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Abstract. A computational method is proposed for the lower-bound limit analysis of masonry 
arches with multiple failure sections. Main motivation is the observation that, not only the 
position, but also the orientation of the failure sections in an arch might not be known in 
advance in practical applications. The lower-bound limit analysis problem is formulated as a 
straightforward linear programming problem. Numerical simulations highlight the predicting 
capabilities of the proposed approach, enabling an accurate and safe prediction of the 
loading capacity of masonry arches. 

1 INTRODUCTION 
 The structural analysis of masonry structures plays a critical role in the effort to preserve 
and restore architectural heritage and historical buildings. Many computational approaches 
have been developed for addressing such a task, at different scales and levels of complexity, 
including micromechanical approaches (e.g., see [1,2]), multiscale/homogenization 
approaches (e.g., see [3-6]) and macromechanical/phenomenological approaches (e.g., see [7-
11]), to be used in finite element formulations for inelastic structures (e.g., see [12-18]). As an 
alternative strategy, whose roots trace back to the first discovery by Robert Hook of the 
analogy between the structural behavior of a masonry arch and that of a catenary, the 
structural capacity can be computed by a limit analysis approach (e.g., see [19,20]).   
 In last decades, modern computers and advanced numerical methods have made possible to 
translate the limit analysis into a powerful tool for the analysis of masonry structures (e.g., see 
[21,22]. Restricting the attention to masonry arches, a successful approach is the rigid block 
computational method, originally conceived by Livesley [23], which regards the structure as a 
discrete system of rigid blocks exchanging unknown forces through their contact interfaces. 
The method has also been extended to three-dimensional structures (e.g, see [24,25]), non-
associative frictional behavior (e.g, see [26-29]) and large displacement regime (e.g, see 
[30,31]). In a different line of research, several computational approaches resort to the 
concept of thrust line for performing the lower-bound limit analysis of masonry arches (e.g., 
see [32-35]) Alternatively, in [36], it has been proposed to numerically integrate 
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Figure 1: Collapse of masonry arches involving inclined failure sections with respect to the courses of the 

masonry units, hence calling for a generalization of the classical notion of arch with prescribed stereotomy. 

Milankovitch's equilibrium equations [37,38], to characterize the equilibrated stress states of 
the arch, and then to proceed with the stress state optimization. 
 Interestingly, the methods mentioned above require, even if in disguise, that a stereotomy 
of the arch is clearly recognized for a spatial discretization of the problem. Indeed, as already 
pointed out by Milankovitch [37], the arch stereotomy does not simply allow for a reduction 
of the problem, but it rather affects its solution, because it implicitly defines the stereotomy 
sections as the potential failure sections, i.e. the sections where the opening of hinges can take 
place. Actually, no problem arises in the case of masonry arches constituted by individual 
voussoirs, as the stereotomy is naturally identified with the physical joints between them. 
Conversely, when the arch is monolithic or made by small units arranged in a regular or 
irregular texture, the selection of a stereotomy becomes contrived, and, for each possible 
selection, a different solution of the lower-bound limit analysis problem is found. Basing on 
such observation, in [39,40], the non-uniqueness of the thrust line for a monolithic arch is 
concluded, and a variational formulation is proposed, which is claimed to be “liberated from 
the concept of the thrust line” [39]. Differently, in [41] it has been suggested to overcome the 
concept of stereotomy for monolithic masonry arches, and to account for failure sections with 
arbitrary position and orientation. 
 Aim of the present work is to propose a computational approach for the lower-bound limit 
analysis of masonry arches with multiple failure sections. Main motivation is the observation 
that not only the position, but also the orientation of the failure sections in an arch might not 
be known in advance in practical applications (Figure 1). Hence, provided a suitable discrete 
number of potential failure sections is accounted for, the lower-bound limit analysis of a 
masonry arch is addressed by a straightforward LP problem. It is remarked that, considering 
multiple potential failure sections allows for an accurate description of the class of its 
equilibrated and statically admissible stress. Consequently, the resulting solution of the lower-
bound limit analysis problem corresponds to the most dangerous stress state that might be 
induced by the external loads, or, from the dual kinematical standpoint, corresponds to the 
most dangerous collapse mechanism that might be induced in the structure by the opening of 
linear cracks. A safer prediction of the structural loading capacity is obtained compared to 
usual analysis, because taking into account a broader class of potential collapse states. 
Numerical simulations are presented for investigating the potentialities of the proposed 
computational approach.  
The present paper is organized as follows. In Section 2 the lower-bound limit analysis of 
masonry arches with multiple failure sections is formulated. Numerical simulations are 
reported in Section 3 and conclusions are outlined in Section 4. 
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Figure 2: Masonry arch: geometric model, typical potential failure section and positive internal stress 

resultants are shown.  

2 FORMULATION  
Let  be the domain occupied by a masonry arch, as depicted in Figure 2. A 

Cartesian reference frame  is introduced, with  and  respectively denoting the unit 
vectors parallel to the  and coordinate axes, and . A reference curve  is 
introduced, parameterized by a map , with the points  and  belonging to 
the two bases of the arch, respectively denoted by  and . The intrados [resp., extrados] of 
the arch is denoted by  [resp., ]. It is assumed that the arch is clamped at its bases  and 

, that a distribution of body forces  is applied in , and that a distribution of surface 
forces  [resp., ] acts over [resp., ]. In particular, those forces are expressed as 

and , i.e. split into the sum of dead and live contributions, the 
latter obtained by amplification of a basic distribution through the load multiplier . 
Furthermore, the arch is assumed to be comprised by a rigid no-tension material (e.g., see 
[19,20]). 

A potential failure section of the arch  is an oriented line segment, which contains the 
point , has orientation defined by the polar angle , and whose initial [resp., final] 
endpoint is located on the extrados [resp., intrados] curve. The unit vectors  and , 
respectively parallel and normal to  are introduced. In addition, the signed distance of the 
endpoint of the section  on [resp., ], measured from  along , is denoted by 

 [resp., ]. It is noticed that the section  cuts the arch into two portions, namely 

 and . Let  and  denote the portion of  bounding  and , 

respectively. 
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The (internal) stress resultants  and  at the potential failure section  are 
defined by: 

 

(1) 

where  and  respectively denote the opposite of the clamp constraint force and moment 
reactions at the basis , henceforth intended as the static indeterminate reactions of the 
problem.  
The following component-wise representation of the stress resultants is introduced: 

  (2) 

where ,  and  can be respectively interpreted as normal force, shear force 
and bending moment at the potential failure section . 

Following the model of no-tension material, the stress resultants and  acting 
over the potential failure section  have to obey suitable static admissibility conditions. 
Specifically, unilateral conditions are enforced: 

  (3) 

implying the normal force to be compressive, and the center of pressure to lie inside the 
section, coherently with the infinite compressive strength and vanishing tensile strenght of the 
material. As customary in the analysis of masonry arches, it is assumed that a sufficiently 
large friction angle is available, such that a no-sliding requirement is tacitly satisfied. 

The static theorem of limit analysis requires to maximize the multiplier  of the basic live 
loads over the space of equilibrated and statically admissible stress resultants. Indeed, 
equations (1) supply an explicit characterization of the equilibrated stress resultants acting 
over the section  in terms of the statically indeterminate reactions  and . The latter 
are component-wise collected in the following vector: 

  (4) 

where , , , and the semicolon denotes column stacking. On the 
other hand, by exploiting positions (2), the equilibrated stress resultants (1) can be substituted 
in the static admissibility conditions (3), which boil down to linear inequalities in the 
unknowns  and . Hence, the lower-bound limit analysis problem for a masonry arch with 
multiple failure sections reduces to: 

  
(5) 

Indeed, for developing a computational solution strategy of problem (5), a suitable 
discretization is undertaken with respect to the parameters  and . That amounts at checking 
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the static admissibility conditions only for a discrete number, say , of potential failure 
sections, referred to as control sections. Hence, problem (5) can be finally written in the form: 

  
(6) 

where  is a  matrix, and and  are  vectors (for details on the assembling 
procedure, see [41]). Problem (6) is a Linear Programming (LP) problem, whose solution can 
be addressed by standard optimization tools. 

3 NUMERICAL SIMULATIONS 
A pointed arch is considered, as depicted in Figure 3(a). Its geometry is characterized by 

the radius , the eccentricity , the embrace angle  and the thickness . The intrados and 
extrados curves of the arch are the union of two arcs of circle, having radius , center at 
point of coordinates  and central angle , measured from the vertical 
direction. In order to mimic a pseudo-static earthquake loading, it is assumed that the arch is 
subjected to the self-weight (dead load) and to a distribution of horizontal forces proportional 
to the self-weight (live load). It is also assumed that the arch is clamped at its springing 
sections. 

The reference curve of the arch is defined as its mid-curve. For investigating how the 
selection of potential failure sections affects the problem solution, the following choices are 
considered (Figure 3(b)): 

- the solution labeled as “normal” refers to an arch with prescribed normal stereotomy, 
i.e. with potential failure sections that are normal to the mid-curve of the arch; 

- the solution labeled as “multiple, ” refers to an arch made of units with height-
to-width ratio , arranged along the normal direction. Two different case studies are 
here considered, respectively with   and . 

For a discretization, equally spaced control points, at a distance from each other, are 
first considered along the reference curve of the arch. For the solution with normal 
stereotomy, normal control sections are selected passing through the control points. For the 
solution with multiple potential failure sections, a discrete set of orientation angles, 
geometrically compatible with the texture of the masonry, is preferred to generate potential 
failure sections. Accordingly, in addition to control sections parallel to the normal direction, 
also control sections with inclination angles , , with respect to 
the normal direction, are considered [41] (Figure 3(b)). 
As a preliminary step, a minimum thrust analysis has been conducted to compute the 
minimum thickness-to-radius ratio  of the pointed arch for the two values of the 
eccentricity-to-radius ratio  at varying of the embrace angle . Relevant results 
are respectively reported in Tables 1 and 2. Values corresponding to solutions with normal 
stereotomy are in agreement with the ones reported in [42]. It is noticed that slightly larger 
values of the minimum thickness-to-radius ratio  are required when multiple potential 
failure sections are taken into account. 

 

C

maxλ ,X λ,

s.t. AX − b lλ − bd ≤ 0,

A 3C × 3 bd b l 3C ×1

R e β h
R ± h / 2

±e, − Rcos β / 2( )( ) β / 2

η = 1:n
η

n = 2 n = 4
Rβ / 500

ϑk = ±arctan 1/ n / 2 + kn( )( ) k = 0,1{ }

hmin / R
e / R = 0.4, 0.6{ } β

hmin / R



Nicola A. Nodargi and Paolo Bisegna 

 6 

 
Figure 3: Pointed arch: (a) geometry, with highlighted reference curve, and (b) schematic illustration of the 

relationship between masonry texture and preferred (i.e. geometrically compatible) orientations of potential 
failure sections in the solution labeled as “multiple” (units with height-to-width ratio  are considered). 

Table 1: Pointed arch: minimum thickness-to-radius ratio  for pointed arches with eccentricity-to-
radius radio  and embrace angle , assuming normal stereotomy or multiple potential failure sections.  

Embrace angle  [°] Normalized minimum thickness   
 Normal Multiple 
      

180 0.0468 0.0474 0.0479 
160 0.0371 0.0376 0.0384 
140 0.0371 0.0376 0.0384 
120 0.0364 0.0369 0.0377 
100 0.0316 0.0320 0.0326 
80 0.0226 0.0228 0.0232 
60 0.0099 0.0095 0.0099 

 
Table 2: Pointed arch: minimum thickness-to-radius ratio  for pointed arches with eccentricity-to-

radius radio  and embrace angle , assuming normal stereotomy or multiple potential failure sections.  

Embrace angle  [°] Normalized minimum thickness   
 Normal Multiple 
      

180 0.0391 0.0401 0.0417 
160 0.0390 0.0401 0.0417 
140 0.0388 0.0398 0.0414 
120 0.0337 0.0346 0.0360 
100 0.0226 0.0231 0.0240 
80 0.0054 0.0054 0.0051 
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Figure 4: Pointed arch: horizontal forces collapse multiplier  versus thickness-to-radius radio  for 

pointed arches with eccentricity-to-radius ratio and embrace angle , assuming normal stereotomy or 
multiple potential failure sections. 

 
Figure 5: Pointed arch: horizontal forces collapse multiplier  versus thickness-to-radius radio  for 

pointed arches with eccentricity-to-radius ratio  and embrace angle , assuming normal stereotomy or 
multiple potential failure sections. 

A parametric analysis on the collapse multiplier  of the horizontal forces, as a function of 
the thickness-to-radius ratio , has been carried out for the values of the eccentricity-to-
radius ratio , at varying of the embrace angle . The results are shown in 
Figures 4 and 5.  
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Figure 6: Pointed arch: (a) actual failure sections (first row) and collapse mechanism (second row) under 
horizontal forces proportional to self-weight, assuming normal stereotomy. Eccentricity-to-radius ratio

, embrace angle , and thickness-to-radius radio (a) , (b) 
and (c) are considered. 

 
Figure 7: Pointed arch: (a) actual failure sections (first row) and collapse mechanism (second row) under 

horizontal forces proportional to self-weight, assuming multiple potential failure sections (units with height-to-
width ratio ). Eccentricity-to-radius ratio , embrace angle , and thickness-to-radius 

radio (a) , (b) and (c) are considered. 

As already noted in [42] in regards to the solution with normal stereotomy, for given 
values of  and , a two-branches curve describes the collapse multiplier  as a function 
of the thickness-to-radius ratio . In particular, the first branch, corresponding to small 
thickness-to-radius ratios , is associated to a four-hinge collapse mechanism in which no 
right-springing hinge is involved, Figure 6(a). Conversely, a right-springing hinge 
characterizes the second branch of the curve, corresponding to moderately large or large 
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thickness-to-radius ratios . In that case, for increasing thickness-to-radius ratios , the  
most-left hinge smoothly migrates towards the left springing of the arch, with the collapse 
mechanism shifting from one as in Figure 6(b) to one as in Figure 6(c). Indeed, for small 
embrace angles , the second branch of the curve is not developed at all.  

Concerning the solution with multiple failure sections, the curves of  versus  have 
the same general trend as the ones pertaining to the solution labeled as “normal”. In fact, 
collapse mechanisms that are qualitatively similar take place, i.e. four-hinge collapse 
mechanisms with right-hinge springing or not depending on , as depicted in Figure 7. 
However, the fact that the actual failure sections may have different orientations with respect 
to the normal direction implies that the solution with multiple potential failure sections is 
associated to a reduced loading capacity of the arch with respect to the solution with normal 
stereotomy. The reduction of the loading capacity of the arch predicted in the case of multiple 
potential failure sections results to be more pronounced for larger values of the height-to-
width ratio  of the units (i.e., for less elongated units), and may be in the order of 15%. As 
an increase in  is related to an increase in the maximum inclination angle of the potential 
failure sections with respect to the normal direction, that suggests the maximum inclination 
angle of the potential failure sections to be a decisive parameter in the determination of the 
loading capacity of the arch.  

In closing, it is remarked that the selection of potential failure sections in the arch has a 
significant influence in the prediction of its collapse states. Except for arches that are made of 
individual voussoirs, which can be treated by resorting to the classical notion of element with 
prescribed stereotomy, a crucial step for a safe assessment of the loading capacity of the arch 
is to take into consideration at least the preferred potential failure sections (i.e., those that are 
geometrically compatible with the masonry material under investigation). As a consequence, 
collapse states that are usually unaccounted for come into light, and more conservative 
requirements need to be fulfilled by the arch. 

4 CONCLUSIONS 
A computational method has been proposed for addressing the lower-bound limit analysis 

of masonry arches with multiple potential failure sections. That model is conceived to 
generalize the classical notion of masonry arch with prescribed stereotomy, which results 
insufficient in applications where the orientation of the failure sections, in addition to their 
position, is not a priori known. In fact considering multiple potential failure sections amounts 
at taking into account a broader class of potential collapse mechanisms induced by the 
opening of linear cracks with multiple potential positions and orientations. Provided a finite 
number of control sections is considered in the arch, the lower-bound limit analysis problem 
has been formulated as a straightforward linear programming problem. Numerical 
simulations, also dealing with benchmark problems, have been presented for highlighting the 
predicting capabilities of the proposed methodology.  
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