using Equations (3c), (3d), (3e), (3f), and (3g) yields•
V

•©kT ¢kdV D

“
A



•O©m

T O¢mC •O©b
T O¢b C •O©mb�

T O¢mb�

�
dAC

“
A



•O©s

T O¢s C •O©s�
T O¢s�

�
dA

The virtual work can be therefore written as“
A



•O©p

T O¢p C •O©t
T O¢t

�
D

“
A

•aT qdAC
nplX
iD1

•ai
T fi (4b)

The integrands in Equation (4b) contain kinematic variable derivatives up to first order only,
which allows us to use C0 continuous elements.

3. DERIVATION OF THE ZIGZAG FUNCTION

The ZZ function is defined within each layer by

�ki D
1

2
.1� �/ N�k�1i C

1

2
.1C �/ N�ki D

N�ki C
N�k�1i

2
C
N�ki �

N�k�1i

2
�k

i D x,y
(5)

where N�ki and N�k�1i is the ZZ function valued at k and k�1 interface, respectively with N�0i D N�
N
i D 0

and �k D 2 .´�´
k�1/

hk
� 1.

Figure 1 shows the ZZ function �kx , the ZZ displacements Nuk , and the axial displacements uk , for
the x direction. A similar distribution is found for the ZZ function �ky .

The slope of the ZZ function (Equation (5)) gives a constant value for each layer defined as

ˇki D
@�ki
@´
D

�
N�ki �

N�k�1i

�
hk

(6a)

Because the ZZ function vanishes on the top and bottom surfaces, the through-the-thickness
integrals of the slope functions ˇki is equal to zero, that is,Z

´

ˇki d´D 0 (6b)

It is convenient to define a new difference function 	i as

	i D �i´ � i (7)

which leads to the following expression for the kth layer transverse shear strains and stresses as

�ki´ D


1C ˇki

�
�i´ � ˇ

k
i 	i (8a)
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(a) (b) (c)

Figure 1. Thickness distribution of (a) the zigzag function �kx ; (b) the zigzag displacement Nuk ; and (c) the
axial displacement uk in the RZT.

�ki´ DG
k
i´



1C ˇki

�
�i´ �G

k
i´ˇ

k
i 	i (8b)

Equation (8b) is valid for a cross-ply case only.
The average shear strains over the plate thickness are obtained by integrating the transverse shear

strains �ki´ (Equation (8a)) over the thickness and using Equation (6b). This gives

�i´ D
1

h

Z
´

�ki´d´ (9)

The interfacial continuity of the first term, associated with the average shear strain �i´, is enforced
in the transverse shear stress distribution (Equation (8b)), that is,

Gki´



1C ˇki

�
DGkC1i´



1C ˇkC1i

�
(10a)

which leads to a constant shear modulus across the plate thickness defined by

Gi´ DG
k
i´



1C ˇki

�
(10b)

Then, from Equation (10b)

ˇki D
Gi´

Gki´
� 1 (11)

the explicit form of Gi´ is obtained by substituting ˇki in the integral of Equation (6b), that is,

Gi´ D h

"
NX
kD1

hk

Gki´

#�1
(12)

Finally, the ZZ function is obtained by replacing Equation (6a) into Equation (5) — this gives

�ki D
N�k�1i C

hkˇki
2




k C 1

�
(13)

with ˇki defined by Equation (11).

4. QUADRILATERAL LINEAR REFINED ZIGZAG PLATE ELEMENT

The QLRZ element (Figure A.1) is a Lagrangian isoparametric four-noded finite element derived
from the RZT described previously.
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4.1. Discretization of the displacement field

The middle surface of a plate is discretized into four-node 2D isoparametric finite elements of
quadrilateral shape. The kinematic variables (Equation (1c)) can be interpolated within each element
as

aD

266666664

u0
v0
w0
�x
�y
 x
 y

377777775
D

4X
iD1

Nia
.e/
i D

�
N1 N2 N3 N4

�
�

266664
a.e/1
a.e/2
a.e/3
a.e/4

377775D Na.e/ (14)

where

Ni DNi I7 I a.e/i D
�
u0 v0 w0 �x �y  x  y

�T
i

being Ni .� , 	/ (Equation (21)) the C0 continuous shape function of node i th and I7 is the 7 � 7
unit matrix.

4.2. Generalized strain field

The generalized in-plane strains are obtained in terms of the nodal kinematic variables by
substituting Equation (14) into the generalized in-plane shear strains O"p (Equation (2b)),

O©p D

24 O©m
O©b
O©mb�

35D

266666666666666666666666666666666666664

@u0

@x

@v0

@y

@u0

@y
C
@v0

@x

@�x

@x

@�y

@y

@�x

@y
C
@�y

@x

@ x

@x

@ y

@y

@ x

@y

@ y

@x

377777777777777777777777777777777777775

D

4X
iD1

266666666666666666666666666666666666664

@Ni

@x
u0

@Ni

@y
v0

@N i

@y
u0C

@Ni

@x
v0

@Ni

@x
�x

@Ni

@y
�y

@N i

@y
�x C

@N i

@x
�y

@Ni

@x
 x

@Ni

@y
 y

@Ni

@y
 x

@Ni

@x
 y

377777777777777777777777777777777777775
i

D

4X
iD1

Bpia
.e/
i D Bpa.e/

(15a)
where Bp and Bpi are the in-plane generalized strain matrices for the element and the i th
node, respectively. The matrix Bpi can be split into membrane (m), bending (b), and ZZ (mb�)
contributions. This leads to

Bpi D

24 Bm
Bb

Bmb�

35
i

(15b)
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with

Bmi D

2664
@Ni
@x

0 0 0 0 0 0

0 @Ni
@y

0 0 0 0 0

@Ni
@y

@Ni
@x

0 0 0 0 0

3775Bbi D

2664
0 0 0 @Ni

@x
0 0 0

0 0 0 0 @Ni
@y

0 0

0 0 0 @Ni
@y

@Ni
@x

0 0

3775

Bmb�i D

2666664
0 0 0 0 0 @Ni

@x
0

0 0 0 0 0 0 @Ni
@y

0 0 0 0 0 @Ni
@y

0

0 0 0 0 0 0 @Ni
@x

3777775
(15c)

Replacing Equation (14) into Equation (2b), the generalized transverse strains are obtained as

O©t D

�
O©s
O©s�

�
D

266666664

@w0

@x
� �x

@w0

@y
� �y

 x
 y

377777775
D

4X
iD1

266666664

@Ni

@x
w0 �Ni�x

@N i

@y
w0 �Ni�y

Ni x
Ni y

377777775
i

D

4X
iD1

Btia
.e/
i D Bta

.e/ (16a)

where Bt and Bti are the transverse generalized strain matrices for the e element and the i th node,
respectively. Matrix Bti can be split into shear (s) and ZZ (s�) contributions as

Bti D

�
Bs
Bs�

�
i

(16b)

where

Bsi D

2664
0 0

@Ni

@x
�Ni 0 0 0

0 0
@Ni

@y
0 �Ni 0 0

3775
Bs�i D

�
0 0 0 0 0 Ni 0

0 0 0 0 0 0 Ni

� (16c)

4.3. Element stiffness matrix

The equilibrium equations relating nodal forces and displacements are obtained by substituting the
discretized Equations (15a) and (16a) into the virtual work principle“

A



•O©p

T O¢p C •O©t
T O¢t

�
D

“
A

•aT qdAC
nplX
iD1

•ai
T fi (17a)

Substituting Equation (3h) into the l.h.s of Equation (17a) gives“
A



•O©p

T O¢p C •O©t
T O¢t

�
D

“
A

�
•O©Tp QDp O©p C •O©

T
t
QDt O©tdA

�
(17b)

Considering that

•O©p
T D

4X
iD1

•a.e/Ti Bpi
T D •a(e)TBp

T

•O©t
T D

4X
iD1

•a.e/Ti Bti
T D •a(e)TBt

T

(17c)
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and substituting Equations (15a), (16a), and (17c) into Equation (17b) yields“
A

�
•O©Tp QDp O©p C •O©

T
t
QDt O©t

�
dAD

“
A



•a(e)TBp

T QDpBpa.e/
�
dA

C

“
A



•a(e)TBt

T QDtBta
.e/
�
dAD

D •a(e)T

�“
A

�
Bp

T QDpBp CBt
T QDtBt

�
dA

�
a.e/

D •a(e)TK.e/a.e/

Finally, Equation (17a) is reduced to

K.e/a.e/ �
“
A

qdA�
nplX
iD1

fi D 0 (18)

where K.e/ is the sought element stiffness matrix. This matrix can be expressed as

K.e/ D K.e/p CK.e/t (19a)

being K.e/p and K.e/t the in-plane and transverse stiffness matrices, respectively. These are given by

K.e/p D
“
A

Bp
T QDpBpdA

K.e/t D
“
A

Bt
T QDtBtdA

(19b)

To facilitate subsequent shear locking studies, we split matrix K.e/t as follows

K.e/t D K.e/s CK.e/s� CK.e/ss� C
h
K.e/ss�

iT
(20a)

with

K.e/s D
“
A

Bs
T ODsBsdA

K.e/s� D
“
A

Bs�
T ODs�Bs�dA

K.e/ss� D
“
A

Bs
T ODss�Bs�dA

(20b)

4.4. Boundary conditions

The boundary conditions are:

A. Clamped side:

w D 0

uD �x D  x D 0

v D �y D  y D 0

B. Simply supported (SS) side:

� Hard support: w D us D �s D  s D 0
� Soft support: w D 0

where ‘s’ is the direction of the side.
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C. Symmetry axis:

un D �n D  n D 0

where ‘n’ is the orthogonal direction to the symmetry axis.

4.5. Shear locking

The original form of the QLRZ element suffers from shear locking for slender composite laminated
plates. To remove this defect, we use an assumed transverse shear strain field [19].

This technique leads to matrix Bs (Equations (16b) and (A.7c)) being replaced by the substitute
transverse shear strain matrix NBs . The form of this matrix can be found in the Appendix section
(Equation (A.9)). Matrices Bmi , Bbi , Bmb�i from Equation (15c) and Bs�i (Equation (16c)) are
computed using the standard bilinear shape functions (see Figure 2 and Table I).

The bilinear shape functions Ni are

Ni D
1

4
.1C ��i /.1C 		i / (21)

The stiffness matrices K.e/s and K.e/ss� of K.e/t in Equation (20a) are therefore computed as

K.e/s D
“
A

NBs
T ODs NBsdA

K.e/ss� D
“
A

NBs
T ODss�Bs�dA

(22)

Figure 2. Bilinear shape functions.

Table I. Values of Ÿi and ˜i for each node.

Node Ÿi ˜i

1 -1 -1
2 1 -1
3 1 1
4 -1 1

Figure 3. Simply supported square plate under uniformly distributed load.
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Table II. Material properties for shear locking study.

Composite material properties

Properties Layer 1 (top) Layer 2 Layer 3 (bottom)

h 0.25 � L
�

0.50 � L
�

0.25 � L
�

E 2.19E5 2.19E4 4.4E5
G 0.876E5 0.876E4 1.76E5

(a) (b) 

Figure 4. Meshes used for the analysis of one quarter of the SS plate. (a) 16 � 16 QLRZ elements and (b)
10� 10� 9 HEXA20 elements.

Figure 5. r ratio versus span-to-thickness �. Simply supported square plate under uniformly
distributed load.
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To show the efficiency of this technique, we analyze an SS square plate of length side L D 2

under a uniformly distributed load of unit value (q D 1) (Figure 3).
The analysis is performed for four span-to-thickness ratios: � D L=h D 5, 10, 50, 100. A

three-layer composite material is used, whose properties are listed in Table II.
Only one quarter of the plate is studied because of symmetry (Figure 3) by using a mesh of 16�16

QLRZ elements (Figure 4a) with 289 nodes and 1445 DOFs. The reference solution is obtained by
a 3D finite element analysis using a mesh of 10�10�9 (3 elements per ply) of 20-noded hexahedral
elements (HEXA20) involving 4499 nodes and 13497 DOFs (Figure 4b).

Figure 5 shows the r ratio defined as

r D
wQLRZ

w3D
(23)

(a) 

(b) 

Figure 6. Square plate (� D 40) for verification and convergence analysis. (a) SS plate and (b) clamped
plate under uniformly distributed load and central point load.

Table III. QLRZ mesh properties.

Meshes properties

Mesh N Elements Nodes DOFs

1 2 4 9 45
2 4 16 25 150
3 8 64 81 405
4 16 256 289 1445
5 32 1024 1089 5445
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where wQLRZ and w3D are the middle (z D 0) deflection at the plate center obtained with the
QLRZ element and the 3D finite element analysis, respectively. The QLRZ element results have
been obtained using exact integration of matrix Kt (exact) and with the assumed transverse shear
strain field technique (QLRZ).

Figure 5 clearly shows the shear locking defect when exact integration of K.e/t is used. However,
this defect disappears by using the assumed transverse shear strain technique.

4.6. ‘A posteriori’ computation of transverse shear stresses

Whereas in-plane stresses (�x , �y and �xy) are well-predicted by Equation (3a), the transverse shear
stresses (�x´ and �y´) are not. The reason is that the constitutive Equation (3a) yields a constant

(a) (b) (c) (d) (e)

Figure 7. Meshes of N�N QLRZ elements employed for verification and convergence analysis. (a) ND 2;
(b) ND 4; (c) ND 8; (d) ND 16; and (e) ND 32.

Table IV. Reissner–Mindlin solutions.

Reissner–Mindlin solutions
(32� 32 four-noded quadrilateral finite element)

Boundary Load wRMT

SS Distributed 0.02680
Point 0.07730

Clamped Distributed 0.00841
Point 0.03790

Table V. Relative error er of w at center point.

Relative error (er%) of w at center point

SS Clamped

Load Mesh w er (%) w er (%)

Distributed

2� 2 0.026150 �2.43 0.0080239 �4.59
4� 4 0.026638 �0.60 0.0082998 �1.31
8� 8 0.026744 �0.21 0.0083747 �0.42
16� 16 0.026770 �0.11 0.0083939 �0.19
32� 32 0.026776 �0.09 0.0083988 �0.13

Point

2� 2 0.076049 �1.62 0.0322470 �14.92
4� 4 0.076392 �1.17 0.0360900 � 4.78
8� 8 0.076767 �0.69 0.0371910 � 1.87
16� 16 0.076966 �0.43 0.0375650 � 0.88
32� 32 0.077097 �0.26 0.0377400 � 0.42
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value into each layer, leading to a discontinuous thickness distribution of �x´ and �y´. A useful
alternative is to compute �x´ and �y´ a posteriori from the in-plane stresses using the equilibrium
equations,

@�x

@x
C
@�xy

@y
C
@�x´

@´
D 0

@�xy

@x
C
@�y

@y
C
@�y´

@´
D 0

(24a)

from which, the transverse shear stresses at a point ‘P’ across the thickness coordinates ´ are
computed by

�x´.´/jP D�

Z ´

�h2

@�x

@x

ˇ̌̌̌
P

d´�

Z ´

�h2

@�xy

@y

ˇ̌̌̌
P

d´

�y´.´/
ˇ̌
P
D�

Z ´

�h2

@�y

@y

ˇ̌̌̌
P

d´�

Z ´

�h2

@�xy

@x

ˇ̌̌̌
P

d´

(25a)

The in-plane stresses at point ‘P’ in the QLRZ element are approximated by the following
approximation

Figure 8. Relative error er of central deflection.

Table VI. Composite material properties.

Properties Layer 1 (top) Layer 2 Layer 3 (bottom)

Composite C1
h Œm� h/3 h/3 h/3

E ŒMPa� 0.219 0.219� 10�1 0.44

 0.25 0.25 0.25

Composite C2
h Œm� h/3 h/3 h/3

E ŒMPa� 0.219 0.219� 10�2 0.219

 0.25 0.25 0.25

Composite C3
h Œm� h/10 h/1.25 h/10

E ŒMPa� 0.219 0.725� 10�3 0.73E� 10�1


 0.25 0.25 0.25
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(a) (b) 

Figure 9. 10 � 10 � 9 HEXA20 meshes employed to compute the reference solution for (a) composite C1
and C2 and (b) composite C3.

Table VII. Clamped square plate (�D 20) under uniformly distributed load. Relative error er (%) for w,
�x , and  x .

Relative error er (%) in clamped plate

w at point C ¢x at point E §x at point E

Mesh C1 C2 C3 C1 C2 C3 C1 C2 C3

2� 2 11.71 50.28 60.99 99.99 100 100 26.13 80.09 86.48
4� 4 4.65 30.16 43.47 20.86 44.14 45.53 -6.28 43.34 54.80
8� 8 1.60 12.32 22.44 2.90 14.35 17.24 -1.47 13.68 18.58
16� 16 0.29 3.67 9.25 -1.21 -0.40 -1.15 -0.30 2.58 2.22
32� 32 -0.14 0.69 2.85 -2.22 -4.70 -4.62 0.00 0.00 0.00

Table VIII. SS square plate (�D 20) under uniformly distributed load. Relative error er (%) for w, �x ,
and  x .

Relative error er (%) in SS plate

w at point C ¢x at point E §x at point E

Mesh C1 C2 C3 C1 C2 C3 C1 C2 C3

2� 2 2.69 19.36 25.83 26.98 32.89 33.24 -9.11 41.06 51.92
4� 4 0.68 6.50 10.14 4.86 7.70 9.05 -3.99 8.95 13.67
8� 8 0.25 1.54 2.22 -0.30 -0.79 0.44 -0.71 -0.40 -1.84
16� 16 0.15 0.38 0.35 -1.55 -3.04 -1.92 0.07 -0.45 -1.44
32� 32 0.12 0.12 -0.02 -1.86 -3.49 -2.07 0.00 0.00 0.00
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Ni jP � �
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whereNi is the shape function (Equation (21)) and i denotes the i th node. The nodal stresses � ix.´/,
� iy.´/ and � ixy.´/ have been obtained by the averaging of Gauss stresses from neighboring elements

(a) (b) (c) 

Figure 10. Clamped square plate (�D 20) under uniformly distributed load. Relative error er (%) for (a) w,
(b) �x , and (c)  x .

(a) (b) (c) 

Figure 11. SS square plate (� D 20) under uniformly distributed load. (a) Relative error er (%) for w,
(b) �x , and (c)  x .

(a) (b) 

Figure 12. (a) Square SS plate and (b) circular SS plate under uniformly distributed load.
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at the i th node. Finally, the transverse shear stresses are obtained by replacing Equation (26a) into
Equation (25a),
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5. VERIFICATION STUDIES

The accuracy of the QLRZ element for isotropic homogeneous material is studied in this section.
The aim is to evaluate the behavior of the QLRZ element when �i .i D x,y/ vanishes, which leads
to  i D 0 and the kinematics of Equation (1a) coincide with that of RMT.

This study consists in analyzing an SS and a clamped square plate of side length L D 2 and
thickness h D 0.05

�
�D L

h
D 40

�
under a uniformly distributed load q D 1 and a point load

P D 4 acting at the center (Figure 6). Isotropic homogeneous material properties are assumed with:
E D 0.219, 
D 0.25, and G DE=2.1C
/.

Assuming symmetry along both axes, we analyze only one quarter of the plate. Five different
meshes of QLRZ elements whose properties are listed in Table III are employed (Figure 7).

The reference solution was obtained by a finite element analysis using a mesh of 32 � 32 four-
noded quadrilateral Reissner–Mindlin (FSDT) element with substitute shear strain fields [20]. A
shear correction factor equal to 5=6 was used.

To assess the element accuracy, we define the following relative error

eri D
wi �wRMT

wRMT
(28)

where wi is the vertical deflection at the center point computed with the i th QLRZ mesh .i D
1, 2, : : : , 5/ andwRMT is the reference solution. ThewRMT values for all cases are show in Table IV.

Table IX. Layer material properties. E and G are given in MPa.

Layer material properties

A B C D

E1 157.9� 102 19.15
0.104� 102 104.1� 102E2 9.58� 102 19.15

E3 9.58� 102 191.5
�12 0.32 6.58� 10�4

0.30 0.31�13 0.32 6.43� 10�8

�23 0.49 6.43� 10�8

G12 5.93� 102 42.3� 10�7
0.04� 102 39.73� 102

G13 5.93� 102 36.51
G23 3.23� 102 124.8

Table X. Layer distribution of composite materials.

Composite laminated materials

Composite Layer distribution hk=h

C4 (A/C/A) (0.1/0.8/0.1)
C5 (A/B) (0.5/0.5)
C6 (A/B/C/D) (0.1/0.3/0.5/0.1)
C7 (A/C/A/C/B/C/A/C/A) (0.1/0.1/0.1/0.1/0.2/0.1/0.1/0.1/0.1)
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The QLRZ solution of the problem and the relative error are presented in Table V. Figure 8 shows
the behavior of the error. Labels SS-P, SS-q, C-P, and C-q in Figure 8 refer to SS point load, SS
distributed load, clamped point load, and clamped distributed load, respectively.

Figure 8 clearly shows the convergence of the QLRZ solution to the Reissner–Mindlin solution
for all cases.

Good accuracy is obtained already for the 4 � 4 mesh (er less than 2.5%) except for the C-p
case (er approximately equal to 5%). Results for the SS case (error < 2.5%) are better than for the
clamped one. The worst result is obtained for the clamped plate under central point load for the 2�2
mesh (er D�14.92%).

(a) (b) 

(c) (d) 

Figure 13. QLRZ meshes. Square plate: (a) 8� 8 and (b) 16� 16 element. Circular plate: (c) 40 and
(d) 168 elements.

Table XI. QLRZ meshes properties.

QLRZ meshes properties

Meshes (Figure 10) N�N Number of elements Nodes DOFs

a 8� 8 64 81 567
b 16� 16 256 289 2023
c — 40 53 371
d — 168 193 1351
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6. CONVERGENCE STUDIES

To study the influence of the heterogeneity of the composite material on the convergence and the
accuracy of the QLRZ element, we analyze an SS and a clamped square plate of length sideLD 2m
and thickness h D 0.1m .� D 20/ under uniformly distributed load q D 1N=m2 (Figures 6a
and 6c). Three different composite laminated materials, whose properties are shown in Table VI, are
considered for each example. The degree of heterogeneity increases from composite C1 to C3.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 14. HEXA20 reference meshes. Square meshes for composites (a) C4, (b) C5, (c) C6, (d) C7, and
circular meshes for composites (e) C6 and (f) C7.
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Table XII. HEXA20 mesh properties.

HEXA20 mesh properties

Mesh (Figure 11) Composite Number of elements Nodes DOFs

a C4 640 3285 9855
b C5 512 2673 8019
c C6 768 3897 11691
d C7 1728 8487 25461
e C6 602 3094 9282
f C7 1161 5824 17472

Taking advantage of symmetry, we analyze only one quarter of plate by using the QLRZ meshes
described in Section 5 (Figure 7). The reference solution was obtained by a 3D finite element anal-
ysis using a mesh of 10�10�9 (3 elements per ply) 20-noded hexahedral elements involving 4499
nodes and 13497 DOFs (Figure 9).

(a) (b) 

(c) (d) 

Figure 15. SS square plate under uniformly distributed load. Composite C4. (a) Vertical deflection along
central line BC. Thickness distribution of: (b) axial displacement u at point B; (c) axial stress �x at the

center point C; and (d) transverse shear stress �x´ at point E.
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Convergence is quantified by the relative error defined as

er D
mi �m3D

m3D
(29)

wheremi andm3D are the magnitudes of interest obtained with the i th QLRZ mesh .i D 1, 2, : : : , 5/
and the 3D reference solution, respectively. The magnitudes studied m are: the middle (zD 0) ver-
tical deflection w at the center point C (Figure 6); the axial stress �x on the top surface of ply 1 at
point E; and  x at point E. Because  x does not appear in 3D finite element analysis, mi and m3D
are the values of this magnitude obtained using the i th QLRZ mesh .i D 1, : : : , 4/ and the finest
mesh (32�32), respectively. The results obtained are shown in Tables VII–VIII, and Figures 10–11.

It is clearly seen that convergence is always slower for the more heterogeneous material and for
the clamped plate.

For the clamped plate and the three materials (Table VII), errors are less than 10% for the 16�16
mesh for all variables. For the SS plate (Table VIII), errors are less than 2.3% for the 8� 8 mesh in
all cases.

(a) (b) 

(c) (d) 

Figure 16. SS square plate under uniformly distributed load. Composite C5. (a) Vertical deflection along
central line BC. Thickness distribution of: (b) axial displacement u at point B; (c) axial stress �x at the

center point C; and (d) transverse shear stress �x´ at point E.
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For composite C1 (the more homogeneous one), errors are less than 2.9% for the 8 � 8 mesh in
all cases and less than 6.3% for the 4� 4 mesh in all cases except for �x in the clamped plate.

For the more heterogeneous material (composite C3), the difference in the results between the SS
and the clamped plate is larger. For the SS plate (Table VIII), errors are less than 2.3% for the 8� 8
mesh in all variables. For the clamped plate (Table VII), errors are less than 23% for the 8� 8 mesh
and less than 10% for the 16� 16 mesh in all cases.

The quality of the results obtained for the composite C2 are between that of composites C1
and C3.

7. COMPARISON STUDIED FOR SS SQUARE AND CIRCULAR COMPOSITE
LAMINATED PLATES

To show the performance of the QLRZ element for highly heterogeneous composite material, we
study a square SS plate of length L D 2m and thickness h D 0.1m, and a circular SS plate of

(a) (b) 

(c) (d) 

Figure 17. SS square plate under uniformly distributed load. Composite C6. (a) Vertical deflection along
central line BC. Thickness distribution of: (b) axial displacement u at point B; (c) axial stress �x at the

center point C; and (d) transverse shear stress �x´ at point E.
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diameter d D 2m and thickness hD 0.1m. The structures are loaded under a uniformly distributed
load, q D 10000 N=m2 (Figure 12).

Each plate is studied for different composite laminated materials with properties shown in
Tables IX and X. The square plate is analyzed for composites C4-7 and the circular plate for
composites C6-7.

Because of symmetry, only one quarter of plate is analyzed using the QLRZ meshes shown in
Figure 13 whose properties are listed in Table XI. The reference solution is the 3D finite element
analysis using HEXA20 elements. The different 3D meshes for each case are shown in Figure 14.
Details of each meshes are given in Table XII.

The RMT results for the square plate of composite C4 are also shown in Figure 15. The RMT
solution was obtained by using a mesh of 16� 16 four-noded QLLL plate element [19, 21].

Figures 15–20 show: (a) the computed vertical deflection w; (b) the thickness distribution of the
axial displacement u; (c) the axial stress �x; and (d) the transverse shear stress �x´ for each plate
under study.

(a) (b) 

(c) (d) 

Figure 18. SS square plate under uniformly distributed load. Composite C7. (a) Vertical deflection along
central line BC. Thickness distribution of: (b) axial displacement u at point B; (c) axial stress �x at the

center point C; and (d) transverse shear stress �x´ at point E.
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The vertical deflection is accurately captured. At the center of plate, the maximum error (14%) is
given by the circular plate of composite C6 using the 40-element mesh (Figure 16a). For the finest
mesh (168 elements), the computed errors are less than 10%.

The thickness distribution of the axial displacement is accurately predicted in all cases. The ability
to capture the complex kinematics of laminated composite materials is a key feature of the QLRZ
plate element. The successful axial displacement prediction leads to accurate axial stress values
as shown in Figures (c). Figures (d) displays the good results for the thickness distribution of the
transverse shear stresses computed a posteriori using Equation (27).

Results demonstrate the good performance of the QLRZ element.
Figure 15 shows the inaccurate results when modeling a composite laminated plate using QLLL

elements based on RMT. The deflection at the plate center is three times stiffer than the refer-
ence solution (Figure 15a). The RMT solution also yields an erroneous linear thickness distribution
of the axial displacement (Figure 15b), which leads to a distorted distribution of the axial stress
(Figure 15c). Finally, the RMT is unable to capture the correct transverse shear stress distribution
(Figure 15d).

(a) (b) 

(c) (d) 

Figure 19. SS circular plate under uniformly distributed load. Composite C6. (a) Vertical deflection along
line BC. Thickness distribution of: (b) axial displacement u at point D; (c) axial stress �x at the center point

C; and (d) transverse shear stress �x´ at point D.
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(a) (b) 

(c) (d) 

Figure 20. SS circular plate under uniformly distributed load. Composite C7. (a) Vertical deflection along
line BC. Thickness distribution of: (b) axial displacement u at point D; (c) axial stress �x at the center point

C; and (d) transverse shear stress �x´ at point D.

8. CONCLUSIONS

A simple, robust, shear locking free and accurate four-noded plate element (called QLRZ) based on
the refined ZZ theory has been presented. The shear locking defect was overcome by introducing an
assumed linear shear strain field. The element has only seven unknowns per node, which are inter-
polated by standard C0 linear shape functions. The thickness distribution of the transverse shear
stresses is accurately reproduced by a posteriori computational process. The verification analysis
has shown that the element is able to accurately model plates of homogeneous material for different
loads and boundary conditions. The influence of the heterogeneity of composite laminated material
on the convergence and the accuracy of QLRZ solution has been studied. An important feature of the
QLRZ element is its ability to capture the ZZ distribution of axial displacement and the subsequent
complex strain and stress distribution across the thickness with the simple approximation chosen.

APPENDIX A

A.1. Computation of substitutive shear strain generalized matrix NBs

The natural transverse shear strain field is given by [19, 21]
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The transverse shear strains O"s in the cartesian coordinate system are expressed as

O"s D

�
�x´
�y´

�
D J�1 � O"0s (A.2a)

where J is the 2D Jacobian matrix
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The coefficients ˛i are obtained by sampling the natural shear strains (Equation (A.1)) at the four
points shown in Figure A.1, with

� N�i
D .˛1C ˛2	/ � cos ıi C .˛3C ˛4�/ � sin ıi I i D 1, 4 (A.3)

where ıi is the angle between N�i direction and the natural � axis. Combining Equations (A.1) and
(A.3) gives

� N� D
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where the strains � N�i are related to ��i and ��i by

� N� D
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37777777775
D T � O� 0 (A.5)

Combining Eqsuations (A.1), (A.4), and (A.5) gives

O"0s D A � P�1 � T � O� 0 (A.6)

Figure A.1. QLRZ plate element.
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The cartesian transverse shear strains O� at the sampling points are related to the natural transverse
shear strains O� 0 by

O� 0 D

2664
J1 0 0 0

0 J2 0 0

0 0 J3 0

0 0 0 J4

3775 �
264
O�1
O�2
O�3
O�4

375D C � O� I O�i D

�
�x´
�y´

�
i

(A.7)

The relationship between the cartesian shear strains O� at the four sampling points (Figure A.1)
and the nodal displacements a.e/ is

O� D Bs � a
.e/ (A.7b)

with

Bs D
�
Bs1 Bs2 Bs3 Bs4

�T
(A.7c)

where Bsi .i D 1, 2, 3, 4/ is the original transverse generalized strain matrix (Equation (16c)) at the
i th sampling point.

Combining Equations (A.2a), (A.6), (A.7), and (A.7b) gives

O"s D J�1 �A � P�1 � T �C �Bs � aD NBs � a (A.8)

where NBs is the sought substitute transverse shear strain matrix given by

NBs D J�1 �A � P�1 � T �C �Bs (A.9)
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A method based on the Refined Zigzag Theory (RZT) to model delamination in composite laminated beam
structures is presented. The novelty of this method is the use of one-dimensional finite elements to dis-
cretize the geometry of the beam. The key property of this beam element, named LRZ [1], is the possibility
to capture the relative displacement between consecutive layers which occurs during delamination. The
fracture mode that the LRZ element is capable to predict is mode II. In order to capture the relative dis-
placement using the LRZ element it is necessary to adapt the RZT theory as presented in this paper. The
mechanical properties of the layers are modeled using a continuum isotropic damage model [2]. The
modified Newton–Raphson method is used for solving the non-linear problem.

The RZT theory, the LRZ finite element and the isotropic damage model are described in the paper. Also,
the implicit integrations algorithm is presented. The performance of the LRZ element is analyzed by
studying the delamination in a beam for two different laminates, using the plane stress solution as a
reference.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Delamination, i.e. interlaminar cracks, is a common and danger-
ous source of damage in laminated composite materials [3] charac-
terized by the loss of adherence between the different plies of the
laminate. This phenomenon can occur during the fabrication stage
or during the transportation, storage and service phases. Imperfec-
tion of various natures and thermal and chemical shrinkage of
components may produce delamination during the manufacturing
process. Many causes such as local forces, thermal actions and low
energy impacts may serve as sources of delamination during the
transportation, storage or service period. Geometry discontinuities
such as access holes, notches, free edges or bonded and bolted
joints can also produce delamination due to high stress gradients.
Once delamination occurs, the structural member considerably re-
duces its original stiffness, which leads to its failure in conjunction
with other mechanic phenomena, e.g. buckling, excessive vibration
or loss of fatigue life.

Within the framework of numerical simulation, delamination is
usually modeled using fracture or damage mechanics procedures.
In fracture mechanics, the virtual crack closure technique (VCCT)
[4,5] is the most widely used approach, which is based on the
assumption that the energy necessary to open the crack is the same
to close it. Damage mechanics is based on the concept of a cohesive
damage zone developed near the crack front, where the stresses are
limited by the yield stress and a thin plastic zone is generated in
front of the crack. This technique can easily be implemented in the
finite element method leading to cohesive finite elements [6–10].

Each of these techniques has their own drawbacks. One of the
most significant is that it is necessary to place interface cohesive
or fracture finite elements between the plies where delamination
is expected to occur. If the delamination path is unknown, interface
finite elements must be placed between all plies. This typically
leads to an unbearable computational cost depending on the num-
ber of physical composite layers and on the structure size. In order
to overcome this problem, Martinez et al. [11] proposed to study
delamination under the continuum mechanics setting using a 3D
finite element method and an isotropic damage model which man-
ages material degradation.

The efficacy of all above mentioned techniques is undisputed.
However, the use of 3D finite elements for discretizing the geome-
try considerably increases the computational costs and storage,
specially for non-linear problems. Surely, there are several cases,
for instance: delamination in bonded joints, where 3D finite ele-
ment analysis is indispensable. However, it is practically impossi-
ble to use these methods in large laminated composite structures
with tens of layers, e.g. wind turbine blades or aircraft fuselage
in composite materials, where simpler models should be used.

Classical thin beam/plate theory [12,13] and the more advanced
First Order Shear Deformation Theory (FSDT) [14–16] were the first
simplified theories capable to precisely model a plate structure of

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compstruct.2013.04.035&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2013.04.035
mailto:aeijo@cimne.upc.edu
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homogeneous material. However, when applied to highly hetero-
geneous laminated composite materials it is known that both the-
ories give poor predictions. The cause of this drawback is that these
theories propose a linear thickness distribution of the axial dis-
placement, which is unable to represent the complex real kinemat-
ics of a laminated composite. Because of the same reason, both
theories are unable to predict delamination, as they cannot capture
the relative displacement between two consecutive layers.

More accurate models are based on Layer–Wise theories (LWTs)
[17–19] in which the thickness coordinate is divided into a number
of analysis sublayers (that may be not coincident with the number
of physical layers), assuming a separate displacement field within
each ply and forcing displacement constraints and stress contact
conditions at the interfaces. LWT are able to capture accurately
interlaminar stresses directly from the constitutive equations. Also,
these theories are capable to simulate the delamination phenome-
non [20–24] due to the high level of refinement of the displace-
ment field. However, since the number of unknowns is
proportional to the number of analysis sublayers, the computa-
tional cost increases with the number of subdivisions.

ZigZag (ZZ) theories are an attractive compromise between the
high accuracy of LWT and the computational efficiency of FSDT
[19,25,26]. In ZZ theories the in-plane displacement is modeled
by a superposition of a piecewise linear displacement functions
(the zigzag function) over a linear, quadratic or cubic displacement
field along the thickness direction. An important property of ZZ
theories is that the number of kinematics variables is independent
of the number of layers. Although many ZZ theories require C1 con-
tinuity for the deflection field, which is a disadvantage versus sim-
pler C0 continuity plate theories, some evolved ZZ techniques
[27,28] have been developed to overcome this shortcoming. How-
ever, several C0 continuous ZZ formulations for beams suffer from
their inability to model correctly a clamped boundary condition,
which makes it difficult to satisfy equilibrium of forces at a sup-
port. So far, the use of the ZZ theories to model delamination in
beams and plates has been quite limited. A C0 plate element for
delamination analysis based on a ZZ model has been developed
by Icardi and Zardo [29].

Tessler et al. [30–32] have developed an improved ZZ model for
beams and plates, called Refined ZigZag Theory (RZT), that adopt
FSDT displacement fields as the baselines. The key attributes of
the RZT are, first, the proposed linear piecewise zigzag function
vanishes at top and bottom surfaces of the structural section. Sec-
ond, it does not require full transverse shear stress continuity
across the laminated. Third, C0 continuity is only required for the
finite element method (FEM) approximation of the kinematic vari-
ables and finally, all boundary conditions, including the fully
clamped condition, can be simulated effectively. Oñate et al. [1]
have taken the RZT as the basis for developing a simple two-noded
linear C0 beam element named LRZ. The accuracy of the LRZ beam
element for analyzing composite laminated beams has been dem-
onstrated for simple support and clamped boundary conditions un-
der different loads. Oñate et al. [1] have also shown that the LRZ
element is capable to capture the relative displacement between
layers, typical of a delamination process. It is necessary to mention
however that this element can only model the fracture mode II.

In this paper we exploit the capabilities of the RZT element to
model delamination (mode II) in laminated beams using an isotro-
pic damage model [2,33] for modeling the nonlinear material
behavior. The paper layout is the following. A brief description of
the RZT theory, the LRZ finite elements and the isotropic damage
model are presented first. Then, the implicit integration algorithm
is shown. The non-linear problem is solved by the modified New-
ton–Raphson method. Finally, the performance of the LRZ element
is shown by modeling delamination in a beam for two different
laminates, where the reference solution is a plane stress analysis.
2. Refined Zigzag Theory (RZT) for beams and LRZ beam element

2.1. RZT kinematics

Consider a composite laminated beam of depth b, thickness h,
and length L, formed by N layer of thickness hk. The reference coor-
dinate system is the 2D Cartesian system (x,z), where x is set as the
in-plane coordinate and z is the thickness coordinate.

The displacement field assumed in the linear piecewise zigzag
RZT is written as

ukðx; zÞ ¼ u0ðxÞ � z � hðxÞ þ �ukðx; zÞ
wðxÞ ¼ w0ðxÞ

ð1aÞ

In Eq. (1a) the zigzag displacement function �uk is expressed as

�uk ¼ /kðzÞ � wðxÞ; k ¼ 1;N ð1bÞ

where superscript k indicates quantities within the kth layer with
zk 6 z 6 zkþ1, and zk is the vertical coordinate of the kth interface;
w is a primary kinematic variable defining the amplitude of the zig-
zag function on the beam and /k is a known piecewise linear zigzag
function. u0 is the uniform axial displacement along the beam axis
direction x; h represents the anticlockwise rotation of the normal
and w0 is the deflection.

The kinematics variables are

a ¼ ½ u0 w0 h w �T ð2Þ

The in-plane ek and the transverse shear ck strains are defined as

ek ¼ @uk

@x
¼ @u0

@x
� z � @h

@x
þ /kðzÞ � @w

@x

ck ¼ @uk

@z
þ @w
@x
¼ cðxÞ þ bk � wðxÞ

ð3Þ

which can be written in matrix form as

ek ¼ ek

ck

" #
¼ 1 �z /k 0 0

0 0 0 1 bk

" #
�

@u0
@x
@h
@x
@w
@x

c
w

26666664

37777775 ¼ Skê ð4Þ

where ê is the generalized stain vector. This vector contains the ax-
ial elongation @u0

@x , the pseudo-curvature @h
@x, the derivative of the

amplitude of the zigzag function @w
@x, the average transverse shear

strain c @w0
@x � h
� �

and the variable w.
2.2. Derivation of the zigzag function /k

The zigzag function is defined within each layer as

/k ¼ �/k�1 þ hkbk

2
ðfk þ 1Þ ð5Þ

where �/k�1 is the zigzag function value at the k � 1 interface, with
�/0 ¼ �/N ¼ 0 and nk ¼ 2 ðz�zk�1Þ

hk � 1. The slope bk ¼ @/k

@z of the zigzag

function within each layer is expressed as

bk ¼ G

Gk
� 1 ð6Þ

where G is an average shear modulus that can be expressed in terms
of the shear modulus (Gk) and the thickness (hk) of each layer as

G ¼ h
XN

k¼1

hk

Gk

" #�1

ð7Þ
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For a more detailed description of the RZT for beams, the read-
ers are referred to Tessler et al. [30].

2.3. Stresses and resultant stresses

The relation between the stresses and the strains for the kth
layer is expressed in matrix form as

rk ¼ rk

sk

" #
¼ Ek 0

0 Gk

" #
� ek

ck

" #
¼ Dk � ek ð8Þ

where Ek, Gk and Dk are the Young modulus, the shear modulus and
the constitutive matrix for the kth layer, respectively.The resultant
stresses are computed by integrating the stresses over the beam
section with area A as

r̂ ¼
Z

A
SkrkdA ð9Þ
2.4. LRZ beam element

The kinematics variables of Eq. (2) are discretized using
2-noded C0 beam elements of length le as

a ¼

u0

w0

h

w

26664
37775 ¼X2

i¼1

Ni � aðeÞi ¼ N � aðeÞ ð10Þ

with

Ni ¼ NiI4 and aðeÞi ¼ ½ u0i w0i hi wi �
T

being Ni the linear C0 continuous shape function of node ith.
The generalized strains ê of Eq. (4) are expressed in term of the

nodal degrees of freedom (DOF) using Eq. (10) as

ê ¼

@u0
@x
@h
@x
@w
@x

c
w

26666664

37777775 ¼
X2

i¼1

@Ni
@x u0i

@Ni
@x hi

@Ni
@x wi

Nici

Niwi

266666664

377777775 ¼
X2

i¼1

Bi � aðeÞi ¼ B � aðeÞ ð11Þ

being Bi the generalized strain matrix defined as

Bi ¼

@Ni
@x 0 0 0

0 0 @Ni
@x 0

0 0 0 @Ni
@x

0 @Ni
@x �Ni 0

0 0 0 Ni

266666664

377777775 ð12Þ
Fig. 1. The delaminated displacement field is achieved by
Using the virtual work principle and Eqs. (8), (9), and (11), we
can obtain the element stiffness matrix Ke and the equivalent nodal
forces Fe for the LRZ linear beam elements as

Ke ¼
Z

l
BT bDBdl; Fe ¼

Z
l

Niq½1; 0;0; 0�T dl ð13Þ

where l is the element length, q is the distributive load and bD is the
constitutive generalized matrix defined as

bD ¼ Z
A
½Sk�T DkSkdA ð14Þ

Full integration of matrix Ke requires a two-point Gauss quadra-
ture. This however leads to shear locking for slender beams. This
problem is eliminated by using reduced integration (one-point
Gauss quadrature) for all term of Ke [1].

Details of the formulation of the 2-noded LRZ beam element can
be found in [1].

3. Isotropic damage model

The non-linear behavior of material is modeled with an isotro-
pic damage model [2] in which the level of damage or degradation
is monitored through a single internal scalar variable d. This
variable takes values ranged between 0 (no damage) and 1 (full
damage). The constitutive equation for this model is defined as

r ¼ ð1� dÞr0 ¼ ð1� dÞD0 � e ð14Þ

where r and e are the stress and strain tensors, respectively, and D0

is the undamaged constitutive tensor.In order to distinguish be-
tween a damage state and an undamaged one, it is necessary to de-
fine a damage criterion which is formulated here in the undamaged
stress space as

Fðr0; dÞ ¼ f ðr0Þ � cðdÞ 6 0 ð15Þ

where f(r0) is a norm used to compare different states of deforma-
tion and c(d) is the damage threshold. Damage occurs when the va-
lue of f(r0) is larger than c(d). Damage starts for f(r0) > c0, being c0

the initial damage threshold value which depends on the material
properties. In our work we have defined c0 as

c0 ¼
ftffiffiffiffiffi
E0
p ð16Þ

where ft is the tensile strength and E0 the Young modulus of the
undamaged material.

The norm chosen in this work is defined as

f ðr0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e : r0
p

ð17Þ

The evolution law for the damage threshold and the damage
variable d is obtained using the damage consistency parameter
according to the Kuhn–Tucker conditions. The evolution of these
variables can be explicitly integrated [34] to obtain
the residual forces (R) in a plane stress analysis (PS).



Fig. 2. The residual forces are not capable to induce delamination when the zigzag function /k is not updated.
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d ¼ Gðf ðr0ÞÞ
cðdÞ ¼maxfc0; maxff ðr0Þgg

ð18Þ

where G(�) is a monotonic scalar function ranging between 0 and 1
which defines the evolution of the damage variable. In this work an
exponential evolution law is adopted for G as

Gðf ðr0ÞÞ ¼ 1� f 0ðr0Þ
f ðr0Þ

e
B 1� f ðr0 Þ

f 0 ðr0 Þ

� �
with f 0ðr0Þ ¼ c0 ð19Þ

Considering the norm of Eq. (17), the exponential softening of
Eq. (19), and the initial damage threshold value c0 (Eq. (16)), the
parameter B is computed as

B ¼ Gf � E0

l� � ðftÞ2
� 1

2

 !�1

P 0 ð20Þ

being Gf the fracture energy per unit area and l� a characteristic
length. In this paper, l� is equal to the influence of each Gauss point.

4. Algorithm for the non-linear solution

When a degradation process is considered in the constitutive
material model it is necessary to solve a non-linear system of alge-
braic equations of the form

Fext � FintðqÞ ¼ RðqÞ ð21Þ
Fig. 3. Delamination can be captured with the LRZ finite element when the zigzag
being q the discretization parameters, Fext and Fint(q) the external
and internal forces, respectively, and R(q) the residual vector. Note,
that the dynamic forces are not considered in this work.In this
work, the modified Newton–Raphson method is adopted to solve
the nonlinear equation system of Eq. (21). Hence, the following lin-
ear problem is solved for each iteration

dq ¼ ði�1KSÞ�1 i�1R ð22Þ

where dq is the increment of the nodal DOFs at ith iteration. Note
that both the damaged stiffness matrix KS and the residual vector
R were computed at the previous i � 1th iteration. For the LRZ ele-
ment the matrix KS is defined as

i�1KS ¼
Z

l
BT i�1 bDSBdl ð23Þ

with

i�1 bDS ¼
Z

A

i�1Sk
h iT

i�1Dk
S

i�1SkdA and i�1Dk
S ¼ 1� i�1dk

� �
Dk

0 ð24Þ

The updated DOFs are obtained as

iq ¼ i�1qþ dq ð25Þ

This process is repeated until the convergence criterion
kRk 6 1kFk is satisfied [35] where 1 is a predefined error tolerance.

In 2D finite element analysis, the nodal DOFs q are the Cartesian
displacements a ¼ ½ux uy uz �. According to these variables, the
function /k is updated by reducing the shear modulus of the damaged layer.



Fig. 4. Algorithm for solving the non-linear problem using the modified Newton–Raphson method. Note that the zigzag function is updated at each iteration.
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stress resultants obtained by integrating the stresses on the finite
element volume are three forces that induce the movement of
the node. So, when a finite element starts to suffer softening
Fig. 5. Boundary conditions of the analyzed beam.
(d > 0) and its stresses are reduced by Eq. (14), a lack of equilibrium
between the external and the internal forces appears which in-
duces residual forces via Eq. (21). These residual forces applied at
the nodes of a damaged 2D element generate the relative displace-
ment between layers that occurs during a delamination process.
The equilibrium displacement field is achieved using an iterative
process such as that of Eqs. (22) and (25). This process is schema-
tized in Fig. 1.

While in 3D finite element analysis, it is possible to generate the
relative displacement simply using the residual forces, in the LRZ
finite element it is not.

In the LRZ element, the reference surface where the kinematics
variables (Eq. (2)) are computed is the middle surface (z = 0) of the
laminate. The stress resultants computed by integrating the stres-
ses across the beam thickness (Eq. (9)) lead to forces and moments



Table 1
Mechanical properties of linear-elastic layers.

Materials Young’s modulus (E0) Shear modulus (G0)

Mechanical properties of linear-elastic plies (MPa)
A 157.9 � 104 5.93 � 104

B 104.0 � 101 4.00 � 102

C 5.3 � 101 2.12 � 101

D 2.19 � 101 0.876 � 101

E 0.82 � 101 0.328 � 101

F 0.73 � 10�1 0.29 � 10�1

G 7.3 � 101 2.92 � 101

Table 2
Mechanical properties of cohesive layers (cl).

Materials Young’s
modulus
(E0) (MPa)

Shear
modulus
(G0) (MPa)

Tensile
strength
(ft) (MPa)

Fracture energy (Gf)
(kN/m)

Ductile

ðGD
f Þ

Fragile

ðGF
f Þ

Mechanical properties of cohesive plies (cl)
Hcl 104.0 � 101 4.0 � 102 6.5 5.0 � 104 1.0 � 10�2

Icl 0.73 � 10�1 0.29 � 10�1 0.02 5.0 � 104 1.0 � 10�3

Table 3
Layer distribution of laminated materials.

Laminate Layer distribution hk/h h
(mm)

Laminated materials
L1 (A/B/A/Hcl/A/B/A/

B/A)
(0.11/0.11/0.11/0.01/0.22/0.11/
0.11/0.11/0.11)

9.1

L2 (C/D/E/F/C/Icl/G/E/
D/G)

(1.0/0.12/0.1/0.08/0.14/0.02/0.08/
0.1/0.06/0.2)

25.0
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applied at the beam element nodes on the reference surface. Con-
sequently, there are no forces within the laminate capable of pro-
ducing the relative displacement between plies. For this reason, in
the RZT theory, the reduced value of stresses by Eq. (14) in an iter-
ative process gives as result an amplification of the initial kinemat-
ics of the laminate, instead of an update of the delamination
kinematics. That is so, because the variables of Eq. (2) are not capa-
ble to modify by themselves the zigzag form of the axial displace-
ment, but they can only vary the scale of the original zigzag
distribution. Fig. 2 outlines the above-mentioned problem.

In summary, the form of the zigzag axial displacement is gov-
erned by the zigzag function /k (Eq. (5)). Therefore, in order to
modify the zigzag form of the laminated kinematics (Eq. (1a)) dur-
ing a delamination process, it is essential to update function /k

depending on the value of damage variable d. Since /k depends
on the shear modulus, the update of /k is obtained by reducing
the initial elastic shear modulus Gk

0 at the damaged layer k byeGk ¼ ð1� dkÞGk
0 ð26Þ
Fig. 6. Four-noded quadrilateral finite element me
Thus, function /k is expressed in term of the damaged shear
modulus as

/k ¼ �/k�1 þ hk~bk

2
ðfk þ 1Þ ð27Þ

with

~bk ¼
eGeGk
� 1 and eG ¼ h

XN

k¼1

hkeGk

" #�1

ð28Þ

This simple but effective update of the zigzag function /k allows
us to capture the relative displacement between two layers in a
delamination process. A scheme of this process is shown in Fig. 3.

Fig. 4 shows the integration algorithm for solving Eq. (21) using
the modified Newton–Raphson iterative scheme (Eqs. (22)–(25)),
the isotropic damage model and the adapted zigzag function com-
puted by Eq. (27).
5. Numerical simulations

The validity of the algorithm for capturing the relative in-plane
displacement (Mode II) between layers is studied by modeling a
beam of length L = 0.5 m supported as shown in Fig. 5. A vertical
displacement Dw at the clamped support is imposed. The beam
is analyzed for two laminates (L1 and L2) with properties shown
in Tables 1–3.

The proposed method allows damage to occur at any layer of
the laminate, so is not necessary to predefine the path of the crack.
However since the objective of this work is to demonstrate the
capability of the LRZ element for predicting relative displacement
between layers, the interface where delamination will take place
is defined at the onset of the analysis. Therefore, there is only
one layer for each laminate, called ‘‘cohesive layer’’ (cl) henceforth
(Fig. 7), whose mechanical behavior is modeled by the isotropic
damage model, while the other plies are treated as linear-elastic.
Consequently, delamination occurs when damage starts at the
cohesive layer, which leads to a loss of its previous stiffness and in-
duces the relative displacement between the adjacent layers to it.

In order to show the influence of the fracture energy Gcl
f in the

delamination process, two values of this parameter (a larger one
and a smaller one) are adopted for the cohesive layer in each lam-
inate. For clarity, in the followings the largest value ðGD

f Þ is associ-
ated to a ‘‘ductile’’ material while the smallest ðGF

f Þ to a ‘‘fragile’’
material.

LRZ meshes of 2, 16, 128 finite elements are used in the
analysis.

The reference solution is obtained by the plane stress analysis
(PS) using 4-noded quadrilateral finite elements and the isotropic
damage model presented in Section 4. The iterative process uses
the modified Newton–Rhapson method explained in Section 5.
The beam length, the thickness of the elastic layers and the thick-
ness of the cohesive ply are discretized using 100, 2 and 1 finite
elements, respectively. The discretization chosen leads to meshes
of 1700 and 1900 4-noded quadrilateral PS elements for the lami-
shes for laminate L1 (a), and laminate L2 (b).



Fig. 7. Cohesive layer in laminate L1 (a), and laminate L2 (b).
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Fig. 8. Load versus displacement curves for laminate L1 with ductile (a) and fragile (b) fracture energy.
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nates L1 and L2, respectively. The 2D meshes for each laminate are
shown in Figs. 6 and 7.

The simulation is made under the following considerations:
quasi-static application of vertical displacement at the clamped
support, geometrically linear problem and small deformation.

Figs. 8 and 9 show the load–displacement graph for the lami-
nates L1 and L2, respectively, where the curves are obtained by
the PS analysis and the LRZ beam element. The load corresponds
to the vertical reaction at the clamped support. The displacement
corresponds to the incremental displacement Dw applied to the
clamped support (Fig. 5). The curves shown in Figures a are obtained
when the ‘‘ductile’’ ðGD

f Þ fracture energy is considered. The response
of the beam when the ‘‘fragile’’ ðGF

f Þ fracture energy is used is shown
in Figures b. The fracture energy values are noted in Table 2.

The results reveal an admissible agreement between the results
obtained using PS analysis and LRZ beam elements. The errors for
the finest LRZ meshes, at the end of simulation, for the cases L1-GD

f

(Fig. 8a), L1-GF
f (Fig. 8b), L2� GD

f (Fig. 9a) and L2� GF
f (Fig. 9b) are
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Fig. 10. Thickness distribution of the axial displacement u at the simply supported end
kinematics when the ‘‘ductile’’ (b) and the ‘‘fragile’’ (c) fracture energy is used.
less than 11.0%, 2.5%, 7.5% and 2.9%, respectively. The LRZ solution
exhibits small drops of load for the case L1� GD

f (Fig. 8a), which are
not present in the PS solution. The cause of each drop is that the
cohesive layer of some finite elements is totally damage at the
same increment, which produces a discontinuous loss of stiffness
during the simulation. The number of simultaneously delaminated
elements, involved on each drop, depends on the longitudinal dis-
tribution of the transverse shear stress of the cohesive layer.

When the ‘‘fragile’’ value of the fracture energy ðGF
f Þ is used, the

cohesive layer completely loses its energy at the delamination on-
set, which provokes the sharp drop in the sample resistance, as
shown in Figures b. The loss of resistance computed by the PS solu-
tion is around 56% for both laminates, while the LRZ solution gives
60% and 70% for L1 and L2, respectively.

In all cases, both the initial stiffness and the stiffness once
delamination process has started are very close to the stiffness ob-
tained by 2D analysis. Also, is shown that delamination starts for
the same values of displacement and load.
(b) Ductile material
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for laminate L1. This Fig. shows the undamaged kinematics (a) and the damaged
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The thickness distribution of the axial displacement u at the
simply supported end, before and after delamination onset, is
shown in Figs. 10 and 11 for laminates L1 and L2, respectively.

The undamaged kinematics is shown in Figures a, in which the
very good match between PS and LRZ kinematics is evident.

Figs. 10 and 11b and c show the delaminated kinematics at the
end of simulation when the ‘‘ductile’’ and the ‘‘fragile’’ fracture en-
ergy values are used, respectively. In the ‘‘ductile’’ case (Figures b),
the LRZ elements are capable to capture the relative displacement
with errors around 11% and 16% for laminates L1 and L2, respec-
tively. In the ‘‘fragile’’ case (Figures c), the errors are less than
3.3% for both laminates.

Almost identical results are obtained with the quadratic LRZ
beam element.

Fig. 12 shows the thickness distribution of the zigzag function /
for laminate L1 (Fig. 12a) and laminate L2 (Fig. 12b). The solid line
represents the initial zigzag function (undamaged), whereas that
the dashed line and the dash-dot line correspond to the damaged
(a) Undamaged
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Fig. 11. Thickness distribution of the axial displacement u at the simply supported end
kinematics when the ‘‘ductile’’ (b) and the ‘‘fragile’’ (c) fracture energy is used.
zigzag function when the damage variable of cohesive layer is
equal to 0.9 and 1, respectively. As is mentioned in Section 5, the
ability of the LRZ element to capture the relative displacement be-
tween plies during a delamination process lies in updating the zig-
zag function as the layers are damaged.

In order to compare the performance of the PS and the LRZ anal-
yses, both the total increment numbers and incremental displace-
ment values as well as the tolerance value ð1 ¼ 1� 10�4Þ are the
same for both methods. The total increment numbers are equal
to 1000 and 7000 for laminates L1 and L2, respectively. The
incremental displacement value applied in each increment is
1 � 10�3 mm and 4 � 10�3 mm for L1 and L2, respectively. Tables
4 and 5 show the total number of iterations, the maximum number
of iteration needed for achieving convergence in any increment
and the total CPU time used in the simulation for L1 and L2,
respectively.

As expected, the computation time needed for the PS analysis is
several times greater than that required for the LRZ solutions.
(b) Ductile material
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Table 4
Computational cost of the iterative process for laminate L1.

Finite
elements

GD
f ¼ 5:0� 104 (Ductile) GF

f ¼ 1:0� 10�2 (Fragile)

Total
iter.

Max.
iter.

Time
(seg)

Total
iter.

Max.
iter.

Time
(seg)

Computational cost of the iterative process for laminate L1
2D 1700 9308 485 3069.0 3465 254 1127.0

LRZ 2 1543 166 1.52 – – –
16 1286 81 1.57 1009 9 1.27

128 2291 225 19.61 1036 23 9.45

Table 5
Computational cost of the iterative process for laminate L2.

Finite
elements

GD
f ¼ 5:0� 104 (Ductile) GF

f ¼ 1:0� 10�3 (Fragile)

Total
iter.

Max.
iter.

Time
(seg)

Total
iter.

Max.
iter.

Time
(seg)

Computational cost of the iterative process for laminate L2
2D 1900 18,374 88 6967.0 10,141 144 4223.0

LRZ 2 7298 76 8.10 – – –
16 7131 53 8.11 7016 11 7.96

128 7072 71 64.51 7372 101 65.46
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Comparing with the finest 128-LRZ mesh, PS uses at best around 67
times the time used by LRZ solution for laminate L2 and
GF

f ¼ 1:0� 10�3 (Table 5). At worst, the time used by PS is 156
times greater than that required by the LRZ solution for laminate
L1 and GD

f ¼ 5:0� 104 (Table 4). If the comparison is made versus
the 16-LRZ mesh, the time used by the PS solution is 530 and
1954 times of that needed by the LRZ solution at best and at worst
scenarios, respectively.

6. Conclusions

We have presented a promising numerical method based on the
RZT for simulating the delamination process (mode II) in laminated
beams. This method uses LRZ beam elements for modeling the
beam kinematic and an isotropic damage model for modeling the
material behavior.
Results show that in order to capture the relative displacement
between layers during delamination, the zigzag function has to be
updated according as the layers are damaged. Therefore, both the
stresses and the zigzag function are degraded by the damage var-
iable during the iterative process.

The ability of this formulation to capture the relative displace-
ment has been proved by the study of delamination in a beam
for two different laminates. The comparison of the LRZ solution
with the plane stress plate elements analysis revels that the tech-
nique presented is capable to predict both the onset and the prop-
agation of delamination. Also, the updating of zigzag function has
proven to be essential for reproducing the delaminated kinematics.

A comparison of the computational time between both adopted
techniques has shown that, as expected, the computation time and
the memory space needed by the LRZ beam element is several
times less than that required by a 2D PS analysis.

The extension of the proposed formulation to plate and shells is
possible since the RZT plate theory has the same basic features as
the RZT beam theory. Because of the kinematics of the RZT plate
theory, the extended formulation is able to model not only the
fracture mode II but also the mode III. However, this methodology
is unable to simulate the fracture mode I since the vertical dis-
placement is defined constant through the thickness of the
laminate.
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A numerical method based on the Refined Zigzag Theory (RZT) to model delamination in composite lam-
inated plate/shell structures is presented. The originality of this method is the use of 4-noded quadrilat-
eral plate finite elements whit only seven variables per node to discretize the plate/shell geometry. The
ability to capture the relative displacement between consecutive layers in fracture mode II and III is the
more important advantage of this element, denoted QLRZ [1].

A continuum isotropic damage model [2] is used to model the mechanical behavior of the plies. The
material non-lineal problem is solved with the modified Newton–Raphson method.

The RZT plate theory, the QLRZ finite element and the isotropic damage model are described in this
work. Also, the implicit integration algorithm is presented. The performance of the numerical model is
analyzed by studying the delamination in a rectangular plate for two different laminates, using the 3D
analysis as the reference solution.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Delamination [3] is a dangerous failure mode in laminated com-
posite materials and is normally characterized by a relative dis-
placement between layers due to a loss of adherence. Local
forces, thermal actions and low energy impacts may serve as
sources of delamination during the transportation, storage or ser-
vice life of the structural member. In addition, geometry disconti-
nuities such as access holes, notches, free edges or bonded and
bolted joints can also induce delamination due to high stress gra-
dients. Once delamination has occurred, the initial stiffness of the
structure could be considerably reduced which can induce the
structural failure by other phenomena as buckling, excessive vibra-
tion or fatigue.

During the design phases of laminated structures, it is impor-
tant to know how the global response of the structure will be af-
fected by delamination. Thus, much effort and time is been
invested to develop numerical tools that can predict delamination
in an effective and efficient manner.

The more common procedures to model delamination are based
on the fracture mechanics or the damage mechanics. The virtual
crack closure technique (VCCT) [4–6] and the cohesive finite ele-
ments [7–11] are some typical examples. Each of these techniques
has their own drawbacks, but they share one of the most inefficient
features: the need to place interface fracture or cohesive finite ele-
ments between the plies where delamination is expected to occur.
Because of the delamination path is normally unknown, it is neces-
sary to place interface elements between all layers, which leads to
an increase of computational resources needed to carry out the
simulation, specially in laminates with many plies. In order to
avoid the above-mentioned disadvantage, Martinez et al. [12] have
studied delamination under the continuum mechanics using a 3D
finite element method and an isotropic damage model to manage
material degradation.

The capabilities of 3D models are well known. However, the
computational resources needed for modeling non-linear problems
grow significantly when 3D finite elements are used to discretize
the structure. Although there are several cases where a 3D analysis
is indispensable, for instance for studying the delamination in
bonded joints, it is almost computationally impossible to use them
for large laminated composite structures with tens of layers such
as wind turbine blades or aircraft fuselage. For these kinds of struc-
tures, more simplified models should be used.

Some examples of simple models used to simulate laminated
composite plate/shell structures are the First Order Shear Deforma-
tion Theory (FSDT) [13,14], the Layer-Wise theories (LWT) [15–18],
the ZigZag (ZZ) theories [17,19–21] and the Refined ZigZag Theory
(RZT) [22–26].

Despite the simplicity of the FSDT theory, it is well documented
[1,27] that this model gives wrong predictions for highly
heterogeneous laminates. In addition, the FSDT is unable to capture
delamination because of its linear kinematics assumptions.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2013.09.052&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2013.09.052
mailto:aeijo@cimne.upc.edu
http://dx.doi.org/10.1016/j.compstruct.2013.09.052
http://www.sciencedirect.com/science/journal/02638223
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LWT models describe separately the displacement field within
each ply, which leads to a high level of refinement of the kinemat-
ics. Because of that, they can reproduce with high precision the
complex kinematics of highly heterogeneous laminates, and also
simulate the delamination phenomenon [28,29]. However, since
the number of unknowns is proportional to the number of analysis
sublayers (that may be not coincident with the number of physical
layers), the computational cost increases with the number of
subdivisions.

ZZ theories are an attractive compromise between the high
accuracy of LWT and the computational efficiency of FSDT. The
kinematics is defined as a superposition of a piecewise linear dis-
placement functions over a linear, quadratic or cubic displacement
field along the thickness direction. The number of kinematics
variables is independent of the number of layers, which favors
the efficiency. Despite its good performance, they present some
difficulties to model correctly some boundary condition. So far,
the use of the ZZ theories to model delamination in beams and
plates has been quite limited. A ZZ model to simulate delamination
has been developed by Icardi and Zardo [30].

The kinematics proposed by the RZT theory is defined by a
superposition of a linear piecewise zigzag function over the FSDT
displacement fields. Since RZT is an improvement of the ZZ theories,
the number of variables is also independent of the number of plies.
However, unlike the ZZ, all boundary conditions, including the fully
clamped condition, can be simulated effectively as it was demon-
strated in the original paper [23,24]. Oñate et al. [25,27] and Eijo
et al. [1] have taken the RZT as the basis for developing linear beam
(LRZ) and quadrilateral plate (QLRZ) finite elements, respectively.

Eijo et al. [31] have extended the LRZ element to simulate
delamination in laminated beams. Since the vertical displacement
is defined constant along the thickness and the transversal in-
plane displacement is not considered for the RZT beam theory,
the proposed methodology is limited to model only the fracture
mode II. In addition, delamination in highly heterogeneous lami-
nates, i.e. laminates where the shear modulus of the laminae differ
from each other in many orders of magnitude can not be correctly
simulated employing this technique. However, that is not the case
of composite laminates where the shear modulus of laminae does
not differ generally in more than one order of magnitude [32]. For
this model, delamination can happen at any place within the lam-
inate, thus, it is not necessary to predefine the path where crack is
expected to occur. An isotropic damage model was used to manage
the non-linear material behavior. It was demonstrated that, in or-
der to be able for capturing relative displacements between layers,
the piecewise zigzag function must be updated in terms of the
damage level of the material. In [31] it was shown not only the
Fig. 1. RZT kin
ability to capture the relative displacement between layers, but
also the efficiency of the numerical model based on the RZT theory.

In this paper, we present the extension of the beam delamina-
tion model of [31] to plate/shell structures using the QLRZ element.
Unlike the beam theory, the transversal in-plane displacement is
taken into account for the plate theory, which allows simulating
not only the fracture mode II but also mode III. For the same reason
as in beams, it is not possible to predict the opening fracture mode.
The non-linear material behavior is modeled using an isotropic
damage model. The non-linear problem is solved by the modified
Newton–Raphson method. The paper describes the RZT plate the-
ory, the formulation of the QLRZ finite elements and the isotropic
damage model. Also, the implicit integration algorithm is de-
scribed. Finally, the performance of the proposed numerical model
is shown by modeling delamination in a simply supported rectan-
gular plate with a center hole for two different laminates. The ref-
erence solution is a 3D analysis using eight-noded hexahedral
elements.

2. Refined Zigzag Theory (RZT) for plate and QLRZ plate/shell
element

2.1. RZT plate kinematics

A laminated plate formed by N analysis layers of thickness hk is
considered. The number of analysis layer may be not coincident
with the number of physical layers. The reference coordinate sys-
tem is the 3D Cartesian system (x,y,z), where x–y are set as the
in-plane coordinates and z is the thickness coordinate.

The plate displacement field proposed by the RZT is defined as
(Fig. 1)

ukðx; y; zÞ ¼ u0ðx; yÞ � z � hxðx; yÞ þ �ukðx; y; zÞ
vkðx; y; zÞ ¼ v0ðx; yÞ � z � hyðx; yÞ þ �vkðx; y; zÞ
wðx; yÞ ¼ w0ðx; yÞ

ð1aÞ

where the linear piecewise zigzag functions are

�uk ¼ /k
xðzÞ � wxðx; yÞ; k ¼ 1;N

�vk ¼ /k
yðzÞ � wyðx; yÞ

ð1bÞ

and superscript k indicates quantities within the kth layer with
zk 6 z 6 zk+1, and zk is the vertical coordinate of the kth interface.
The uniform axial displacements along the coordinate directions x
and y are u0 and v0, respectively; hx and hy represent the average
bending rotation of the transverse normal about the negative y
and positive x directions; and w0 is the transverse deflection.
ematics.



Fig. 2. Iterative process with and without update of /i (i = x,y). Delamination can be captured using the QLRZ finite element when the zigzag function /i is updated by
reducing the shear modulus of the damaged layer.
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/k
i ði ¼ x; yÞ denotes a known piecewise linear zigzag function, and wi

is a primary kinematic variable defining the amplitude of the zigzag
function on the plate.

Summarizing, the kinematic variables are

a ¼ u0 v0 w0 hx hy wx wy

� �T ð2Þ

The in-plane ek
p and the transverse shear ek

t strains are defined as

ek ¼
ep

et

� �k

¼

ex

ey

cxy

cxz

cyz

26666664

37777775

k

¼

@uk

@x

@vk

@y

@uk

@y þ @vk

@x

@uk

@z þ @w
@x

@vk

@z þ @w
@y

26666666664

37777777775

¼

@u0
@x
@v0
@y

@u0
@y þ

@v0
@x

0
0

266666664

377777775þ
�z @hx

@x

�z @hy

@y

�z @hx
@y þ

@hy

@x

� �
@w0
@x � hx

@w0
@y � hy

26666666664

37777777775
þ

/k
xðzÞ

@wx
@x

/k
yðzÞ

@wy

@y

/k
xðzÞ

@wx
@y þ /k

yðzÞ
@wy

@x

@/k
x

@z wx

@/k
y

@z wy

26666666664

37777777775
ð3Þ

which can be written in matrix form as

ek ¼
ek

p

ek
t

" #
¼

Sp 0
0 St

� �k

�
êp

êt

� �
¼ Skê ð4Þ

where ê is the generalized stain vector.
2.2. Derivation of the zigzag function /

The zigzag function is defined within each layer as

/k
i ¼ �/k�1

i þ hkbk
i

2
ðfk þ 1Þ i ¼ x; y ð5Þ

where �/k
i and �/k�1

i are the zigzag function valued at k and k � 1

interface, respectively with �/0
i ¼ �/N

i ¼ 0 and nk ¼ 2 ðz�zk�1Þ
hk � 1. The

slope bk
i ¼

@/k
i

@z of the zigzag function within each layer is expressed
as

bk
i ¼

Giz

Gk
iz

� 1 ð6Þ

where Giz is an average shear modulus that can be expressed in

terms of the shear modulus Gk
iz

� �
and the thickness (hk) of each

layer as

Giz ¼ h
XN

k¼1

hk

Gk
iz

" #�1

ð7Þ

For a more detailed description of the RZT for plates, the readers
are referred to Tessler et al. [23].

2.3. Stresses and resultant stresses

The relationship between the stresses and the strains for the kth
layer are expressed in matrix form as



Fig. 3. Algorithm for solving the non-linear problem using the modified Newton–Raphson method. Note that the zigzag function is updated at each iteration.
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rk ¼
rp

rt

� �k

¼

rx

ry

sxy

sxz

syz

26666664

37777775

k

¼
Dp 0
0 Dt

� �k

�
ep

et

� �k

¼ Dkek ð8Þ

with

Dk
p ¼

1
1� txytyx

Ex txyEx 0
tyxEx Ey 0

0 0 ð1� txytyxÞGxy

264
375

Dk
t ¼

Gxz 0
0 Gyz

� � ð9Þ
where E, G, t and D are the Young modulus, the shear modulus, the
Poisson’s ratio and the constitutive matrix for the kth layer,
respectively.

The stress resultants are computed by integrating the stresses
over the plate thickness as

r̂ ¼
Z

z
Skrk dz ð10Þ
2.4. QLRZ plate/shell element

The middle surface of the plate is discretized using quadrilateral
4-noded C0 finite elements. Thus, the kinematics variables of Eq.
(2) are interpolated within each element e as



Fig. 4. Simply supported rectangular plate with a center hole. Whole structure dimensions (a), quarter of plate under study with boundary conditions (b).

Table 1
Mechanical properties of linear-elastic layers.

Materials Young’s modulus Shear modulus Poisson

Ex Ey Ez Gxy Gxz Gyz l

Mechanical properties of linear-elastic plies (MPa)
A 157.9 � 104 9.584 � 104 9.584 � 104 5.93 � 104 5.93 � 104 3.227 � 104 0.32
B 19.15 � 102 19.15 � 102 19.15 � 103 42.3 � 10�5 36.51 � 102 124.8 � 102 6.58 � 10�4

C 104.0 � 101 4.00 � 102 0.30
D 5.30 � 101 2.12 � 101 0.25
E 2.19 � 101 0.876 � 101 0.25
F 0.82 � 101 0.328 � 101 0.25
G 0.73 � 10�1 0.29 � 10�1 0.25
H 7.3 � 101 2.92 � 101 0.25

Table 2
Mechanical properties of cohesive layers (cl).

Materials Young’s modulus (E0) (MPa) Shear modulus (G0) (MPa) Tensile strength (ft) (MPa) Fracture energy (Gf) (kN/m)

Mechanical properties of cohesive plies (cl)
Icl 104.0 � 101 4.0 � 102 2.0 � 101 5.0 � 104

Jcl 0.73 � 10�1 0.29 � 10�1 3.0 � 10�4 5.0 � 104

Table 3
Layer distribution of laminated materials.

Laminate Layer distribution hk/h h (mm)

Laminated materials
L1 (A/C/A/C/B/Icl/C/A/C/A) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0
L2 (D/E/F/G/D/Jcl/H/F/E/H) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0

Fig. 5. HEXA8 mesh for both laminates. Isometric view (a), top and side view (b).
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Fig. 6. QLRZ meshes of 44 (a), 102 (b), 216 (c), 384 (d) and 964 (e) finite elements.

Fig. 7. Load vs vertical displacement for laminate L1 (a) and L2 (b).

Fig. 8. Mesh convergence. Normalized load value for both laminates and all
meshes.
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aðeÞ ¼
X4

i¼1

Nia
ðeÞ
i ð11Þ

with

Ni ¼ NiI7 and aðeÞi ¼ u0 v0 w0 hx hy wx wy

� �T
i

being Ni the linear C0 continuous shape function of node ith.
The generalized strains ê of Eq. (4) are expressed in term of the
nodal degrees of freedom (DOF) using Eq. (11) as

ê ¼
X4

i¼1

Bi � aðeÞi ¼ B � aðeÞ ð12Þ

being Bi the generalized strain matrix defined as

Bi ¼

B1
B2
B3
B4

26664
37775

i

ð13Þ

with

B1i ¼

@Ni
@x 0 0 0 0 0 0

0 @Ni
@y 0 0 0 0 0

@Ni
@y

@Ni
@x 0 0 0 0 0

2664
3775 B2i ¼

0 0 0 @Ni
@x 0 0 0

0 0 0 0 @Ni
@y 0 0

0 0 0 @Ni
@y

@Ni
@x 0 0

2664
3775

B3i ¼

0 0 0 0 0 @Ni
@x 0

0 0 0 0 0 0 @Ni
@y

0 0 0 0 0 @Ni
@y 0

0 0 0 0 0 0 @Ni
@x

2666664

3777775 B3i ¼

0 0 @Ni
@x �Ni 0 0 0

0 0 @Ni
@y 0 �Ni 0 0

0 0 0 0 0 Ni 0
0 0 0 0 0 0 Ni

266664
377775

ð14Þ

The element stiffness matrix Ke and the external forces are ob-
tained by using the virtual work principle and Eqs. (8), (10) and
(12)



Fig. 9. Transverse shear distribution sxz of cohesive layer for laminate L1 computed by using the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different
Dw increments.
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Ke ¼
ZZ

A
BT bDBdA; Fe ¼

ZZ
A
qdAþ

Xnpl

i¼1

f i ð15Þ

where A is the in-plane area of the finite element, q is the distribu-
tive load, f is the nodal force and bD is the constitutive generalized
matrix defined as

bD ¼ Z
z
½Sk�

T
DkSk dz ð16Þ

Full integration of matrix Ke by Gauss quadrature leads to shear
locking for slender plates. In order to avoid this defect an assumed
transverse shear strain field..[25] is used. Details of the formulation
of the 4-noded QLRZ plate finite element can be found in [1,25].

3. Isotropic damage model

The non-linear behavior of material is managed by an isotropic
damage model [2]. The level of damage is measured by a single
internal scalar variable d, which takes values ranged between 0
(no damage) and 1 (full damage). The relationship between stres-
ses and strains is written as

r ¼ ð1� dÞr0 ¼ ð1� dÞD0 � e ð17Þ

being r, e and D0 the stress, the strain and the undamaged consti-
tutive tensors, respectively.
The damage criterion, which is used to distinguish between a
damage state and an undamaged one, is defined as

Fðr0; dÞ ¼ f ðr0Þ � cðdÞ 6 0 ð18Þ

where f(r0) is a norm used to compare different states of deforma-
tion and c(d) is the damage threshold. Damage occurs when the va-
lue of f(r0) is larger than c(d). Damage starts for f(r0) > c0, being c0

the initial damage threshold value which depends on the material
properties.

In this work, c0 is defined as

c0 ¼
ftffiffiffiffiffi
E0
p ð19Þ

where ft is the tensile strength and E0 the Young modulus of the
undamaged material.

The proposed norm is

f ðr0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e : r0
p

ð20Þ

The evolution law for the damage threshold and the damage
variable d are obtained using the damage consistency parameter
according to the Kuhn–Tucker conditions. The evolution of these
variables can be explicitly integrated [33] to obtain

d ¼ Xðf ðr0ÞÞ
cðdÞ ¼maxfc0; maxff ðr0Þgg

ð21Þ



Fig. 10. Transverse shear distribution sxz of cohesive layer for laminate L2 computed by using the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four
different Dw increments.
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where X(�) is a monotonic scalar function ranging between 0 and 1
which defines the evolution of the damage variable. In this work, an
exponential evolution law is adopted for X as

Xðf ðr0ÞÞ ¼ 1� f 0ðr0Þ
f ðr0Þ

e
B 1� f ðr0 Þ

f 0 ðr0 Þ

� �
with f 0ðr0Þ ¼ c0 ð22Þ

Considering the norm of Eq. (20), the exponential softening
function of Eq. (22), and the initial damage threshold value c0

(Eq. (19)), the parameter B in Eq. (22) is computed as

B ¼ Gf � E0

l� � ðftÞ2
� 1

2

 !�1

P 0 ð23Þ

being Gf the fracture energy per unit area and l⁄ a characteristic
length. In this paper, l⁄ is defined as the square root of the influence
area of each Gauss point.

Finally, the evolution equation of the variable d is written as

d ¼ 1� c0ffiffiffiffiffiffiffiffiffiffiffiffi
e : r0
p e

B 1�
ffiffiffiffiffiffi
e:r0
p

c0

� �
ð24Þ
4. Update of the zigzag function / to simulate delamination

During a material degradation process, the structure stiffness
suffers changes that induce a non-linear response of the structure.
The resulting non-linear set of equilibrium equations can be sche-
matically written as

Fext � FintðqÞ ¼ RðqÞ ð25Þ

where q, Fext and Fint (q) are the discretization parameters, the
external and the internal forces vectors, respectively. R(q) is the
residual forces vector. In this work, dynamic forces are not
considered.

The non-linear equation system of Eq. (25) is solved whit a
modified Newton–Raphson method. Hence, the following linear
problem is solved for each iteration i

dq ¼ ði�1KdÞ
�1 i�1R ð26Þ

where dq is the increment of the nodal DOF at ith iteration. Kd and R
are the damaged stiffness matrix and the residual vector, respec-
tively, which are computed at the previous i � 1th iteration. For
the QLRZ element matrix Kd is defined as

i�1Kd ¼
ZZ

A
BT i�1 bDdB dA ð27Þ

with

i�1 bDd ¼
Z

z
½i�1Sk�

T i�1Dk
d

i�1Sk dz and i�1Dk
d

¼ ð1� i�1dkÞ Dk
0 ð28Þ



Fig. 11. Transverse shear distribution sxz of cohesive layer for laminate L1 along the segments AC (left) and BD (right), which were observed at four different Dw increments.
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Fig. 12. Transverse shear distribution sxz of cohesive layer for laminate L2 along the segments AC (left) and BD (right), which were observed at four different Dw increments.
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where dk is the scalar damage variable for the kth computed by
equation Eq. (24) at the previous i � 1th iteration.

The nodal DOFs are updated by

iq ¼ i�1qþ dq ð29Þ
The process is repeated until the convergence criterion
kRk 6 1kFextk is satisfied where 1 is a predefined error tolerance [34].

In 3D finite element analysis, the nodal internal forces are ob-
tained by integrating the stresses on the finite element volume.
When any finite element exceeds the damage threshold and suffers



Fig. 13. Damage level of cohesive layer for laminate L1 computed by using the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Dw increments.
White color is a sing of non-damage and black color indicates full damage.
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softening (d > 0), its stresses are reduced by Eq. (17). Thus, a lack of
internal force equilibrium between the damaged element and its
neighbors appears which induces residual forces (R). These residual
forces generate the relative displacement between layers that typ-
ically occurs during a delamination process. Equilibrium is achieved
using an iterative process such as that of Eqs. (26) and (29).

For the QLRZ finite element, the kinematic variables (Eq. (2))
and the stress resultants (Eq. (10)) are computed at the in-plane
middle surface of the plate (z = 0). Because of that, unlike the 3D
analysis, there are no forces within the laminate capable of induc-
ing a relative displacement between plies. Thus, it is not possible to
predict delamination with QLRZ element by only reducing the
stresses using Eq. (17). Therefore, if the stresses are reduced only,
the iterative process (Eqs. (26) and (29)) gives as result an amplifi-
cation of the initial kinematics of the laminate, instead of an up-
date of the delaminated kinematics. That is so, because the
variables of Eq. (2) are not capable to modify by themselves the
zigzag form of the axial displacement, but they can only vary the
scale of the original zigzag distribution.

The kinematics of the RZT theory is defined by a superposition
of a linear piecewise zigzag function over the linear FSDT displace-
ment fields (Fig. 1). As a result, the zigzag shape of the laminate
kinematics is governed by only the zigzag function /. Comprehen-
sibly, in order for capturing the relative displacement using the
QLRZ element, it is indispensable to update the zigzag function.
In this work, the update of / is expressed as a function of the dam-
age variable d. The zigzag function / depends on the shear modu-
lus, thus, it is updated by reducing the initial elastic shear modulus
Gk

iz at the damaged kth layer aseGk
iz ¼ ð1� dkÞGk

iz ð30Þ

which leads to the definition of / in term of the damaged shear
modulus as

/k
i ¼ �/k�1

i þ hk~bk
i

2
ðfk þ 1Þ ð31Þ

with

b
�

k
i ¼

eGizeGk
iz

� 1 and eGiz ¼ h
XN

k¼1

hkeGk
iz

" #�1

ð32Þ

This simple update procedure of the zigzag function / allows us
to capture the relative displacement in a delamination process. All
above-mentioned steps are schematized in Fig. 2.

The algorithm to solve the non-linear equilibrium problem of
Eq. (25) is shown in Fig. 3.



Fig. 14. Damage level of cohesive layer for laminate L2 computed by using the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Dw increments.
White color is a sing of non-damage and black color indicates full damage.
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5. Numerical simulations

The capability of the proposed method for capturing the relative
in-plane displacements (Mode II and III) between plies is studied
by modeling a simply supported rectangular plate of length
L = 1.0 m, depth D = 0.5 m and thickness h = 0.025 m with a center
hole of radius R = 0.0125 m (Fig. 4a). Taking advantage of symme-
try, only one quarter of plate is studied (Fig. 4b). The structure is
subjected to bending by imposing a uniform vertical displacement
Dw along the line CF (Fig. 4b). The plate is analyzed for two lami-
nates (L1 and L2) with properties shown in Tables 1–3.

As any laminate ply is capable to suffer damage, it is not neces-
sary to predefine the delamination path. However, in order to show
the capability of the QLRZ element to capture relative displace-
ment between plies, in this work delamination is forced to take
place at only one predefined interface within each laminate. This
interface is modeled by a ply, called ‘‘cohesive layer’’ (cl) hence-
forth, whose mechanical behavior is modeled by the isotropic dam-
age model of Section 3. Thus, delamination occurs when the
cohesive layer starts to be damaged. The other plies are treated
as linear-elastic.

The analysis was carried out under the following consider-
ations: quasi-static application of vertical displacement, geometri-
cally linear conditions and small deformations.
The reference solution was obtained via a 3D finite element
analysis using a mesh of 16,416 8-noded hexahedral elements
(HEXA8) involving 18,620 nodes and 55,860 DOFs (Fig. 5). One
and two finite elements are used to discretize the thickness of
the cohesive layer and the thickness of the elastic layers, respec-
tively. This mesh was used for both laminates as they share the
same geometry.

Mesh convergence is studied using five QLRZ meshes of 44, 102,
216, 384 and 964 finite elements with 60, 126, 250, 429, 931 nodes
and 420, 882, 1750, 3003, 6517 DOF, respectively, as shown in
Fig. 6.

The load–displacement plot for laminates L1 and L2 is shown in
Figs. 7a and 6b, respectively. The curves are obtained with the
HEXA8 element (solid line) and the finest QLRZ mesh (dashed
lines). The load corresponds to the total vertical reaction computed
at the simply supported end and an imposed vertical displacement
Dw (Fig. 4b). Results show a good agreement between both solu-
tion techniques. In all cases, the lineal-elastic QLRZ stiffness is very
close to that computed using 3D analysis. Also, it is shown that
delamination starts approximately at the same values of displace-
ment and load.

Fig. 8 shows the convergence of the normalized load value at
the end of the simulation as the number of DOF is increased. The
error for the coarser QLRZ mesh reaches almost 35% and 65% for



Fig. 15. Thickness distribution of the axial displacement u at three different points for laminate L1. Figures show the undamaged kinematics (left – Dw = 0.01 mm) and the
delaminated kinematics at the end of simulation (right – Dw = 2.51 mm).
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laminates L1 and L2, respectively. However, the error is around 1%
(L1) and 10% (L2) for the finest QLRZ mesh.

The evolution of the transverse shear stress sxz for the cohesive
layer for laminates L1 and L2 is shown in Figs. 9 and 10, respec-
tively. For the linear-elastic state, the HEXA8 solution gives about
12% (L1) and 30% (L2) higher maximum value of sxz as appreciated
for Dw = 0.01 mm. Because of that, damage starts a little later for
the QLRZ solution. This mismatch between both solutions is more



Fig. 16. Thickness distribution of the axial displacement u at three different points for laminate L2. Figures show the undamaged kinematics (left – Dw = 0.01 mm) and the
delaminated kinematics at the end of simulation (right – Dw = 2.51 mm).
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evident for the L2 laminate where the sxz distribution obtained
with the HEXA8 mesh for Dw = 0.41 mm is similar to that com-
puted using the QLRZ mesh for Dw = 0.51 mm. For the L1 laminate,
no great differences are observed between both solutions. In all
cases, approximately the same values of sxz are predicted at the
end of the simulation (Dw = 2.51 mm). In order to clarify theses sit-
uations the distribution of sxz along segments AC and BD (Fig. 4b)
for different increment steps is presented in Figs. 11(L1) and 12



Fig. 17. Undamaged and damaged zigzag function /x for laminate L1 (a) and L2 (b).
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(L2). Results are influenced by the mesh topology specially for lam-
inate L2 as is shown in Fig. 12 for Dw = 0.01 mm. However, this
mesh dependence disappears once delamination has started.

The greyscale images shown in Figs. 13 and 14 illustrate the dam-
age growth of the cohesive ply for laminates L1 and L2, respectively.
The black color denotes a full damage state (d = 1). These images
confirm that damage starts earlier when the HEXA8 finite elements
are used, especially for the L2 laminate. However, the global re-
sponse of the structure (Fig. 7) is similar for both finite elements.

Although the cohesive layer seems to be full damaged at the last
step (Dw = 2.51 mm), the damage variable just reaches at most a
value of 0.997. For this reason, the transverse shear stress sxz did
not decrease as expected in a softening process. Surely, if the test
continues until the ply is full damaged, the stresses will be reduced
to zero.

The thickness distribution of the axial displacement u at points
A, B and E (Fig. 4b), before (Dw = 0.01 mm) and after (D
w = 2.51 mm) delamination, is plotted in Figs. 15 (L1) and 16
(L2), respectively. The QLRZ element captures the relative displace-
ment with errors less than 6% and 2% for laminates L1 and L2,
respectively. For all cases, a very good match between 3D and QLRZ
kinematics was found.

To emphasize the importance of the zigzag function update to
capture relative displacement between layers during a delamina-
tion process, Fig. 17 shows the change of the zigzag thickness dis-
tribution from an undamaged to a full damaged state for laminates
L1 (Fig. 17a) and L2 (Fig. 17b).

In order to compare the performance of the 3D solution and the
QLRZ analysis, both the total increment numbers and incremental
displacement values as well as the error tolerance value are the
same for both methods. As expected, the computation time needed
for the QLRZ solution is several times less than that required for the
3D analysis. The time used by the finest QLRZ mesh is approxi-
mately 20 and 12 times less than that required by the HEXA8 mesh
for laminates L1 and L2, respectively. In addition, the computation
storage space during the simulation is much greater for the 3D
analysis as expected.

6. Conclusions

We have presented a promising numerical method based on the
refined zigzag theory for modeling delamination in laminated
plate/shell structures. The proposed method uses the quadrilateral
QLRZ finite element for predicting the laminate kinematics and an
isotropic damage model for managing the non-linear material
behavior. The proposed formulation can model the fracture modes
II and III. However, this methodology is unable to simulate the frac-
ture mode I as the vertical displacement is constant through the
laminate thickness. In addition, the use of this technique is limited
to laminates where the shear modulus of the laminae does not dif-
fer from each other in many orders of magnitude, which occurs
generally in laminated composite materials.

We have shown the need of updating the zigzag function so that
it can capture the relative displacement between plies. The pro-
posed update depends on the level of degradation. Therefore, both
the stresses and the zigzag function are influenced by the damage
variable during the iterative process.

The performance of the QLRZ element has been studied by sim-
ulating delamination in a simply supported rectangular plate with
a center hole subjected to bending. The reference solution was ob-
tained whit a 3D finite element analysis. Results show that both
the onset and the evolution of delamination are accurately pre-
dicted by the QLRZ element. Also, the delaminated kinematics at
the end of simulation is well predicted whit the new plate element.
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