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Abstract. The Characteristic-Based Volume Penalization (CBVP) method for numerical 

simulations of compressible flow over solid obstacles on unstructured meshes is presented. The 

approach belongs to the class of immersed boundary methods and is not relying on body-fitted 

meshes. Characteristic penalization terms, added to the compressible Navier-Stokes equations, 

are used to impose Dirichlet and Neumann boundary conditions on solid-fluid interface with an 

a priori defined accuracy. The details of numerical implementation, utilizing hybrid finite-

volume method with high order edge-based reconstruction schemes in the flow region and low-

order finite-difference approximation inside of the obstacle, are discussed. The developed 

algorithm provides the ability to perform calculations on grids of arbitrary type, including fully 

unstructured meshes. The efficiency of the characteristic based volume penalization method 

and its numerical implementation is demonstrated for shock wave reflection, acoustic pulse 

reflection and Couette flow problems. The results of CBVP simulations are compared with the 

numerical solutions of the same problems using Brinkman volume penalization method. 
 

1 INTRODUCTION 

Traditionally aerodynamic flow simulations are based on body-fitted meshes with solid-fluid 

interface defined by mesh nodes, where the boundary conditions are explicitly imposed. If an 

obstacle has a complicated geometry the construction of such meshes can become 

computationally expensive problem. The use of immersed boundary approach to model 

boundary conditions for such problems provides an attractive alternative because its 

implementation does not require the use of body-conformal computational meshes. 

The volume penalization methods represent a separate sub-class of continuous immersed 

boundary methods, where the presence of an obstacle is mimicked by adding penalization terms 

to the system of governing equations. In Brinkman volume penalization (BP) method the 

obstacle is modelled as a porous medium with low permeability [1]. The formulation utilizes 

Brinkman-type penalization terms applied to the momentum and energy equations inside of the 

obstacle. One of advantages of the BP method is the ability to control the error through the 

penalization parameter with the proven convergence of the solution of the penalized Navier-
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Stokes equations to the exact solution in the limit when the penalization parameter tends to zero 

[2]. 

The BP method was first proposed in Ref. [1] and was successfully used for incompressible 

flows simulations [3, 4, 5, 6]. The consistent extension of the Brinkman volume penalization 

method was proposed in Refs. [7, 8], where for correct reflection and transmission of sound 

waves through a porous medium in addition to Brinkman penalization of momentum and energy 

equations, the continuity equation is also modified inside the obstacle so that the penalized 

porous region acts as a high impedance medium. 

The Brinkman penalization method, despite its ability to rigorously control the error of the 

solution, is limited to problems with Dirichlet boundary conditions. This drawback was recently 

overcome in the Characteristic-Based Volume Penalization (CBVP) method [9] that exploits 

the hyperbolicity of characteristic-based forcing terms to impose general homogeneous and 

inhomogeneous Neumann and Robin boundary conditions. The CBVP method was successfully 

applied to numerical simulation of the diffusion problem, an acoustic pulse reflection, and 

laminar flow around a two-dimensional cylinder. The application of the CBVP method was 

demonstrated for the Adaptive Wavelet Collocation Method [10], which provides active control 

of the solution error and the required local mesh resolution through dynamic structured grid 

adaptation. 

In the present paper, the CBVP method is further refined and demonstrated for numerical 

simulations of viscous compressible flows over rigid obstacles using hybrid finite-volume/finite 

difference method on unstructured computational meshes with high-order edge-based 

reconstruction (EBR) scheme [11] and low order finite-difference approximation respectively 

applied in fluid and solid regions. The integrated CBVP/finite-volume/finite difference method 

is verified by numerical simulations of test problems with adiabatic boundary conditions 

including acoustic pulse and shock wave reflection problems and the Couette flow. 

2 CHARCTERISTIC-BASED VOLUME PENALIZATION METHOD 

The flow is modeled by fully compressible Navier-Stokes equations. The problem is defined 

in the domain   containing the obstacle 
B  surrounded by the fluid, occupying the domain 

E . The boundary between 
B  and 

E  is denoted by 
B  and the whole domain is 

E B=  . 

For the test problems, considered in this paper, the no-slip  
B

w
=u u and adiabatic boundary 

conditions ( ), 0
B

 =n  are respectively imposed on velocity and internal energy, where n is 

inward-pointing normal at the boundary 
B  and 

wu  is the velocity of the moving obstacle. 

The CBVP method [9] with no-slip boundary conditions for the velocity can be written in 

the following form: 

( ) ( ),1
i

i
u i w i n i

b diffusion term

penalty term

u
RHS u u u

t

 
= − − − +  

 
, 

(1) 

where 1b  is the penalization parameter and ( ), t x  is the mask function, which is unity 
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inside and zero outside of the obstacle.  

The penalization parameter b controls the error on the solution by decreasing the timescale 

of the forcing term. To ensure the smoothness of the solution, a diffusion term 
n iu   is added 

to Eq. (1), where 
n  is the numerical diffusion proportional to the size of the mesh cell. The 

term ( )1
iuRHS−  in Eq. (1) is used to remove physical terms from within the obstacle in order 

to prevent secondary effects of coupled systems of equations from contaminating the required 

boundary conditions. This omission of the RHS  together with introduction of numerical 

diffusion results in consistent control over the penalization error and the resolution inside of the 

obstacle, regardless of the external flow physics. 

The Neuman boundary conditions in the CBVP method are imposed through the 

characteristic forcing upon the normal derivative and have the following form: 

 ( ) ( )1 k w

с k

penalty term

RHS n q
t x



   
= − − − 

   
x , (2) 

where 1с  is the penalization parameter, which, in general, is different from the Brinkman 

penalization parameter 
b  used in Eq. (2). Note that for the sake of generality Eq. (2) is written 

for inhomogeneous Neumann boundary conditions.  In the case of adiabatic boundary 

conditions for the internal energy (or temperature) the penalization target is set to zero: 

( ) 0wq =x . 

The penalization term is defined inside the obstacle domain 
B  therefore the definition of 

the normal to the boundary 
B  is generalized to the whole domain 

B  by taking the gradient 

from the scalar distance function: ( ) ( ) ,= n x x  
Bx  where   is the minimal distance to 

the boundary. 

From a mathematical point of view, the meaning of Eq. (2) is to propagate the solution from 

the surface along inward-pointing characteristics that enforce the desired value of derivative at 

the boundary 
B . Since the penalization timescale is controlled through c, selecting 1c  

causes the Eq. (2) to becomes quasi-steady within the domain 
B  on the normalized problem 

timescale 
0Ht L U=  ( L  – typical obstacle size, 

0U  – typical flow velocity). For dimensionless 

variables, denoted by “tilde”, the Eq. (2) in the obstacle domain can be rewritten as 

 

( )

( )

( )
11 1

R
k w

H k

O
O

t
n q

t t x

  
 = − 
  

x , (3) 

where 
R ct L=  is the relaxation time scale. Since for moderate flow velocities 

0 1R H ct t U=  , then it follows from Eq. (3) that the boundary condition is satisfied on the 

time scale ( )Rt  with an asymptotic error of order ( )0 cO U  . 

Note that for flows with attached boundary layers, such as flows in the linear acoustics 

https://www.multitran.com/m.exe?l1=1&l2=2&s=for+the+sake+of+generality&split=1
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limit, the condition ( ), 0
B

p


 =n  is satisfied. In the case of adiabatic wall in order for the 

normal pressure gradient at the boundary to vanish, from the equation of state it follows that 

the density should satisfy the Neuman boundary condition ( ), 0
B

 =n .  

For more general flows, when ( ), 0
B

p


 n , the passive evolutionary condition on 

density could be enforced through the CBVP method. In this case the inhomogeneous boundary 

condition on the normal derivative of the density at the surface ( ) ( ),
B

 = n x  could be 

imposed as 

 ( ) ( )1 ,k

с k

penalty term

RHS n t
t x



   
= − − − 

   
x , (4) 

where ( ), t x  is the solution of initial boundary value problem for the transport equation 

 ,
B

Bсt n n


   
= −  =

   
.

  (5) 

As was elaborated in Ref. [12], the Eq. (5) can be interpreted as extrapolation of the density 

gradient at the boundary into the obstacle domain. 

As the result, the system of penalized equations (1), (2), (4), and (5), which extends the 

Navier – Stokes equations to the obstacle domain, defines a mathematical model of a viscous 

compressible flow over an obstacle and implicitly imposes no-slip and adiabatic boundary 

conditions at the surface using the CBVP method with the asymptotic errors of order ( )1/2

bO   

for the Dirichlet [2] and ( )cO   for the Neumann [9] boundary conditions (also confirmed by 

the Eq. (3)). 

2 COMPUTATIONAL APPROACH 

The system of equations (1), (2), (4) in conservative form is solved together with Eq. (5) by 

numerical integration in the whole computational domain   containing the obstacle 
B . For 

the spatial integration hybrid finite-volume method with high order EBR schemes in the flow 

region and low-order finite-difference approximation inside of the obstacle is used.  

The spatial discretization in the domain \E B =   is based on the vertex-centered 

formulation, which means that all the unknown variables are determined at mesh nodes 

surrounded by computation cells (dual mesh). Convective fluxes are approximated using quasi-

one-dimensional reconstruction of the variables along a mesh edge (EBR scheme). The viscous 

terms in the Navier–Stokes system are approximated using the finite-element method with 

linear basis functions [13].  

The system of equations (1), (2), (4), (5) in the domain B  could be represented in the 

matrix-vector form:  
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Q

t n

 
= +

 

Q
A S , (6) 

where ( , , )T, u, v E=    Q  – vector of conservative variables, 

( )

( )

( )

( ) ( )

2 2

1

1 0 0 0 0 1 1

0 0 0 0
1 0 0 0 0 , .1 1

1 0

1 10 0 0 0 1

0

с

w

b с

wс
b с

w w

b с

u u u
u

v
v v v

u v u v

E
u u u v v v

 
 

 
−   

−  − +    −     
 −  = =

−  − +    
 − + −   

   −  −  − + − +       
 
 

A S  

Without loss of generality, let us consider an unstructured mesh with triangular cells jT  

covering the domain B : B j

j

T =  and ( ) j iT T i j=   . 

For the numerical solution of system (6) an implicit finite difference scheme is constructed: 

 
1 1 1

1
n n n n

n ni i i i
i

iir

+ + +
+



− −
= +

 

Q Q Q Q
A S , 

where the derivative in the direction of the inward-pointing normal is approximated by a one-

sided difference with the index i  denoting the closest point of intersection of the edge of the 

mesh cell with the normal outgoing from the point i . The value of 
iQ  is found by linear 

interpolation over the values of 
1i

Q  and 
2i

Q  where 
1i  and 

2i  are the indices of the nodes 

incident to the intersected edge contained point i . Note that the scheme introduces an implicit 

numerical diffusion proportional to the cell size, used to approximate the normal derivatives in 

system (6). Therefore, the explicit numerical diffusion term 
n u  in Eq. (1) could be omitted. 

An implicit second order time integration method is used to solve the system of equations 

(1), (2), (4) and (5) in the whole computational domain. The solutions in 
E and B  domains 

are coupled through interactions defined by the approximation stencil of the normal derivatives 

in the equations (5) and the variable reconstruction stencil used in the approximation of the 

conservative form of the Navier-Stokes equations in the fluid region. For each iteration during 

the implicit integration step the corresponding linearized system of equations is solved using 

BiCGStab method [14]. 

3 NUMERICAL RESULTS 

In this section, the results of numerical simulation of three test problems with exact analytical 

solutions are discussed. In addition, the results of CBVP simulations are compared with the 

numerical solutions of the same problems using Brinkman volume penalization method with 
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the same time integration and spatial discretization methods [15]. 

3.1 Acoustic pulse reflection 

Let us start by considering the problem of acoustic pulse reflection from the solid boundary. 

The penalized equations are solved in a computational domain    0.65,0.25 0,0.1 = −   with 

the immersed boundary located at 0x =  and the penalization region    0,0.25 0,0.1B =  . 

The numerical computations are conducted on the structured rectangular mesh (SRM3) and 

a sequence of quasi-isotropic unstructured triangular meshes (UTM1, UTM2, UTM3) with 

progressively refined mesh element size. For comparison, the numerical results are also 

obtained for anisotropic triangular mesh (UTM4) with the element size near the wall matching 

the size of the UTM3 mesh with continuous increase of the element size with the stretching 

factor of 1.02, so that away from the interface the mesh approaches UTM1 resolution. This 

problem is solved in the inviscid limit with 8Re 10=  and the penalization parameters 610b

− =  

and 210c

− = . 

The no-slip and adiabatic boundary conditions at the fluid-solid interface are approximated 

by CBVP method. The periodic boundary conditions are applied in the vertical direction and 

the Dirichlet boundary conditions for the unperturbed medium are used on the left and right 

computational boundaries. 

The initial conditions correspond to the localized pulse defined as 

1
1 , , , 0.45 0.05u u p p x   = + = = + −   −


, 

where 
4 4

30.25 0.25
1 1 , 10

0.2 0.2

x x
u p A A −+ +   

   = = = − + =   
   

. 

 

Figure 1: Pressure pulsation of the wave at the time of reflection 

The pulse, initially propagating toward the solid wall, reflects and start moving in opposite 

direction. Figure 1 shows the CBVP and BP solutions for the pressure near the wall at the time
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0.25t =  (the time of reflection from the wall) together with the exact solution shown for 

comparison. A good agreement between the analytical solution and the CBVP solutions even 

on the coarse mesh is observed. In contrast the error of the BP solution is noticeable even on 

the finest mesh. 

The mesh convergence for CBVP and BP solutions is shown in Table 1. The errors of the 

numerical solution for the pressure fluctuations in the root-mean-square norm, are calculated in 

the flow domain at the time 0.5t = . 

Table1: 2L -norm error of reflected pulse for 0.5t = . 

 SRM3 UMT1 UMT2 UMT3 UMT4 

BPM 4.72e-6 1.33e-5 7.33e-6 3.71e-6 4.93e-6 

CBVPM 9.82e-7 3.04e-6 1.67e-6 8.26e-7 7.20e-7 

The errors in columns UMT1-UMT3 confirm the linear convergence of the penalized 

solution with the error approximately decreasing by the factor of 2 when the mesh resolution is 

refined by the same factor. The results for the anisotropic UMT4 mesh are close to the 

simulations on the fine UMT3 mesh. Thus, it is confirmed that the error is defined by the type 

of volume penalization and the mesh size in the vicinity of the wall. The results reported in 

Table 1 clearly demonstrate that the Brinkman volume penalization method has a lower 

accuracy than the characteristic-based volume penalization method. 

3.2 Shock wave reflection 

For the second test problem consider a one-dimensional Sod (shock tube) test problem 

solved in a two-dimensional formulation in a rectangular computational domain 

   0,100 0,4 =  with the immersed solid-fluid interface located at 80x = , the penalization 

domain    80,100 0, 4B =   and the initial shock location at x= 30. The problem is solved for 

three quasi-isotropic triangular unstructured meshes with the following characteristic element 

sizes: 1 (UMT1 grid), 0.5 (UMT2 grid), 0.25 (UMT3 grid). 

The discontinuous initial conditions are given by 

( )
( ) ( )

( )
1

2

, , , 1,0,0,1 30
, , ,

, , , , 30,

u v p x
u v p

u v p x

  =  
 = 

 
 

where the flow state in front of the shock ( )
2

, , ,u v p  is chosen according to the Rankine–

Hugoniot jump conditions. 

This problem is solved in the inviscid limit with 7Re 10=  and the penalization parameters 
610b

− =  and 610c

− = . No-slip and adiabatic boundary conditions are imposed implicitly on 

the solid wall at 80x =  through CBVP and BP methods. 

The pressure distributions of the reflected shock wave at time 60t =  for CBVP and BP 

simulations are presented in Fig. 2, where the exact analytical solution is also shown for the 

reference. As can be seen from the figure, the numerical solutions obtained by CBVP method 

on fine (UMT3) and coarse (UMT1) mesh are in good agreement with the analytical solution. 
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In contrast the BP solutions on the same meshes clearly underestimate the pressure of the 

reflected shock wave with the noticeable phase lag, which is mainly due to incorrect definition 

of the energy flux at the boundary and the pressure seepage, caused by the strong pressure 

gradient inside of the penalization region. The CBVP simulations result in the correct pressure 

gradient on the solid wall, due to the correct calculation of the density gradient, extrapolated 

from the solid boundary, and the temperature gradient imposed thorough adiabatic boundary 

conditions at the interface of the “immersed” domain, resulting in a zero energy flux at the 

boundary and, as a consequence, the correct reflection of the shock wave. 

 

Figure 2: Pressure pulsation of the shock wave at time 60t =  

3.2 Couette flow 

For the third test problem the two-dimensional Couette flow between two parallel plates with 

tangential relative motion is considered. The left plate is isothermal and stationary, while the 

other moves at a constant velocity and is adiabatic. The temperature dependent nondimensional 

dynamic viscosity of form ( )
1/2

0 ReT T
−

 =  is assumed, where 
0T  is the plate temperature. 

The problem is solved for Re 1= , constant Prandtl number Pr=1, and the penalization 

parameters 310b

− =  and 210c

− = .   

The penalized equations are solved in the computational domain    0.5,0.5 0,0.02 = −   

using quasi-uniform triangular meshes with the following typical mesh cell sizes: 0.02x =

(UMT1 mesh), 0.01  (UMT2 mesh), 0.005  (UMT3 mesh). 

The plates are located perpendicular to the OX axis with the surfaces located along 

0.5Lx = −  and 0.2Rx =  planes. On the left boundary of the computational domain, which 

coincides with the surface of the left plate ( )Lx x= , the isothermal ( 3LT =  ) and no-slip 

boundary conditions are imposed. The constant velocity 10Pv =  and adiabatic 0T x  =  

boundary conditions on the right plate ( )Rx x=  are imposed implicitly using the characteristic 

based volume penalization method. The simulations using Brinkman volume penalization 

method are also caried out for comparison.  
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The problem has the exact solution [16] which can be written as 

( ) ( )

( )
( )( )
( )( ) ( )

( )

2

1 2

,

cos Pr γ 11
, arctg ,

2γcos

R R
L

R LR L L

T x x

c x x v
x T c

x xc x x T

= 

 − − 
  = =  
 −−   

 

( )
( ) ( )( )

( )( )

1 2
sinPr γ 1

2γ cos

R

R L

R L

c x x
v x v T

c x x

−
−− 

= −  
− 

. 

The numerical simulations are continued until a stationary solution independent of y -

coordinate is obtained. The velocity and temperature profiles near the right boundary, computed 

on the coarse (UMT1) and fine (UMT3) meshes using CBVP and BP methods are shown in 

Fig. 3, where exact solution is also shown for comparison. The numerical simulations using the 

Characteristic-Based Volume Penalization method result in more accurate solutions compared 

to the Brinkman volume penalization method. 

 

Figure 3: Velocity and temperature near the right plate for Couette flow problem 

Table2: 
2L -error of the CBVP solution for the temperature 

UMT1 UMT2 UMT3 

1.07e-1 4.05e-2 1.83e-2 

Table 2 shows the mesh convergence for CBVP method. The root-mean-square errors for 

numerical solution calculated over flow domain \ B   for different meshes demonstrate the 

linear convergence of CBVP method caused by the dominance of the numerical error over the 

penalization error introduced by CBVP method for the given choice of the penalization 

parameters that are held constant [9]. Note that, in contrast to the previous test problems, in this 

problem, an inhomogeneous no-slip boundary conditions are modeled. 
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4 CONCLUSIONS 

A method for numerical simulation of compressible flows over solid obstacles using non-

boundary conforming unstructured meshes is presented. The mathematical model is based on the 

Navier-Stokes equations and makes use of the characteristic-based volume penalization method 

to mimic the effect of the obstacle on a flow. The CBVP method allows to impose general (Dirichlet, 

Neumann and Robin) boundary conditions and is relatively simple to implement numerically. The 

penalized Navier-Stokes equations are solved to simulate compressible flow around obstacles. In 

the solid region the hyperbolic penalization equations are solved to propagate the solution from the 

surface along the inward-pointing characteristics that enforce the desired value of derivative with 

an a priori defined accuracy. The accuracy and efficiency of the developed method is demonstrated 

for three cases with the increasing complexity: the acoustic pulse and shock wave reflection 

problems and the Couette flow. The results for all three cases are in good agreement with the 

analytical solutions. The CBVP methods demonstrate consistently more accurate solutions 

compared to the numerical solution of the same problem obtained using Brinkman volume 

penalization method. The CBVP method maintains rigorous control of the error through a priori 

chosen parameters for all boundary conditions.  
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