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Abstract

The Particle Finite Element Method (PFEM) is a well established numerical method [Aubry R, Idelsohn SR, Oñate E, Particle
finite element method in fluid mechanics including thermal convection–diffusion, Comput Struct 83 (2004) 1459–75; Idelsohn S, Oñ-
ate E, Del Pin F, A Lagrangian meshless finite element method applied to fluid–structure interaction problems, Comput Struct 81
(2003) 655–71; Idelsohn SR, Oñate E, Del Pin F, The particle finite element method a powerful tool to solve incompressible flows
with free-surfaces and breaking waves, Int J Num Methods Eng 61 (2004) 964–84] where critical parts of the continuum are discret-
ized into particles. The nodes treated as particles transport their momentum and physical properties in a Lagrangian way while the
rest of the nodes may move in an Arbitrary Lagrangian–Eulerian (ALE) frame. In order to solve the governing equations that rep-
resent the continuum, the particles are connected by means of a Delaunay Triangulation [Idelsohn SR, Oñate E, Calvo N, Del Pin F,
The meshless finite element method, Int J Numer Methods Eng 58–4 (2003)]. The resulting partition is a mesh where the Finite Ele-
ment Method is applied to solve the equations of motion. The application of a fully Lagrangian formulation on the particles pro-
vides a natural and simple way to track free surfaces as well as to compute contacts in an accurate and robust fashion. Furthermore,
the usage of an ALE formulation allows large mesh deformation with larger time steps than the full Lagrangian scheme.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the last years a large amount of energy has been
invested to accurately solve fluid mechanics problems
with free surfaces, large deformation of parts of the fluid
domain, fluid fragmentation and interaction with struc-
tures. Different methods have been developed to track
interfaces or free surfaces. Among some of them we
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can mention the Marker Particles Method [5,6], the
Hight Functions Method [7], the Line Segments Method
[8] and the Volume of Fluid Method (VOF) [9,10].
Although these methods have been used successfully in
a variety of problems, their range of application is lim-
ited either because they are not able to manage over fold-
ing regions or because too large a mesh has to be built to
cover the whole domain where the fluid may move. The
VOF method is worthless unless an algorithm can be
devised for accurately computing the evolution of the
function that defines the interfaces. Another branch of
methods included in the interface-tracking techniques
are the deformable-spatial-domain/stabilized space–time
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(DSD/SST) method [11,12]. A more recent version of
this method increase the accuracy with the enhanced-dis-
cretization interface-capturing technique (EDICT) [13].

A different approach to solve interfaces would be to
have a partition that moves and adapts to the deforma-
tions according to the equations of motion. This kind of
approach is obtained when the equations of motion are
written in an Arbitrary Lagrangian–Eulerian (ALE)
way. From a physical point of view a full Lagrangian
formulation provides a more natural way to solve inter-
faces when large deformations occur. Nevertheless, the
remaining part of the domain may be solved with an
ALE formulation.

In what follows summation convention over repeated
indices will be used to describe the equations. Lagrang-
ian formulations take place when the transport equation
is written in a material fashion, avoiding the convective
terms. By the chain rule of differentiation the following
relation is found:

DQ
Dt
¼ oQ

ot
þ oQ

oxi

dxi

dt
; ð1Þ

where Q is the property to transport an xi is the spatial
coordinate. In Eq. (1) the property Q may be trans-
ported either by directly moving the volume of control
or by leaving the volume of control fixed and convecting
Q by means of convective terms or by a mix of both.

One of the first methods to successfully apply this
approach in fluid mechanics was the Smooth Particle
Hydrodynamics (SPH) Method [14–17]. The remarkable
simplicity of SPH and its accurate way to solve free sur-
faces inspired other researchers to develop numerical
methods based on a Lagrangian description. For
instance it may be mentioned the Moving Particle
Semi-Implicit Method (MPS) [18] and a method pro-
posed by Ramaswamy and Kawahara [19] where a
Finite Element approximation is applied over a deform-
able mesh with fixed topology.

In the present paper the governing equations for a
incompressible flow are approximated using a particle
formulation for the free surfaces, fluid–solid contacts
and any interface, while an ALE formulation are
employed in the rest of the domain. The ALE treatment
of internal nodes avoids the mesh deformation due to
vortexes or large velocity gradients. Thus, a larger time
step can be used without the mesh distortion that would
be observed in the full Lagrangian case.

The numerical method chosen for the discrete prob-
lem is the Particle Finite Element Method (PFEM) [1–
3]. In this method the FEM is used to write the weak
form of the equations of motion. The continuum
domain is partitioned according to the Extended Dela-
unay Tessellation (EDT) [4] providing an acceptable
support in two and three dimensions where the weak
form is integrated. The alpha-shape [20] technique is
applied to solve the free surfaces and the contacts. In
a particle formulation all the physical properties are
convected together with the nodes of the partition. Thus
fluid–fluid or solid–fluid interfaces are naturally
captured.

The outline of this work is as follows: Section 2 intro-
duces the ALE equations of motion, Section 3 describes
the time integration scheme, Section 4 provides the
FEM discretization, Section 5 briefly explains the cou-
pled problem. In Section 6 the mesh moving algorithm
is explained. In Section 7 examples of applications and
validation problems are presented. Finally in Section 8
a brief conclusion is given.
2. ALE equations of motion

2.1. Fluid mechanics equations

Conservation of momentum and mass for incom-
pressible Newtonian fluids in the Eulerian conventional
form are represented by the Navier–Stokes equations
and the continuity equation, as follows:

q
oui

ot
þ uj

oui

oxj

� �
¼ orij

oxj
þ qfi in X; ð2Þ

oui

oxi
¼ 0 in X; ð3Þ

where ui = ui(xi, t) are the components of the velocity
field in a spatial coordinate system xi, q is the fluid den-
sity, fi is the acceleration due to external volumetric
forces and t is time. The total stress tensor rij is given
by

rij ¼ �pdij þ l
oui

oxj
þ ouj

oxi
� 2

3

oul

oxl
dij

� �
; ð4Þ

where p is the pressure and l is the coefficient of viscos-
ity. For nearly incompressible flows we obtain:

orij

oxj
¼ � op

oxj
dij þ l

o

oxj

oui

oxj

� �
. ð5Þ

The above expression simplifies the viscous term, mak-
ing Eq. (2) applicable only for incompressible flows.

In the case of a moving reference frame (ALE) and v
being the coordinate with respect to the moving frame,
three cases may be mentioned:

1. the moving reference frame moves with the particle:
v = X, thus the full Lagrangian formulation is found;

2. the moving reference frame is fixed in space v = x and
the full Eulerian formulation is achieved;

3. the moving reference frame moves with and arbitrary
velocity and then, the ALE formulation [21] is
retrieved.

Expanding the left hand side of Eq. (1) the three cases
may be written as follows:
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Dui

Dt
¼ dui

dt
þ oui

oxj
ðuj � vjÞ; ð6Þ

where Dui/Dt means the total derivative of the velocity;
oui/ot means the partial derivative of the velocity; dui/dt

is the local derivative of the velocity with respect to a
moving frame and vj is the velocity of the moving frame.

Rewriting the equations of motion for an ALE
formulation:

q
dui

dt
þ ðuj � vjÞ

oui

oxj

� �
¼ � op

oxj
dij þ l

o

oxj

oui

oxj

� �
þ qfi in X; ð7Þ

oui

oxi
¼ 0 in X. ð8Þ

In this formulation, the coordinates xi appear as depen-
dent variables while the independent variables are the
ALE coordinates vi. Both frames of reference are related
by the deformation mapping U such that:

xi ¼ Uiðvi; tÞ. ð9Þ

The derivatives of U with respect to the ALE coordi-
nates are defined by the matrix:

F iJ ¼
oxi

ovj
¼ oUiðvi; tÞ

ovj
; ð10Þ

where the matrix F are the deformation gradients and
the index J indicates that the derivatives are computed
with respect to the ALE coordinates.

The ALE description of the equations of motion
given by Eq. (7) is not complete as the space derivatives
are still written on the reference configuration. To over-
come this last step of the formulation we have to take
into consideration the dependence between xi and vi.
So by the chain rule of derivation and by means of
Eq. (10) we may write:

oq
oxi
¼ oq

ovi

ovi

oxj
¼ oq

ovi
F �1

iJ ¼ F �1
Ji

oq
ovi

; ð11Þ

for any given scalar quantity q. This expression gives a
fundamental relation for the ALE formulation as it links
the reference configuration with the deformed configura-
tion. In Eq. (7) the gradients of pressure will be rewritten
in terms of Eq. (11) simply by replacing q by p.

Eq. (7) includes another spatial derivative that is
associated with the viscous terms. In this case the classi-
cal Piola transform of a first order tensor applied to the
divergence operator results in

orj

oxj
¼ 1

J
o

ovj
ðJF �1

Jj rjÞ; ð12Þ

where J = detF is the Jacobian of the deformation. The
viscous term may be expressed in the deformed configu-
ration as
l
o

oxj

oui

oxj

� �
¼ l

1

J
o

ovj
JF �1

Ji F �1
Jj

oui

ovj

 !
. ð13Þ

Replacing the new expressions found for the deriva-
tives in terms of the deformed configuration and reor-
dering the indices we may rewrite Eq. (7) to get the
final ALE equations of motion:

q
oui

ot

� ����
vi

þ ðuj � vjÞF �1
Jj

oui

ovj

!

¼ �F �1
Ji

op
ovi

dij þ l
1

J
o

ovj
JF �1

Ji F �1
Jj

oui

ovj

 !
þ qfi; ð14Þ

F �1
Ji

oui

ovi
¼ 0. ð15Þ

The last equation is strictly a representation of an
incompressible Newtonian fluid flow where the frame
of reference moves in an arbitrary way. This is called
the ALE frame of reference.

2.2. Solid mechanics equations

In this work the structure is considered as a rigid
body. The motion consists in the superposition of the
translation produced by the resultant force Fi and the
rotation produced by the couple Ti. The body must
satisfy:

m
Dui

Dt
¼ F i; ð16Þ

I i
DXi

Dt
þ �ijkeiXjðIkXkÞ ¼ T i; ð17Þ

where m is the mass of the body, u is the linear velocity, I

are the principal moments of inertia, X is the angular
velocity with respect to body fixed axes, � is the permu-
tation symbol, e are orthogonal unit basis vectors and
Mi = IiXi as the body fixed axes coincide with the center
of mass of the body.

This set of non linear partial differential equations are
linearized and integrated in time by means of the New-
mark algorithm.
3. Time integration scheme

3.1. Splitting of the fluid mechanics equations

For the time integration of the Navier–Stokes equa-
tion a projection method was adopted [22–24]. These
methods stand out from classical monolithic schemes
as pressure and velocity are uncoupled. Thus four linear
systems of equations are obtained, namely three for the
momentum equation and one to solve the incompress-
ibility constrain.
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From Eq. (7) the time derivative may be approxi-
mated with forward differences as

dui

dt

����
vi

� unþ1
i � un

i

dt
. ð18Þ

An auxiliary velocity uH

i will be employed to split the
momentum equation, such that:

uH

i ¼ un
i � c

dt
q

opn

oxj
dij þ ðunþh

j � vjÞ
ounþh

i

oxj

þ ldt
q

o

oxj

ounþh
i

oxj

� �
þ dtf i; ð19Þ

unþ1
i ¼ uH

i �
dt
q

o

oxj
ðpnþ1 � cpnÞdij; ð20Þ

where h = 0 implies a explicit forward Euler scheme,
h = 1 is a implicit backward Euler scheme and h = 0.5
is the Crank–Nicholson second order scheme. In the
present analysis h = 1 will be adopted.

From Eqs. (8) and (20) a Poisson equation of pres-
sure is obtained:

dt
o

oxi

1

q
o

oxj
ðpnþ1 � cpnÞdij ¼

o

oxi
uH

i . ð21Þ

The variable c = 1 implies a second order projection
scheme and c = 0 a first order scheme.
4. Spatial discretization by the Finite Element Method

One of the key to solve a fluid mechanics problem
using a Lagrangian formulation is to generate efficiently
the shape functions to approximate the spatial
unknown. In the Finite Element context, this means to
generate permanently, at each time step, a new mesh.
Fig. 1. Adding a node in

Fig. 2. Wave breaking on
In this work the interpolation function used by the
Meshless Finite Element Method (MFEM) [4] has been
implemented. This function uses the Voronoı̈ diagram of
the cloud of points to construct the interpolant. The
Extended Delaunay Tessellation (EDT) [4] is applied
to connect the neighboring particles. The EDT provides
polyhedral elements that are sliver-free in 3-D, thus
avoiding the instabilities of the Delaunay tessellation
due to distorted tetrahedral. The EDT provides a way
to generate meshes at each time step very efficiently in
a computing time which is largely smaller than the com-
puting time needed to solve the linearized system of
equation.

The unknown functions are approximated using an
equal order interpolation for all variables in the final
configuration:

ui ¼ Nlðv; tÞUil; ð22Þ
pi ¼ Nlðv; tÞP il; ð23Þ

where Nl are the shape functions provided by the
MFEM. The matrix version of Eqs. (19)–(21) is as
follows:

MuH

i þ dtKunþh
i þ Sðunþh

i Þðunþh
j � vnþh

j Þ
¼ Mun

i � cdtGpn þ dtF ; ð24Þ
dtLpnþ1 ¼ BuH

i þ cdtLpn � eU ; ð25Þ
Munþ1

i ¼ MuH

i � dtGðpnþ1 � cpnÞ; ð26Þ

where the matrices are defined by

M ¼
Z

X
NqN l dX; L ¼

Z
X

oN q

oxi

1

q
oNl

oxi

� �
dX;

B ¼
Z

X

oNq

oxi
N l

� �
dX; G ¼

Z
X

Nq
1

q
oN l

oxi

� �
dX;
the triangulation.

a 1/14 slope beach.
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K ¼
Z

X

oNq

oxi

l
q

oNl

oxi

� �
dX; S ¼

Z
X

Nqunþh
i

oNl

oxi

� �
dX;

F ¼
Z

X
Nqfi dX; eU ¼ Z

C
N qunþ1

i ni dC.

The indices (q, l) denote the nodes of an element. The
matrix M in Eq. (26) is the lumped mass matrix M. Stan-
dard stabilization terms [25,26] have been added to Eq.
(24) to stabilize the convection terms when Re� 1.
Fig. 3. (a) Comparison between numerical solutions and analytical sol
As an equal order approximation is used for the
velocity and pressure variables, the Finite Calculus
(FIC) [27,26,28] method has been used to overcome
the inf–sup condition.
5. Coupling the fluid and solid equations

On the coupling boundary the fluid velocity and the
solid velocity must satisfy:
ution for the wave breaking problem. (b) Continuation from (a).



Fig. 3 (continued)

Fig. 4. 2-d sketch of the water collapse problem (side view and front view).
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Fig. 5. (a) Comparison between the numerical solution and the experimental solution for six different time steps. Courtesy of Koshizuka and Oka
[18]. (b) Continuation from (a).
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uf jr1 ¼ usjr2. ð27Þ

Thus, two subsystems need to be solved, namely the
fluid system:

F ðunþ1
f ; pnþ1; xnþ1

f ; unþ1
s ; xnþ1

s Þ ¼ 0; ð28Þ

and the solid subsystem:

Sðunþ1
s ; xnþ1

s ; unþ1
f ; pnþ1; xnþ1

f Þ ¼ 0. ð29Þ
In the equations above only the variables to be solved at
time step n + 1 are shown. To linearized both subsys-
tems a Gauss–Seidel process has been chosen [29]. In
this way, the iterative procedure means to solve first
one of the subsystems and use the output to solve the
next subsystem. The final expression for the computa-
tion is as follows:

ðunþ1
f ;kþ1; p

nþ1
kþ1; x

nþ1
f ;kþ1Þ ¼ F ðunþ1

f ;k ; p
nþ1
k ; xnþ1

f ;k ; u
nþ1
s ; xnþ1

s Þ; ð30Þ
ðunþ1

s;kþ1; x
nþ1
s;kþ1Þ ¼ Sðunþ1

s;k ; x
nþ1
s;k ; u

nþ1
f ; pnþ1; xnþ1

f Þ; ð31Þ



Fig. 5 (continued)
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where the subscript k is the iteration counter.
Convergence occurs when the difference between veloci-
ties of successive iteration steps is less than the accept-
able error. A consistent artificial compressibility [30]
is added to the elements of the boundaries to allow the
compressible movement of the solid. When conver-
gence is reached the incompressibility constrain is
recovered.
6. Mesh update

6.1. Mesh movement

The most appealing feature of the ALE formulation
is the fact that for a highly deformable domain the dis-
tortion of the Finite Element mesh may be minimized.
For this reason the election of a robust algorithm to
move the mesh is essential. Among all the different
options found in the literature [31–37], the Laplacian
operator [38,39] has been chosen.

The basic idea consist in solving a Laplace equation
for each direction of the mesh velocity, this is

o2vi

ox2
j
¼ 0 in X; ð32Þ

vi ¼ �ui in C; ð33Þ

where �ui is the prescribed Lagrangian velocity on the
boundary or interfaces. Thus, three linear systems of
equations need to be solved at each time step. Enough
accuracy for the mesh movement is obtained after three
iterations of the conjugate gradient solver.

It is worth mentioning that although the Laplacian
provides an acceptable velocity field for the mesh, the
final decision whether a node is treated as a material
particle or not remains as a user option. This is a key
feature of the formulation that allows to maintain the
key particle features of the method.

6.2. Mesh restoration

For problems where large boundary deformation
occurs a constant restoration of the mesh is needed in
the deformed region. This is the case for breaking waves
or problems where large displacements of solids is
observed. The mesh is thus rebuilt by means of the
EDT. This algorithm will reconnect the nodes that are
already part of the domain, thus no projection of a
new mesh over an old mesh needs to be done.

6.3. Adding and removing nodes

In areas where large gradients are observed the mesh
should be refined to control the error over the whole
domain or to keep an homogeneous distance between
nodes in order to preserve a large admissible time step.
To do this a point is added in the EDT as depicted in
Fig. 1. In the figure a node is added in the center of
the Delaunay circle of the element when:
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r > b1
�h and c � T ; ð34Þ

where r is the radii of the circle, b1 is an arbitrary param-
eter, typically b = 0.6, c is the center of the circle, T is
the Delaunay triangle and �h is the average size of the ele-
ment. The Delaunay tessellation is locally rebuilt every
time a new point is added. The fields are interpolated
on the new nodes directly by using the finite element
shape functions.

A point is not inserted in the tessellation if it lies clo-
ser than b2

�h from the nearest node, with b = 0.5.
Fig. 6. Internal surface captured by the alpha-shape algorithm.
7. Validation and examples of applications

7.1. Wave breaking

The solution that is presented in this section describes
the movement of a wave along a channel whose slope
changes abruptly from zero to 1/14. The wave ends up
breaking due to shoaling. The geometry of the problem
with the original scale is shown in Fig. 2. This test prob-
lem was first introduced in [40] as validation of a
Lagrangian formulation. It showed to be a good exam-
ple that enhances the advantages of representing free
surfaces when the equations are viewed from a Lagrang-
ian point of reference.

The initial conditions are taken from the potential
theory solution of a solitary wave of finite amplitude
propagating without change of shape [41]. The quasi-
analytical solution that will be used for comparison is
called Laitone�s solution. The different parameters that
describe the state of the solution at each time step are
given by

u¼
ffiffiffiffiffiffi
gd

p H
d

sech2

ffiffiffiffiffiffiffi
3H

4d3

r
ðx� ctÞ

" #
; ð35Þ

v¼
ffiffiffiffiffiffiffiffi
3gd

p H
d

� �3=2 y
d

sech2

ffiffiffiffiffiffiffi
3H

4d3

r
ðx� ctÞ

" #
tanh

ffiffiffiffiffiffiffi
3H

4d3

r
ðx� ctÞ

" #
;

ð36Þ

g¼ dþHsech2

ffiffiffiffiffiffiffi
3H

4d3

r
ðx� ctÞ

" #
; ð37Þ

p¼ qgðg� yÞ; ð38Þ

c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gd 1þH

d

� �s
. ð39Þ

In the equations written above, H is the height of the
wave with respect to the unperturbed surface, L is the
length of the flat part of the channel, d is the depth from
the bottom to the unperturbed surface, g is the acceler-
ation of gravity, q is the density of water, g is the eleva-
tion of the free surface.
Laitone�s solution holds for infinitely long channels.
However, in [42] a simplification is done in order to be
able to compare the numerical results to the analytical
solution. Indeed, it has been observed that if the domain
of simulation is truncated at a distance L/2 of the wave
crest where the fluid is essentially still, both numerical
and analytical solution are comparable. If we assume
that the fluid is still when the surface elevation satisfies
g = 0.01H, the result for L is

L
d
¼ 6:9

d
H

� �1=2

. ð40Þ

As shown in Fig. 2, L = 97.5 m will be the region with
flat slope, d = 10 m is the still water depth and
H = 5 m is the wave height. The slope of the shoaling
bottom is set to 1/14.

The results for different time steps are displayed in
Fig. 3a and b. The figures are displayed in pairs, show-
ing on top the numerical solution and underneath the
analytical solution.

The numerical solution is in complete agreement with
the analytical solution in the range of values where the
analytical solution is valid.
8. Water column collapse

The problem was solved by Koshizuka and Oka as
validation of the Moving Particle Semi-Implicit method
presented in [18]. In the paper they included not only the
numerical results but also a laboratory experiment that
became a classical example to test the validation of the
Lagrangian formulation in fluid flows.

The experiment consists of a water column initially at
rest supported on the left by a removable board. When
the board is slid up the collapse starts. A 2-d sketch of
the problem is shown in Fig. 4 where we can appreciate
the dimensions of the problem. Viscosity has been
neglected in this example. The total number of nodal
points used to solve the 3-d simulation was 14838.



Fig. 7. Schematic representation of the two rigid bodies falling in the
tank.

Fig. 8. The evolution of the total force acting on the two rigid bodies
falling in the tank.
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The comparison between the experiment and the
numerical solution is shown in Fig. 5a and b. Both the
free surface as well as the temporal development of the
problem are in good agreement with the experimental
data.

Fig. 6 shows the development of the fluid free surface
at t = 0.75 s. At this stage an internal surface forms a
bubble inside the fluid. The alpha-shape technique can
capture this surface and appropriate boundary condi-
tions are applied.
Fig. 9. Motion of the two falling bodies at different times.
8.1. Rigid bodies falling in water

The last example is a fluid–object interaction prob-
lem, where the structure behaves as a rigid body.
Fig. 7 shows an schematic representation of the prob-
lem. Two bodies with different shapes fall in the water
Also show the mesh and the pressure contour lines.
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container from different heights. The cylinder has a mass
m = 20 kg and the cube has a mass of m = 35 kg. For
this problem the free surface as well as the rigid bodies
move in a fully Lagrangian way, while the rest of the
fluid is ALE. Fig. 9, shows states at different time steps.
In Fig. 8 the forces of the fluid over the structures are
shown.
9. Conclusions

The Particle Finite Element Method (PFEM) com-
bining Lagrangian and ALE formulations has shown
to be an excellent option in problems involving fluid–
object interaction, large deformations, free surfaces
and fluid segmentation (Fig. 9).

The potential of the method relays on the fast gener-
ation of the EDT partition and the accuracy of the
Finite Element Method. The use of the alpha-shape
technique to compute the boundaries greatly simplifies
the contacts between fluid and structures. Even in the
case where constant re-meshing is needed the combined
Lagrangian–ALE formulation still has advantages over
the full Lagrangian formulation as no distortion due
to vortexes is observed in the mesh. As an implicit algo-
rithm is chosen the time step in the ALE case is greater
than for the full Lagrangian case as it depends upon the
mesh velocity instead of the material velocities. This
provides time steps over 50% larger than in the Lagrang-
ian case.
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[38] Löhner R, Yang C. Improved ALE mesh velocities for moving
bodies. Commun Numer Methods Eng 1996;12:599–608.

[39] Masud A, Hughes T. A space–time Galerkin/least-squares finite
element formulation of the Navier–Stokes equations for moving
domain problems. Comput Methods Appl Mech Eng
1997;146:91–126.

[40] Radovitzky R, Ortiz M. Lagrangian finite element analysis of
Newtonian fluid flow. Int J Numer Methods Eng 1998;43:607–19.

[41] Grilli ST, Subramanya R. Numerical modeling of wave breaking
introduced by fixed or moving boundaries. Comput Mech
1996;17:374–91.

[42] Ramaswamy B, Kawahara M. Numerical simulation of unsteady
viscous free surface flow. J Comput Phys 1990;90:396–430.


	The ALE/Lagrangian Particle Finite Element Method: A new approach to computation of free-surface flows and fluid-object interactions
	Introduction
	ALE equations of motion
	Fluid mechanics equations
	Solid mechanics equations

	Time integration scheme
	Splitting of the fluid mechanics equations

	Spatial discretization by the Finite Element Method
	Coupling the fluid and solid equations
	Mesh update
	Mesh movement
	Mesh restoration
	Adding and removing nodes

	Validation and examples of applications
	Wave breaking

	Water column collapse
	Rigid bodies falling in water

	Conclusions
	References


