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1 Introduction

Shear bands in plastic solids arise as a typical deformation
mode due to a strain localization phenomenon, during the inelastic
deformation processes, when the material becomes unstable. Nu-
merical modeling of shear bands using discontinuous velocity
fields was previously proposed by several authors (see, for ex-
ample, Armero et al. [1], Regueiro et al. [2], and Samaniego et al.
(3.

In a number of problems, a large stable process of irreversible
isochoric plastic deformation precedes the inception of a strain
localized mode. In these cases, and from a computational point of
view, it should be considered the deficient response provided by
standard finite elements when kinematics incompressibility con-
straints are present. This particular aspect of the numerical ap-
proach is a classical, and extensively studied, issue in computa-
tional mechanics (see Zienkiewicz et al. [4], Hughes [5]).

In this paper we present a stabilized mixed finite element for-
mulation, which has been recently developed for J, plasticity
[6,7]. The kinematics is enriched with the addition of an embed-
ded strong discontinuity mode with elemental support, like that
proposed in Oliver [8,9], for capturing the characteristic shear
band type deformation mechanisms. The idea of using a well be-
haved finite element for plasticity in conjunction with an embed-
ded strong discontinuity kinematics is not new in shear band mod-
elling. Armero et al. [1] have used a triangular MINI element and
Regueiro et al. [2] the classical quadrilateral BBAR element, both
of them enriched with an embedded strong discontinuity. Never-
theless, the authors understand that the problem remains open
since, in their opinion, the linear triangle has a number of advan-
tages which make it particularly suitable to be enriched with em-
bedded discontinuities. The stabilized element here presented is a
linear triangle.

The Continuum-Strong Discontinuity Approach [10] adopted in
this work, determines the shear strain rate-traction rate separation
law of the shear band. A characteristic of this procedure is that the
resulting discrete law governing the shear band evolution, i.e., the
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emphasize the increase of the numerical solution accuracy obtained with the present
strategy as compared with alternative procedures using linear triangles.
[DOL: 10.1115/1.2190233]

cohesive force acting across the shear band surface, is a projection
onto the discontinuity surface of the bulk material constitutive
model. In this work, the nonlocalized (bulk) material behavior
follows a rate-independent J, elastoplastic law with strain soften-
ing response.

Alternative models for simulating shear bands have been nu-
merous in the past. Recently, Cervera et al. [11] have presented a
model that uses the same stabilized mixed finite element shown
here, but without introducing the embedded strong discontinuity
mode into the finite element. However, the authors think that the
additional features provided by the CSDA deserve to be studied
too.

The paper proceeds as follows: In Sec. 2, we present the en-
riched kinematics with the strong discontinuity mode and the dis-
crete constitutive model governing the shear band evolution. Sec-
tion 3 presents the finite element formulation with the stabilization
procedure and Sec. 4 its numerical implementation. In the present
work, we are interested in the analysis of the numerical stabiliza-
tion effect, its influence on the shear-band capturing and the sub-
sequent post-critical response, particularly when embedded strong
discontinuities are used. This analysis is presented in Sec. 5 by
means of two numerical applications. In the first case, a slope
instability problem, we compare the numerical response obtained
by different finite element implementations, including standard
and stabilized mixed linear triangles with and without embedded
strong discontinuities, quadrilaterals, etc. Also, we analyze the
convergence rate of the solution with the finite element mesh size.
In the second example, the near incompressibility constraint is
imposed already at the beginning of elastic regime. In this context,
again we study the ability of the model to capture the shear band
and the obtained peak load is compared with an analytical solution
taken from the literature. Finally, the conclusions are presented.

2 Problem Settings

2.1 Strong Discontinuity Kinematics. Let () be a body
which experiences a shear band failure mode. The material sur-
face S, with normal n intersecting the body (), represents the zone
with localized strain rate, as it is shown in Fig. 1. The appropriate
kinematics describing this phenomenon should account for a dis-
continuous velocity field across S, such as the following one:

i(x,t) =ux,1) + Hg(x) Blx,1) (1)

where ﬁ(x,t) represents a continuum field, Hg(x) is the Heavi-
side’s step function shifted to S (Hg(x)=1Vx e Q* and Hg(x)
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Fig. 1 Strong discontinuity problem

=0Vx e Q7), that, multiplied by the velocity jump vector 3, in-
troduces the discontinuity term into the velocity field.

The infinitesimal strain rate being compatible with this velocity
field, is a generalized function in ):

S‘(X,l) = (Vﬁ)sym=—é + 53(3 ® n)sym (2)

composed of a regular term &= (V)™ +Hg(VB)™™ and a singu-
lar one, given by the Dirac’s delta function (Js) shifted to S.
The boundary value problem (BVP) of a quasi-static elastoplas-
tic body showing a strong discontinuity kinematics, such as a
shear band, is described (in rate form) by the following equations:

V.og+ph=0 VxeQS (3)
u=u" Vxerl, (4)
o-v=t" Vxel, (5)

where the Cauchy’s equation (3), relating the stress rate ¢ with
the rate of volumetric forces piJ, and ignoring the inertial effects,
is defined in the regular part of the body (2/S), i.e., the points in
() excluding those in & and where no strain rate localization ef-
fects are observed. The boundary condition in velocities #”* and
rate of tractions ¢* are imposed on I',, and T',, ( Egs. (4) and (5)),
respectively. Furthermore, the equilibrium condition across the
discontinuity surface S requires that:

tr=¢"n=¢"-n=t VxeS (6)

where £+ (¢7) is the traction vector applied to the body part Q* (or
Q)7) on the boundary S. If cohesive tractions (¢s) are considered in
the shear band interface, the equilibrium condition in rates also
requires:

ts=6s-n=6¢"-n=t" VxeS (7)

where, and consistently with the Continuum-Strong Discontinuity
Approach, a fundamental hypothesis has been adopted: A stress
state o g exists into the discontinuity zone S (where singular strain
rates are present), which is defined by a regularized version of the
constitutive model that describes the regular part of the body
QO/8, see [8,12,13].

2.2 Continuum Constitutive Model and Discrete Cohesive
Law. We assume for the (}/S domain a rate-independent J, elas-
toplastic material model with strain softening described by the
equations:

o=C:(¢-8"); C=\1o1)+2ul (8)
&= yid,p=yM )
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a=vyi,p=7y (10)

G=-Hda=-Hy (11)

3
o.q)=J5(0) = (0, =q); J(0)=[3(5:5)  (12)

y=0; ¢=<0; y¢=0 (13)

where C is the fourth order elastic constitutive tensor depending
on the Lamé’s parameters (N and w), with 1 and I being the sec-
ond and fourth order unit tensors, respectively, €’ is the plastic
strain rate tensor, ¢ and « are scalar internal variables and ¢ is the
yield function describing the elastic domain depending on the de-
viatoric stress tensor S=0“" (through the second invariant .J,)
and the yield strength o,. We denote M the plastic deviatoric
strain rate direction (being tr(M)=0) and 7y the plastic multiplier.
From Egs. (10)-(12), « is identified as the total equivalent plastic
strain. Special attention should be paid, in the present setting, to
the softening modulus H(H <0), which plays a main role in the
localization condition.

In the Continuum-Strong Discontinuity Approach, followed in
the present work, it is assumed that the stress o is determined by
a regularized version of the model given by Egs. (8)—(13). This
stress state, which due to equilibrium conditions must be a
bounded tensor, defines the cohesive behavior of the interface S.

Following Simo et al. [12] and Oliver [10], and considering the
regularized sequence of functions Js=lim,_,(us/h) (where
usx € S)=1, usx & S)=0), it can be shown that (variables with
subindex (-)g are referred to their evaluation at the domain S):

os=Ci(é5— &8) = C:[E5+ Os(n ® B)¥™-£5]  (14)

is a bounded term whenever:

Ss(n © PV — £k =0 (15)
Condition (15) can be verified by introducing a singular mea-

sures for the plastic multiplier y and the inverse of the softening
modulus H:

_, - o
Ys=0sy: Hg'=0sH ™' H=_2- (16)
where H is an intrinsic softening modulus, determined by the
material fracture energy G. Therefore, from Egs. (11) and (16), ¢
becomes a regular term, even when €g is singular:

js=~7H (17)
and replacing Eq. (9) into Eq. (14), yields:

IMg=(n B (18)

which has been termed the “strong discontinuity equation” [10].
Recalling that:

_ s

Mg=/> (19)
*T Va2

and given the particular structure of tensor (z® B)®™, Eq. (18)
imposes the strong discontinuity condition on &g, which estab-
lishes that g is only characterized by the traction vector #g, see
Fig. 2. Additional details on this aspect can be found in [10].
This result allows us to rewrite the constitutive model only as a
function of the traction vector and velocity jumps (¢ versus ﬂ)
Let the traction vectors ¢s and tgev be identified by the components
t5={(0,1,)5.(S,.)5. (S, st € R3, where the identity between the
shear components of ¢ and S are used, tgeV={o,(tT)$,(t§)5}, see
Fig. 2, and let the vector of plastic strain rate direction mg be
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Fig. 2 Stress tensor structure in S

given by mg=\3¢"/(|%"])) € R3. Then, the yield function and

the consistency equation, in a loading process, can be written as
follows:

bs=\3E 1§~ (0,-q5);  ps=ms- 1§ = YH=0 (20)

We remark that £5" is normally termed the Schmidt resolved
shear stresses for the slip plane S, see [14].
In a loading state (y>0), Egs. (18) and (20b) determine the

velocity jump B

. mg- tgev 5
B=\———10, -n-C:Mg):; Q.,=n-C-n  (21)

H
Equation (21) is consistent with a classical constitutive assump-
tion on the slip phenomenon in single-crystal plasticity: The shear

rate (£=||B|), in a slip system, depends on the stresses only
dev

through the Schimdt resolved shear stress (¢£5). Implicit in Eq.
(21) is the fact that the velocity jump Bis compatible with a slip
line mode (B-n=0) and that:

er|(H=()) : ﬂ = 0’ er|(H=()) =n- Cep -n (22)

where C,, is the perfectly plastic constitutive tensor and @, is the
so-called “localization tensor.”

The degenerated (projected) cohesive model, traction-
separation law, derived from the continuum model and induced by
a strong discontinuity kinematics, is displayed in Egs. (23)—(26):

B=%0;"- (n-C:My) (23)
Gs=-yH (24)

$s=<0; ¥=0; ¥s=0 (25)
ps=\BE 15~ (0, - q9) (26)

3 Stabilized Mixed Variational Formulation Using
Embedded Strong Discontinuities

Decomposing the stress rate into its deviatoric S, and spherical
—pl ( '=—%tr((’r)), parts:
o=-pl+S Vxe QS (27)

and considering from the constitutive model that p=—«V -1,
where « is the volumetric modulus, the BVP can be set within a
classical variational mixed (velocity, pressure) format: find &
eV, and p € Q such that:

Journal of Applied Mechanics

K

ﬁ(u,p;n,q)=f [(Vn)sym:«'ﬂq(vm”)—n-f“”]dﬂ
Q

=0 VgeV, Vge@ (28)

The admissible functional space for ¢ is QEL(ZQ,S). We define

the space of admissible functions for velocities 1, by assuming
the existence of nonsmooth terms representing the velocity jumps
developed in the shear band zone. These terms are included via
the embedded strong discontinuity technique. Let the velocity
space V, be defined by:

V,={a(x) =u(x) + Mgx)B:u e V,} (29)

Ms(x) =Hs— ¢(x) (30)
where M is the so-called elemental unit jump function [9],
whose support is a given domain (), that includes S. The ¢(x)
term can be taken as an arbitrary smooth function such that:
o(x e Q=1 and p(x € Q7)=0. Also B e R4™, with dim standing
for the space dimension, is the velocity jump vector. The virtual
(kinematically admissible) velocities lie on the space:

Vy={n=7(x)+ Msx)3B; Hlr, e Vi(7lr, =0} (1)

It should be mentioned that % and 7 are smooth functions
(V,CHY.

Introducing the spaces (29) and (31) into Eq. (28), the govern-
ing equations can be alternatively written as follows:

f S-pD:(VH)»dQ =P V7mel?  (32a)
QIS
f q<’3+(v-u))dn=o Vgeo (320)
as K

f o (VMs® 8B)Y™dQ=0 V6B e RI™  (32¢)
Q

where P‘(lem is the virtual power of the body forces and external
loads.

Recalling that VM s=(8sn—Ve¢), then Eq. (32¢) imposes a
weak traction continuity condition on the discontinuity surface
and it can be rewritten as:

f(rs-nds-f (S—p]l)-Vq:dQ:J GSedQ=0 (33)
S O/s QO

where we have identified the matrix G° with the operator VMg
applied to stresses. A widely used variational nonsymmetric (not-
consistent) formulation, redefines the weak traction continuity Eq.
(33) by exchanging V¢ by n, in the second left hand side term,
and computing the mean values of the traction continuity [15]:

1 1 . ~
_f irs«ndS——f (S—pl)nd.Q:f GNadQ =0
ls S Q s Q

(34)

where /g is the length of discontinuity S intersecting the finite
element, see Fig. 4. In the numerical examples, we present solu-
tions considering both procedures. We use the term “‘symmetric
formulation” when Eq. (33) is implemented and “nonsymmetric
formulation” if condition Eq. (34) governs the traction continuity.

3.1 Stabilization. It is well known that mixed formulations
like Eq. (28) suffer from numerical instability issues [4,5]. The
instability problem becomes particularly serious when piecewise
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Fig. 3 Projection of the pressure gradient

linear polynomial functions of continuity C° are chosen for inter-

polation of both spaces V, and Q, because in that case the so-
called Ladyzhenskya-Babuska-Brezzi condition (or simply LBB)
is not satisfied [16]. A remedy for this unwanted effect has been
the introduction of stabilization terms S, into the variational prin-
ciple Eq. (28). Particularly, this term is added to the left hand side
of Eq. (32b).

The stabilization term used in this work has been introduced by
Codina [17] in the fluid mechanics context and extended by
Cervera et al. [6] to J,-plasticity problems. It has been termed the
orthogonal sub-scale method, PGP, and is defined by:

Sy= f Vg (r(Vp-1D)dQ (35)
s

where lL[(el_/u) is the projection-L(zﬂ/& of the discrete pressure
rate gradient (Vp) on the regular finite element approximation
space (V,), see Fig. 3:

f (Vp-TD) - x)dQ=0; VYxeV, (36)
ars

This procedure considers the term S, proportional to a stabili-
zation factor 7, depending on the shear modulus w and a charac-
teristic finite element size i (we have adopted & to be the square
root of the finite element area):

2
T= ch— (37)
2u
where the scalar coefficient ¢ is a constant parameter (¢c=O(1)).

Introducing the stabilization term (35) into the variational equa-
tion (28), and considering that Eq. (36) shall be included as an
additional restriction, it is possible to rewrite the variational prin-

ciple, in (ﬁ,ﬁ,p,ﬁ), as follows:

f (S -p):(VH¥™dQ =P VHel  (38q)
/S

(b)

fq(E+V-u>dQ+f Vg (r(Vp-)dQL=0 VgeQ
(9753 oS

K

(38b)

f (Vp-I) - xdQ=0 VyxeV, (38¢)
s

f os:(n® 6p)sy;“d3—f (S -p):(Vo ® SB)¥™dQ)
S s

=0 VBeRIM (38d)

Equations (38a)—(38d) at time ¢, can be alternatively written in
terms of the total stresses and displacements.

4 Numerical Implementation

Considering ) e R?, simplicial finite elements (linear triangles)
with C° piecewise linear interpolation polynomials for pressure
and regular displacement fields have been chosen for the present
implementation.

4.1 Displacement Field Approximation. The continuous part
of the displacement u={i,,, T is interpolated in the standard
way by using piecewise linear shape functions Nj,(x) (supra index
(-)¢ refers to element e). The elemental unit jump function
M) =HS(x) = (N%)"%*(x) is built by using the linear shape
function (N%)"d* corresponding to that nodes belonging to the
Q* region, see Fig. 4. The support of MS is, therefore, one

element:
u(x.1) = N (r) + Ms(x) + B(1):

where (7) refers to nodal values.
The strains, in a vectorial format (£e={8§,8§,8i),}r), can be
written as follows:

VxeQ (39

£(x,1) =Bgl_Ate+Geﬁe; Vx e (40)

where B=(VN;)"™ is the strain-displacement matrix and G° is
the matrix given by:

0 9;( NZ ) node+ 0

nx
G = 55 0 n, |- 0 ﬁy(Nﬁ)nod& (41)
ny n, A, (NGt 3 (Ng)roder

4.2 Interpolations of the Pressure and L2-Projected Pres-
sure Gradient Fields. The L>-projected pressure gradient field
(TT°) is interpolated by using identical shape functions to those

Fig. 4 Displacement field interpolation: (a) Element d.o.f.’s, (b) ¢®(x) function, (c) Heaviside’s step function H%(x), (d) El-

emental unit jump function M%(x)
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chosen for the velocity approximation. In the same way, the pres-
sure is also interpolated by means of C° piecewise linear
functions:

II¢(x,1) =NZ(x)ﬁ“(t); pe(x,1) =Nf,(x)ﬁf(t); Vxe s

X)) =N, @)X ¢‘(x)=N,(x)¢; VxeS (42)

where N; are, again, the classical linear shape functions.
4.3 Discrete Equations. Internal Force Evaluation. The
discrete version of the variational principle Eq. (38) can be for-

mulated as follows: Find 7, D, 11, and B such that they verify the
essential boundary condition Eq. (4) and the following system of
equations:

F(inl) _ F(ext) =0 (43)
where the internal Fi™ and external F**V generalized forces are
defined as:

nel
A f BeTSe(nH)dQ _ Goﬁ(nﬂ)
plind) =t Jayse
u
, : A 1
Fint) — Fl()mt) . G(T)'l—l(ml) _ |:;Mp + L]ﬁ(n+l) — Qﬂ(nﬂ)
(int)
F/-;“ nel _
A f GTAc*d()
e=1 ¢
) (44)
(ext)
Féem) Fﬁem
F(ext) — F[()exl) =|_ HTﬁ<n) (45)
F;;exl) 0

A being the finite element assembling operator, and matrices Gy,
Mp, M, L, H, and Q are computed as follows:

nel nel
Go= A BINdQ |; M,= A f NNdQ
=1 Jayse ! et e T

(46)
nel
M,= A f NTNedQ |
=1 J s

nel

L=A { f (VN;)TT(VN;)dQ] (47)
e=1) J s

nel nel
H=A { f NZTT(VN;)dQ]; 0=A l f N;THTGfdQ]
e=1] J s =1 Jqyse

(48)
Implicitly, Egs. (43)—(45) introduce the strategy of assuming

the uncoupling of the field IL. Its value at the end of step n(I1™),
that is determined by using Eq. (38¢) with the previously known
variable p:

11 = M HOp) (49)

is used for solving the system Eqgs. (43)—(45) at step n+ 1. This
strategy has been previously utilized by Codina et al. and Chi-
umenti et al. [17-19], allowing for a more efficient computational
treatment of the problem.

Following the same integration procedure presented in Oliver
[9], one additional Gauss point is considered for evaluation of

Journal of Applied Mechanics

strains and stresses at S. Thus, integrals on S in Eq. (44), are
referred to terms evaluated in those additional Gauss point multi-
plied by an adequate weight.

4.4 Tangent Matrix. The use of the Newton-Raphson scheme
for solving Egs. (43)—(45) requires the evaluation of the system

jacobian matrix J. Considering that X =[u p B]" is the indepen-
dent variable vector, J can be evaluated as follows:

int) : ~
SFn K Ky, ° Kg 5
oF Sm) _ Kpi K, : Lo o
oFg’ | | K Ky 0 K B
Pall . &I;(;“) X
(50)
where submatrices K;; result:
nel
Kg=A J BB | K=K ;=-G,
e=1] Jayse Qs 51)
nel 1
eTdevgye el. = s
Kﬁﬂ:l_\ f B ‘C Gdﬂ N Kpp__ MP+L
e=I| J s K
/s (52)
nel
_ reTTare el. _
Kg, = I_\ —J G ][diQ ; Kp=-0
e=l s pa
(53)
nel [ _ nel i _ ]
Kgi= A J GTCBdQ’ |+ A J G'CB*dS*
=1 Jase 1 e s ]
(54)
nel i _ nel [ _ T
Kgs= A f GTCGdO | + A J GTCGdS®
=1 J s | e s )
(55)

5 Numerical Simulations

The numerical response of the present model is analyzed by
means of two bidimensional problems. Particularly, we are ad-
dressing our study to determine the ability of the numerical model
for capturing the strain localization mode and the structural peak
load. Also, we analyze other fundamental aspects in failure me-
chanics analysis under softening regime, such as the objectivity of
the numerical results with independence of the finite element
mesh size and orientation.

The mathematical verification and consistency of the model is
studied by comparing alternative finite element formulations,
which are denoted using the nomenclature in Table 1. As it can be
seen there, the set of elements that we use for this comparison
belongs either to the generalized displacement finite element for-
mulation (the constant strain triangle STDSD in the Table and the
BBAR quadrilateral element taken from Simo et al. [20]) or to the
mixed (pressure-velocity) formulations including the PGP stabili-
zation scheme. All of them, excepting the first one, are enriched
with an embedded strong discontinuity kinematics with elemental
support. The traction continuity condition is implemented using
both procedures: The symmetric element type given by Eq. (33)
and the nonsymmetric element type given by Eq. (34).
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Table 1 Element formulations

Nomenclature Element topology Kinematics Incompressibility treatment Element type
PGP Triangle Smooth Velocity PGP (mixed) Scheme

STDSD-N Triangle Strong Disc. None (displacement) Nonsymmetric
STDSD-S Triangle Strong Disc. None (displacement) Symmetric
PGPSD-N Triangle Strong Disc. PGP (mixed) Scheme Nonsymmetric
PGPSD-S Triangle Strong Disc. PGP (mixed) Scheme Symmetric
BBARSD-N Quadrilateral Strong Disc. BBAR Formulation Nonsymmetric
BBARSD-S Quadrilateral Strong Disc. BBAR Formulation Symmetric

In the PGP formulation without embedded strong discontinui-
ties (denoted “smooth velocity kinematics” in the Table 1), solu-
tions have been obtained by regularization of the softening modu-
lus H, redefining it in accordance with:

H™¢=hH (56)

where £ is the characteristic size of the element and H the intrinsic
softening modulus computed as in Eq. (16).

A comparison of the relative computational cost between
PGPSD and BBARSD elements is also reported. For this purpose,
it must be considered that the examples have been run in a PC
equipped with a single Pentium 4 -3.0 GHz, 512 MB Ram—
Processor.

For all cases, a stability factor “c” near to unity (see Eq. (37))
was adopted to perform the numerical tests.

5.1 2D Slope Stability Problem. When undrained loading
conditions are assumed, the constitutive behavior of saturated co-
hesive soils can be approximately modeled by an associative de-
viatoric plastic flow law. In this context, we use a J2 model to
simulate a typical plane strain geotechnical slope stability problem
and its corresponding shear band failure mode. A similar example
was presented in Regueiro et al. [2] and in Oliver et al. [21] where
a BBAR element with embedded strong discontinuities was used.
Due to the lack, at least up to the author’s knowledge, of an
analytical or exact solution for this problem, the above mentioned
strategies (denoted as BBARSD-N in Table 1), will be used as a
reference solution to compare quantitative results.

The effects of including, or not, the strong discontinuity mode
are particularly remarked in the present analysis. Also, the nu-
merical stabilization influence on the solution, which is contrasted
with similar formulations that do not use such strategy, is studied.

The dimensions and boundary conditions of the physical model
are shown in Fig. 5. The test consists of the application of an
incremental downward prescribed displacements “éu” at the
middle of a rigid foot (point A in the same figure). This situation
leads to an instability problem and to the development of a shear
band that propagates through the soil embankment. The material

| 4[m] 6[m]

l I I

8u‘l' .

Rigid foundation

q

Typical failure surface Saturated soil
o) OANNaIe0 S

10 [m] <]

AN AN I\ A AN
| 10 [m] | 10 [m] |

Fig. 5 Slope stability problem: Geometry and boundary
condition
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properties used in the simulation (a J2 plasticity model equipped
with linear softening) are: E=1.0¢7[Pa] (Young’s modulus), v
=045 (Poisson’s ratio), o,=1.0e5[Pa] (yield strength), H=
—2.0e5[Pa] (softening modulus), G;=8e3[N/m] (fracture energy).

Three meshes of triangular elements have been considered for
numerical purposes: M1, M2, and M3 (see Figs. 6(a)-6(c)), with
characteristic element size h=1[m], h=~0.5[m], and &
~(.25[m], respectively. Notice the particular mesh configuration
that has been intentionally generated against to the expected strain
localization path. This situation represents a challenge for the lin-
ear triangle kinematics. A fourth mesh, of quadrilaterals (M4 in
Fig. 6(d)), with element size similar to M3, is used to obtain the
BBARSD-N reference solution.

Figure 7 shows, in gray color, the evolution of those PGPSD-N
elements that are subjected to plastic loading conditions in four
different stages, as the process advances along the time. It is clear
from this figure how the strain localization phenomenon is devel-
oped, inducing the shear band mode.

In Fig. 8 again we show, in gray color, those elements in the
meshes M1, M2, and M3 and using the PGPSD-N approach, that
are post bifurcation regime (were the strong discontinuity is ac-
tive) at the end of the simulated process. We can observe that the
three meshes display a qualitative agreement respect to the shear
band trajectory, with a clear tendency to converge with the mesh
refinement, toward a well defined curve which compares well with
that reported by Regueiro et al. [2]).

Figures 9(a) and 9(b) compare the deformed mesh solutions
obtained using the mixed stabilized formulations either without
embedded strong discontinuity (PGP) or with it (PGPSD-N). In
the first case, it is observed that the zone of strain localization has
a pronounced trend to follow the mesh direction (mesh bias). Fur-
thermore, the solution of the PGP procedure presents a more dif-
fuse deformation pattern respect to that shown by the PGPSD-N.
Both effects determine a noticeable difference in the structural
response (see Fig. 9(c)), mainly in the limit load prediction.

Next, we report the structural response in terms of load versus
the vertical displacement du curves (point A). Figure 10(a) shows

AXXX

(b)

(a)

(C) M3: 3541 triangular elements (d)

M4: 1865 quadrilateral elements

Fig. 6 Slope stability problem: Finite element discretizations
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(a) (b)

(c) (d)

Fig. 7 Slope stability problem: Evolution of plastic loading states using the PGPSD-N element (M3)

these results, which correspond to the PGPSD-N element and dif-
ferent meshes. The M3 solution compares well with those ob-
tained using the BBARSD-N strategy. In Fig. 10(b) we plot the
same results corresponding to the M3 mesh, but using different
finite element formulations. The two responses obtained with the
STDSD procedure reveals a locking (spurious) effect produced by
the isochoric deformation constraints, overestimating the dissi-
pated energy and peak load.

It must be observed that the PGPSD-N scheme shows a good
prediction of the limit load P,, as compared with the reference
solution, and also in terms of the dissipated energy during the
localization process. To quantify both features, we plot in Fig. 11
the convergence analysis of the PGPSD-N and STDSD-N solu-
tions. Figure 11(a) displays in a logarithmic plot the linear regres-
sion curve of the dissipated energy error (||e||;2) as a function of
the mesh size h. The relative error (|le]|.2) of every solution Sy,

Fig. 8 Slope stability problem. PGPSD-N elements in post-bifurcation condition at the end of
the analysis: (a) Mesh M1. (b) Mesh M2. (c) Mesh M3.

(a)

X 10 .
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(c)

Fig. 9 Slope stability problem. Deformed configuration at point “C” in the equilibrium path: (a)
PGP Formulation; (b) PGPSD-N Formulation; (¢) Comparison of the Load-Displacement (5u)

curves for both strategies.
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Fig. 10 Slope stability problem. Load-displacement (6u) curves: (a) PGPSD-N Convergence.

(b) Comparison of elements.
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N'is the reference solution.
Similarly, Fig. 11(b) displays the linear regression curve of the

limit load prediction error as a function of the size mesh /. The
relative error of the peak load solution is determined by means of:

where Puy;) is the maximum value of the vertical footing reac-

From Fig. 11 it is clearly observed a higher accuracy and con-
vergene rate, either in limit load prediction as also in the dissi-
pated energy, of the PGPSD-N model if compared with athe

Finally, the comparative computational cost for PGPSD-N ele-
ment, relative to BBARSD-N formulation, is outlined in Table 2.
Every mesh M1, M2, and M3 of PGPSD-N elements is compared
with an equivalent mesh of quadrilateral BBAR elements having

5.2 Center Cracked Panel. A square (10 X 10[cm?]) cracked
panel subjected to uniaxial vertical displacement is analyzed.

tion displayed by mesh M; and Puggp)= Puggf;{?SD-N.
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