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Abstract

In this paper we explore tramp ship routing and scheduling. Tramp ships operate much like
taxies following the available demand as opposed to liner ships that operate more like busses
on a fixed route network according to a published timetable. Tramp operators can determine
some of their demand in advance by entering into long term contracts and then try to max-
imise profits from optional voyages found in the spot market. Routing and scheduling a tramp
fleet to best utilise fleet capacity according to current demand is therefore an ongoing and
complicated problem. Here we add further complexity to the routing and scheduling problem
by incorporating voyage separation requirements that enforce a minimum time spread between
some voyages. The incorporation of these separation requirements helps balance the conflicting
objectives of maximising profit for the tramp operator and minimising inventory costs for the
charterer, since these costs increase if similar voyages are not performed with some separation
in time. We have developed a new and exact Branch-and-Price procedure for this problem. We
use a dynamic programming algorithm to generate columns and use a modified time window
branching scheme to enforce the voyage separation requirements which we relax in the master
problem. Computational results show that our algorithm finds very good if not optimal solu-
tions extremely fast though one instance requires longer time. We also compare our method
to an earlier a priori path generation method which we show is not optimal. Computational
results confirm this as our algorithm consistently finds solutions that are equally good or bet-
ter than those from the a priori generation method. Furthermore, for all but one instance, our
solutions are found in the same or shorter time than those from the a priori generation method.

1 Introduction

With over 9 billion tons of cargo transported by the international shipping industry every year
(UNCTAD, 2013) there is no doubt that the maritime sector plays a vital role in world trade.
Maritime transportation therefore constitutes an important research area and in this paper we
explore tramp shipping where ships sail much like taxies following the available demand. This is in
contrast to liner shipping where ships operate more like busses following a fixed route network and
a published timetable. Tramp operators do however know some of their demand in advance since
they can enter into long term contracts and then seek to maximise profit from optional cargoes
found in the spot market.
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For tramp operators a very important an ongoing problem is how to most efficiently route
and schedule their fleets according to current demand. This is precisely the problem we consider
here. However, we add further complexity to the problem by incorporating voyage separation
requirements which enforce a minimum time spread between some voyages. This is done in order to
find a balance between maximising profit for the ship operator and increasing customer satisfaction
for the charterer who faces increased inventory costs if similar voyages are not performed with some
separation in time. Thereby, this incorporation of voyage separation requirements correspond to
a crude way of viewing the tramp ship routing and scheduling problem in the broader context of
the supply chain. Furthermore, with already low freight rates and increased competition amongst
operators, the customer satisfaction perspective is interesting and Norstad et al. (2013) show that
it can be incorporated with only a small decrease in profit. Results from Norstad et al. (2013)
show that their methods struggle on larger and more complex problem instances and so, the aim
here is to develop a more efficient solution method.

In this paper we therefore consider the tramp ship routing and scheduling problem with voyage
separation requirements. We present a mixed integer programming formulation for this problem
and devise a new, exact solution method for it. This solution method is a Branch-and-Price
procedure with a dynamic programming algorithm to generate the columns. A modified time
window branching scheme is used to enforce the voyage separation requirements, which are relaxed
in the master problem. Computational results on 16 instances show that this method finds very
good if not optimal solutions extremely fast although one instance requires longer time. We also
compare our algorithm to an a priori path generation method from Norstad et al. (2013). We
argue that their method is not optimal and computational results verify this. In fact, the profits
from our solutions are consistently equal to or better than theirs and are as much as 6% higher on
one instance. Furthermore, on all but one instance our solution is obtained in the same or shorter
time than that of the a priori path generation method.

The remainder of the paper is organized as follows. In Section 2 relevant literature is presented
while Section 3 provides a problem description as well as a non-linear mathematical model for the
problem. Section 4 describes the decomposition of the problem and the dynamic column genera-
tion procedure, i.e. the pricing part of the proposed algorithm. Section 5 describes the branching
part of the algorithm, namely time window branching and constraint branching. In Section 6, we
describe the data instances used to evaluate the performance of our algorithm as well as the results
obtained with our algorithm on these instances. We also compare these results to results obtained
from running the a priori path generation method from Norstad et al. (2013) on these same in-
stances. Finally, concluding remarks and suggestions for future work are discussed in Section 7.

2 Literature Review

Mathematical formulations and discussions on solution methods for a wide range of maritime
problems on all planning levels can be found in Christiansen et al. (2007). Furthermore, a thorough
review of literature focused on ship routing and scheduling before 2013 can be found in the four
review papers, Ronen (1983), Ronen (1993), Christiansen et al. (2004) and Christiansen et al.
(2013). The tramp ship routing and scheduling problem considered here is also closely related to
the vehicle routing problem with time windows, for which we refer the reader to Cordeau et al.
(2002).

Recent work on tramp ship routing and scheduling include Cóccola et al. (2014) who present a
novel column generation approach in which the conventional dynamic programming route-generator
is replaced by a continuous time MILP slave problem. Their computational results show that
their method outperforms both a pure exact optimisation model and a heuristic solution method
previously reported in the literature. Castillo-Villar et al. (2014) present a Variable Neighborhood
Search based heuristic procedure for solving the tramp ship routing and scheduling problem with
discretised time windows. They ignore optional cargoes and therefore seek to minimise cost rather
than to maximise profit. However, the discretisation approach allows them to incorporate several
practical extensions and they specifically investigate the inclusion of variable speed. St̊alhane
et al. (2014) combine traditional tramp shipping with a vendor managed inventory service in an
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attempt to challenge the traditional Contract of Affreightment which is the standard agreement
between a tramp ship company and a charterer. They present an exact solution method as well
as a heuristic for solving larger instances. St̊alhane et al. (2012) and Vilhelmsen et al. (2013) both
extend the basic problem by investigating, respectively, split loads and the integration of bunker
planning. As further extensions to the basic problem, Fagerholt and Ronen (2013) present and
consolidate results for three practical extensions within bulk shipping: (1) flexible cargo quantities,
(2) split cargoes, and (3) sailing speed optimization. Kang et al. (2012) consider the interaction
between ship routing and scheduling and ship deployment, though in a context quite different from
ours. Somewhere between tramp shipping and liner shipping, Moon et al. (2014) also investigate
a combined ship routing and fleet deployment problem.

In this paper we extend the basic tramp ship routing and scheduling problem by including
voyage separation requirements. Such requirements are also considered in Norstad et al. (2013)
in a context similar to ours. Their computational results show that the introduction of voyage
separation requirements only leads to a marginal reduction in profit. They present an arc flow
formulation as well as a path flow formulation solved using a priori path generation. They conclude
that both models work well on small problem instances and that the path flow model is also
capable of solving real life size instances within an acceptable time. However, for larger instances,
or situations with further complexity, neither of the two solution methods are applicable. We
investigate the path flow approach further in Section 6, where we also compare it to our solution
method.

Within liner shipping, another example of time separation constraints can be found in Sigurd
et al. (2005). They consider a variant of the general pickup and delivery problem with multiple
time windows and the addition of requirements for recurring visits, separation between visits and
limits on transport lead-time. They use a heuristic branch-and-price algorithm to obtain a fixed
visit schedule with a recurring route for each ship.

Within other transportation modes, we can find numerous examples of time separation require-
ments. Especially synchronisation constraints are often encountered in vehicle routing, see e.g.
Reinhardt et al. (2013) who consider synchronized dial-a-ride transportation for airport passengers
with reduced mobility or Drexl (2013) who extend the vehicle routing problem to include trailers
and transshipments and describe how to model several important problems within this context.
More general temporal dependencies are handled in Dohn et al. (2011) for the vehicle routing
problem with time windows. They present a comprehensive description of literature dealing with
both synchronisation constraints and more general temporal dependencies within various transport
modes, crew scheduling and even machine scheduling. They present two compact formulations and
the Dantzig-Wolfe decompositions of these formulations. Four different master problem formula-
tions are proposed along with a time window branching scheme used to enforce feasibility on the
relaxed master problems. Their computational study shows that, depending on the problem at
hand, the best performance is achieved either by relaxing the temporal dependency constraints in
the master problem, or by using a time-indexed model, where generalized precedence constraints
are added as cuts when they become severely violated.

3 Problem Description

In this section we give a problem description and present a mathematical formulation for the Tramp
Ship Routing And Scheduling Problem with Voyage Separation Requirements (TSRSPVSR).

A tramp operator typically has long term contracts that obligate him to perform some voyages;
however, he/she can choose to perform additional voyages, so called spot voyages, if fleet capacity
allows it and it is profitable. The objective is to create a profit maximizing set of fleet schedules,
one for each ship in the fleet, where a schedule is a sequence and timing of port calls representing
the voyages. The optimal solution therefore combines interdependent decisions on which optional
voyages to perform, the assignment of voyages to ships and the optimal sequence and timing of
port calls for each ship. If capacity is insufficient to perform all mandatory contract voyages, it is
possible to charter in spot vessels to perform some of these.
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A voyage is mainly characterized by the quantity to be transported, the revenue obtained from
transporting it and the pickup and discharge ports. There is also a ship specific service time in
ports and a time window giving the earliest and latest start for each voyage. We assume that a
ship can only perform one voyage at a time corresponding to the case of full shiploads.

Several voyages can be identical except for their time windows for start of service. In fact,
contract cargoes stem from contracts of affreightment and these often state that the operator must
perform a specific voyage a given number of times during a predefined time interval, e.g. three times
during a month. Since such voyages correspond to the same geographical route, we group them
according to these trade routes. Thereby, the tramp operator has contract trade routes on which
a specific number of identical voyages must be performed and can choose to perform additional
spot voyages. Spot voyages can also be grouped according to trade routes. However, any number
of voyages on such spot trade routes can be performed as opposed to contract trade routes where
all voyages must be performed.

Contracts of affreightment often contain a contract clause stating that voyages must be per-
formed ’fairly evenly spread’ in time without specifically defining what this means. In practice it
means that, following the previous example with a contract trade requiring three voyages during
a month, the tramp operator should not perform all three voyages within the first week and then
do nothing for the remaining three weeks. As discussed in Norstad et al. (2013), these contract
clauses can be handled either by imposing additional time windows on voyage start times or by
imposing restrictions on the minimum time spread between the start of consecutive voyages on the
same trade. Obviously, there is a trade off between the quality of service provided to the charterer
and the flexibility of the tramp operator. Using restrictions on the minimum time spread seems to
provide the best balance between these two conflicting objectives, and so we adhere to this option
here, just as in Norstad et al. (2013). Note that this time spread must be adhered to even if spot
vessels are involved.

A tramp fleet is usually heterogeneous, comprised of ships of different sizes, load capacities,
fuel consumptions, speeds, and other characteristics. Ships can be occupied with prior tasks when
planning starts so each ship is further characterized by the time it is available for service and the
location it is at when it becomes available. There are also maintenance requirements for some ships
and these must be respected in the scheduling process. The characteristics of a ship determine
which voyages it is compatible with.

As we consider a fixed fleet we can disregard the fixed setup costs and focus on the variable
operating costs. The main sailing cost is fuel cost and this is different for each ship and depends
on both its speed and its load. Since we assume full shiploads, we can factor in load dependency
by simply using two fuel consumption functions: One for ballast legs and one for laden legs. Each
ship is assumed to sail at two predefined speed settings: one for ballast legs and one for laden legs
and so, the two fuel consumption functions are in effect two constants used for the two types of
sailing legs. When loading and discharging, ship dependent port costs are incurred. Finally, there
is a cost associated with chartering in spot vessels to perform uncovered contract voyages.

3.1 Mathematical model

Let V be the set of ships. Furthermore, let R denote the set of trade routes and associate with
each trade route r ∈ R the set of voyages Ir = {1, 2, . . . , nr} on trade route r during the planning
horizon. A specific voyage i ∈ Ir for r ∈ R can be denoted by the pair (r, i). Thereby, the two
pairs (r, i) and (r, i + 1) denote two consecutive voyages on trade r. Spot voyages and mainte-
nance requirements are also modeled using this trade route notation though nr is equal to 1 for
maintenance trades.

Due to port and cargo compatibility, capacity requirements and other restrictions, not all ships
can sail all trade routes. Therefore, we further define Rk and Vr as, respectively, the set of trade
routes compatible with ship k ∈ V and the set of ships compatible with trade route r. We let NC ,
NO and N k

M denote, respectively, the set of contract voyages, the set of optional voyages and the
set of maintenance requirements for ship k.
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In order to define the problem on a graph, we define an origin and a destination node for each
ship k ∈ V and denote these o(k) and d(k) respectively. The origin node corresponds to the location
of the ship when planning starts while the destination node is artificial and simply corresponds to
the geographical location of ship k at the end of the planning horizon.

The problem can then be defined on the graph G = (N ,A) where N = NC ∪NO∪k∈VN k
M ∪k∈V

{o(k), d(k)}. If a voyage or maintenance, (r, i), can be performed directly before another voyage
or maintenance, (q, j), then A contains the arc ((r, i), (q, j)). A also contains the arcs (o(k), (r, i))
and ((r, i), d(k)) for each ship k that can perform voyage i on trade route r. Finally, for each ship
k ∈ V without maintenance requirements, the set also contains the arc (o(k), d(k)) corresponding
to an idle ship. For each ship k ∈ V we further define the set Ak as the set of arcs in A that are
traversable by ship k, e.g. with respect to time.

For each node (r, i) ∈ N we have a time window [ari, bri] describing the earliest and latest time
to start service for the corresponding voyage or maintenance. For o(k) this window is collapsed
into the time that ship k is available for service, ao(k). We let Br denote the minimum acceptable
time between the start of service on two consecutive voyages on trade route r ∈ R.

We use T k
riqj to denote the fixed time for performing voyage or maintenance (r, i) ∈ N and

sailing ballast to the first pickup port of voyage or maintenance (q, j) ∈ N with ship k. T k
riqj

includes service time in ports for voyage/maintenance (r, i), laden travel time for voyage legs and
ballast travel time from the final discharge port of voyage/maintenance (r, i) to the first pickup
port of voyage/maintenance (q, j). Similarly, we let T k

o(k)ri denote the time for traveling ballast

with ship k from its origin to the first port of voyage or maintenance (r, i).
For the ballast legs, Ck

riqj and Ck
o(k)ri denote, respectively, the cost of traveling ballast with

ship k from the last discharge port of voyage or maintenance (r, i) ∈ N to the first pickup port
of voyage or maintenance (q, j) ∈ N , and from the origin node to the first pickup port of voyage
or maintenance (r, i). We also have ship specific profits for the laden voyage legs. These profits,
P k
ri, take into account the revenue incurred from performing voyage (r, i), the cost of sailing laden

with ship k from the first pickup port of the voyage to the final discharge port of the voyage, and
finally, the port costs incurred during the voyage or maintenance period when performed by ship
k. If a voyage (r, i) is instead performed by a spot vessel, the cost incurred is CS

ri.
For the mathematical formulation we need several variables. First, we define binary flow vari-

ables xkriqj for k ∈ V, ((r, i)(q, j)) ∈ Ak that are equal to 1, if ship k performs voyage (r, i) just

before voyage (q, j), and 0 otherwise. Likewise, we define binary flow variables xko(k)ri, x
k
rid(k) and

xko(k)d(k) for the arcs connecting the origin and destination nodes with other nodes and with each

other. The start time for service at each node is also variable and so we define time variables tko(k)
and tkri for each k ∈ V, r ∈ Rk and i ∈ Ir. If a spot vessel is hired to service a contract voyage
(r, i) ∈ NC , we denote the start time by tSri and let the binary variable yri be equal to 1.
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We can now give an arc flow formulation of the TSRSPVSR:

max
∑
k∈V

∑
r∈Rk

∑
i∈Ir

∑
q∈Rk

∑
j∈Iq

(
P k
ri − Ck

riqj

)
xkriqj

+
∑
k∈V

∑
r∈Rk

∑
i∈Ir

P k
rix

k
rid(k)

−
∑
k∈V

∑
r∈Rk

∑
i∈Ir

Ck
o(k)rix

k
o(k)ri −

∑
(r,i)∈NC

CS
riyri (1)

s.t. ∑
k∈Vr

( ∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)

)
+ yri = 1, ∀(r, i) ∈ NC , (2)

∑
k∈Vr

( ∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)

)
≤ 1, ∀(r, i) ∈ NO, (3)

∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k) = 1, ∀k ∈ V, (r, i) ∈ N k
M , (4)

∑
r∈Rk

∑
i∈Ir

xko(k)ri + xko(k)d(k) = 1, ∀k ∈ V, (5)

xko(k)ri +
∑
q∈Rk

∑
j∈Iq

xkqjri −
∑
q∈Rk

∑
j∈Iq

xkriqj − xkrid(k) = 0, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (6)

∑
r∈Rk

∑
i∈Ir

xkrid(k) + xko(k)d(k) = 1, ∀k ∈ V, (7)

xko(k)qj(t
k
o(k) + T k

o(k)qj − tkqj) ≤ 0, ∀k ∈ V, q ∈ Rk, j ∈ Iq, (8)

xkriqj(t
k
ri + T k

riqj − tkqj) ≤ 0, ∀k ∈ V, ((r, i), (q, j)) ∈ Ak, (9)

ari
( ∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)
)
≤ tkri

≤ bri
( ∑
q∈Rk

∑
j∈Iq

xkriqj + xkrid(k)
)
, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (10)

∑
k∈Vr

tkri + tSriyri + Br ≤
∑
k∈Vr

tkr,i+1 + tSr,i+1yr,i+1, ∀(r, i) ∈ NC , i ∈ Ir \ {nr}, (11)

ari ≤ tSri ≤ bri, ∀(r, i) ∈ NC , (12)

tko(k) ≥ ao(k), ∀k ∈ V, (13)

xko(k)ri ∈ {0, 1}, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (14)

xko(k)d(k) ∈ {0, 1}, ∀k ∈ V : N k
M = ∅, (15)

xkriqj ∈ {0, 1}, ∀k ∈ V, ((r, i), (q, j)) ∈ Ak, (16)

xkrid(k) ∈ {0, 1}, ∀k ∈ V, r ∈ Rk, i ∈ Ir, (17)

yri ∈ {0, 1}, ∀(r, i) ∈ NC . (18)

The objective function (1) maximises profit by subtracting all spot vessel costs and ballast leg costs
from profits obtained on laden voyage legs performed by ships in the fleet. Constraints (2) and
(3) ensure that all contract voyages are performed by exactly one ship, possibly a spot vessel, and
that all spot voyages are performed by at most one ship. For ships with maintenance requirements,
constraints (4) ensure that these requirements are adhered to. Constraints (5) and (7) together
with the flow conservation constraints in (6) ensure that each ship is assigned a schedule starting
at the origin node and ending at the destination node. Constraints (8) ensure that if the schedule
for ship k visits node o(k) directly before node (q, j), the service at node (q, j) cannot begin before
service time at node o(k) plus travel time from node o(k) to node (q, j) with ship k. Since waiting
time is allowed, the constraints have an inequality sign. Constraints (9) impose similar restrictions
when the starting node is a voyage or maintenance node (r, i). In such cases, port time at node
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(r, i) plus travel time for performing voyage (r, i) must also be accounted for before service at node
(q, j) can start. In the time window constraints (10), the service time for ship k at node (r, i),
tkri, is forced to zero if ship k does not visit node (r, i). For all consecutive voyage pairs, (r, i) and
(r, i+ 1), constraints (11) ensure that the time spread between start of service for the two voyages
is at least as large as the required time spread, Br, on trade route r. Note that in order to also
enforce the time spread when voyages are performed by spot vessels, we must ensure that spot
vessel visits also adhere to the time windows and this is taken care of in constraints (12).

Constraints (13) ensure that no ship can start its schedule before it is available for service.
The flow variables are restricted to be binary in (14)-(17) while constraints (18) impose similar
restrictions on the spot vessel decision variables. Note that due to constraints (2) and the binary
restrictions on the flow variables, we do not actually need the binary restrictions on the spot vessel
variables. However, we include them for completeness sake and also to exploit their binary nature
in the branch-and-bound scheme later.

4 Decomposition

The nonlinear mixed integer programming model (1)-(18) could in theory be solved by commercial
optimization software for linear problems after linearising constraints (8), (9), and (11). However,
as pointed out in Norstad et al. (2013), where they use a similar arc flow model, most real life
problem instances will be too large to achieve solutions in a reasonable amount of time. This
section therefore describes a solution method tailored for the TSRSPVSR.

In the mathematical programming model (1)-(18), constraints (4)-(10) and (13)-(17) are ship
specific with no interaction between ships. They constitute a routing and scheduling problem for
each ship where maintenance and time windows are considered. The objective function also splits
into separate terms for each ship, aside from the last part corresponding to the cost of using spot
vessels. The only constraints linking the ships together are the common constraints (2), (3) and
(11) which ensure that each contract cargo is carried by exactly one ship, that each spot cargo is
carried by at most one ship, and that the voyage separation requirements (VSR) are fulfilled. This
suggests use of decomposition and column generation since it allows the complex and ship specific
constraints, concerning the routing and scheduling, to be handled separately in subproblems, one
for each ship. Only the common constraints and the spot vessel constraints (12) and (18) remain in
the master problem in which feasible ship schedules constitute the columns. This way the original
problem is transformed into a master problem with a reduced number of constraints but with a
potentially very large number of columns.

If a schedule contains waiting time, we can redistribute the waiting time and thereby obtain
a different schedule corresponding to the same ship and geographical route. Thereby, each geo-
graphical route can correspond to numerous different feasible schedules all with the same profit.
Without the VSR constraints, it would only be necessary to include one of these schedules in the
master problem while the rest could be discarded. Furthermore, for each ship, if the same voyage
and maintenance stops could be ordered into numerous different geographical routes and hence,
even further different schedules, only the schedule with the highest profit would have to be included
in the master problem. However, due to the VSR constraints, the actual timing of port calls in
a schedule for one ship can affect the timing of port calls for schedules of other ships. Therefore,
any feasible schedule for a ship must be considered a valuable contribution to the master problem
and so, the master problem column set can contain several schedules all corresponding to the same
set of voyage and maintenance stops and even to the same geographical route. Thereby, a priori
generating all columns will obviously be very time consuming and also result in very large master
problems. Therefore, we turn to dynamic column generation (see e.g. Desaulniers et al. (2005) for
a general description or Christiansen et al. (2007) for a maritime version) where new master prob-
lem columns that have the potential to improve the current solution are iteratively generated by
the subproblems. With a relaxation of the master problem the entire solution process is therefore
a Branch-and-Price procedure where new columns are iteratively priced out at each node of the
search tree guided by dual variables from the current solution to the master problem.
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4.1 Master Problem

The common constraints (2), (3) and (11) in combination with the spot vessel constraints (12)
and (18) and the objective function (1) constitute the master problem. They must, however, be
expressed by new path flow variables corresponding to feasible ship schedules and constraints must
be added to ensure that each ship is assigned exactly one schedule. We let Sk denote the set of all
feasible schedules for ship k.

Note that rather than selecting exactly one distinct schedule for each ship, we can also allow
convex combinations of different schedules for each ship, as long as the chosen schedules correspond
to the same geographical route. We therefore denote the set of geographical routes for ship k by
Gk. Furthermore, we expand notation on the schedule sets so that now Skg denotes the set of all

feasible schedules for ship k ∈ V on geographical route g ∈ Gk.
We denote the profit of a schedule by pks for k ∈ V, g ∈ Gk, s ∈ Skg , and define a binary

schedule variable λks that is equal to 1 if ship k is chosen to sail schedule s, and 0 otherwise. The
profit pks is calculated based on information from the underlying schedule, which holds all necessary
information, i.e. the ship it is constructed for, the voyages conducted, and the timing of port calls
during the schedule. We reuse the definition of yri from the arc flow formulation and let Ak

ris be
equal to 1 if ship k performs voyage or maintenance stop (r, i) in schedule s, and 0 otherwise.
Finally, we denote the start time for voyage or maintenance node (r, i) in schedule s with ship k by
T k
ris. Note that these are determined in the subproblems and are therefore constants in the master

problem.
The master problem can now be stated as the following path flow reformulation of the original

arc flow model:

max
∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

pksλ
k
s −

∑
(r,i)∈NC

CS
riyri (19)

s.t.∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

Ak
risλ

k
s + yri = 1, ∀(r, i) ∈ NC , (20)

∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

Ak
risλ

k
s ≤ 1, ∀(r, i) ∈ NO, (21)

∑
g∈Gk

∑
s∈Sk

g

λks = 1, ∀k ∈ V, (22)

∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

T k
risλ

k
s + tSriyri +Br

≤
∑
k∈V

∑
g∈Gk

∑
s∈Sk

g

T k
r,i+1,sλ

k
s + tSr,i+1yr,i+1, ∀(r, i) ∈ NC , i ∈ Ir \ {nr}, (23)

ari ≤ tSri ≤ bri, ∀(r, i) ∈ NC , (24)∑
s∈Sk

g

λks ∈ {0, 1}, ∀k ∈ V, g ∈ Gk, (25)

yri ∈ {0, 1}, ∀(r, i) ∈ NC . (26)

To solve the problem in an LP based branch-and-price framework, we first relax the binary con-
straints on the decision variables. The VSR constraints (23) will complicate the subproblems as the
dual variables of these constraints will create linear node costs in the subproblems. Furthermore,
as T k

ris is a non-binary parameter, the presence of the VSR constraints in the master problem will
most likely lead to more fractional solutions as it compromises the strong integer properties of
the constraint matrix (we return to this matter in Section 5.2). Therefore, we also relax the VSR
constraints (23) and will instead handle these when branching. Due to this relaxation of the VSR
constraints, we no longer need the time window restrictions on the spot vessel time variables in
(24) and so we also relax these.

As already mentioned, we use dynamic column generation to solve the problem. Therefore,
we initially consider only a subset of the master problem columns, i.e. a subset of the feasible
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schedules for each ship, and iteratively generate new columns that have the potential to improve
the current solution. The entire branch-and-price process therefore begins with the solution of the
restricted master problem (RMP) which is the linear relaxation of the problem (19)-(22) but with
only a subset of the columns included. The dual variables from this solution are then used in the
subproblems, also called pricing problems, to generate new promising columns that are added to
the RMP. This iterative process continues until no further columns can improve the current master
problem solution. If the current solution to the RMP is infeasible with respect to either or both
the relaxed integrality and VSR constraints, we branch and continue this entire process by pricing
out new columns at each node of the search tree until a feasible, optimal solution is obtained, or
a specified time limit elapses.

Initially we only include a small number of feasible schedules in the RMP. To ensure that each
contract cargo can actually be carried, we include a spot vessel schedule for each of the contract
cargoes. For each ship in the fleet we include a schedule containing only required maintenance
stops corresponding to the ship not performing any voyages for the entire planning horizon.

4.2 Subproblems - Pricing out new schedules

Constraints (4)-(10) and (13)-(17) split into one independent subproblem for each ship. Since these
are all essentially the same problem, we simply consider the generic subproblem for ship k and
refer to ’the subproblem’. Note that there is interdependence between the subproblems due to the
common constraints. The ship routing constraints in the subproblem ensure that any solution is a
feasible schedule for ship k and the objective must ensure that only schedules with the potential
to improve the current solution of the RMP are generated. This means finding schedules with
positive reduced costs in the current solution of the RMP.

Let πri be the dual variables for constraints (20) and (21) where the variables corresponding to
(20) are free of sign while the variables corresponding to (21) must be nonnegative. Next, define
πri = 0 for all (r, i) ∈ N k

M and let ωk be the dual for constraint (22) which is also free of sign.
Since we consider the generic subproblem we can drop the superscript k on the variables and the
subproblem is then given by:

max
∑
r∈Rk

∑
i∈Ir

∑
q∈Rk

∑
j∈Iq

(
P k
ri − Ck

riqj − πri
)
xriqj

+
∑
r∈Rk

∑
i∈Ir

(
P k
ri − πri

)
xrid(k)

−
∑
r∈Rk

∑
i∈Ir

Ck
o(k)rixo(k)ri − ωk (27)

s.t.

(4)− (10) and (13)− (17). (28)

The subproblem finds the maximum reduced cost feasible schedule with respect to the current dual
values. If this schedule has a positive reduced cost, it has the potential to improve the current
solution to the RMP. The subproblem can be modeled as an elementary shortest path problem
with resource constraints (ESPPRC) which is NP-hard in the strong sense (see Dror (1994)).

The collaborating tramp operator is involved in deep sea shipping, where voyage travel times
are long. Although voyage time windows can span several days, the long voyage travel times
mean that we can expect few if any time feasible cycles involving voyages in the data instances.
Similarly for maintenance requirements, we find that, although the time windows for these nodes
are very wide, the required time for maintenance is long enough that time feasible cycles are
unlikely. Therefore, we relax the subproblem to instead consider the regular shortest path problem
with resource constraints (SPPRC), as this variant of the shortest path problem can be solved in
pseudo polynomial time (see e.g. Desrochers and Soumis (1988); Irnich and Desaulniers (2005)).
In Section 4.2.1 we discuss the possible existence of cycles and how to handle these. We solve
the subproblems with a dynamic label setting algorithm on the underlying networks and refer the
reader to Desaulniers et al. (1998), Irnich and Desaulniers (2005) and Irnich (2008) for a thorough
introduction to the SPPRC, the related dynamic programming algorithms, and several associated
concepts.
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4.2.1 Subproblem networks

During construction of the subproblem networks, standard preprocessing techniques are applied
to tighten the time windows. The VSR constraints are especially useful in this process since two
consecutive voyages on a contract trade, r, must be separated in time by at least Br and so, their
individual time windows must reflect this. We describe this time window reduction technique in
further details in Section 5.1.1.

The network node set for ship k includes the origin node, o(k), and the destination, d(k). For
each contract or spot trade r that ship k is compatible with, the node set also includes a voyage
node (r, i) for each voyage i that ship k is able to perform with respect to the voyage time window.
Finally, if N k

M 6= ∅, then the node set also includes the maintenance node (r, i) ∈ N k
M .

For the origin node the time window is simply the open time for ship k, since there is no point
in delaying departure. For each voyage and maintenance node, we calculate the earliest arrival at
this node with ship k and in conjunction with the preprocessed time window for this voyage or
maintenance, we can determine a ship specific time window for this voyage or maintenance node.

If N k
M 6= ∅, then ship k must undergo maintenance sometime during its schedule. Since there is

no profit from visiting a maintenance node, we must force ship k to visit this node. Therefore, we
introduce a binary maintenance resource that is equal to 1 once maintenance has been performed
and 0 otherwise. This means, that the maintenance resource window at the destination node must
be [1, 1] while for the origin and maintenance node, it is [0, 0]. For voyage nodes, the maintenance
resource window is [0, 1].

Arcs are introduced to govern the transitions between the nodes. More specifically, the arc set
contains all arcs that are time feasible for ship k and respect the internal order of voyages on the
same trade. The latter means that, regardless of time feasibility, there can never be an arc from
node (r, i+ 1) to node (r, i).

For two nodes, n1 and n2, connected by an arc in the network, this arc has a constant cost and
time consumption and a well defined maintenance function and we denote these by Tn1n2 , Cn1n2

and Mn1n2
, respectively. If n1 is the origin node, then n2 is a voyage or maintenance node and

the arc cost and time consumption correspond to sailing ballast from the port of the origin node
to the first port associated with the voyage or maintenance node. If n1 is a voyage node and n2
is the destination node, then the cost corresponds to the negative of the profit from performing
the voyage corresponding to n1. The time consumption corresponds to the ship specific port time
on this voyage plus the time to travel the voyage distance. If instead n2 is another voyage or
maintenance node, the cost must also include the additional cost of sailing ballast from the last
port of the voyage corresponding to n1 to the first port of the voyage or maintenance corresponding
to n2. Likewise, the time consumption must now include the time to travel from the last port of
the voyage corresponding to n1 to the first port of the voyage or maintenance corresponding to
n2. Finally, if n1 is a maintenance node and n2 is the destination node, then the cost is 0 while
the time consumption is equal to the port time used during maintenance. If instead n2 is a voyage
node, then the cost and time consumption must, similar to before, also include the cost and time
of traveling ballast from the maintenance port corresponding to n1 to the first port of the voyage
corresponding to n2. Finally, Mn1n2

is equal to one on all arcs where n1 is a maintenance node
and equal to zero otherwise.

As already mentioned, we expect few if any time feasible cycles in our data instances. To detect
the presence of potential cycles in a given subproblem network, a topological sort is performed on
the node set. If a cycle is detected, the involved nodes are split into several duplicate ones, each
with a smaller time window, until the cycle no longer exists; this process creates an acyclic network.
It should be noted that with such a network we can generate schedules that visit multiple of these
duplicate nodes, whereby the cycle in effect still exists. For maintenance nodes, there is however
no profit. Therefore, we will never want to visit such nodes in the first place, and the maintenance
resource ensures that we will visit exactly one of these. Should the shortest path solver generate
schedules which visit several of the duplicate nodes for a voyage, these schedules will not be added
to the master problem.

10



4.2.2 Dynamic Programming Algorithm

Given a dual solution to an optimized restricted master problem, the role of the subproblems is to
identify whether or not a positive reduced cost schedule exists for any of the ships. This entails
solving the SPPRC over the networks described above once the respective arc costs have been
updated to reflect the dual solution. Updating the cost on arc (n1, n2) entails assigning it the
negative of the reduced cost and we denote this cost as Ĉn1,n2

. Thereby,

Ĉo(k),(r,i) = Ck
o(k)ri + ωk ∀ (o(k), (r, i)) ∈ Ak, (29)

Ĉ(r,i),(q,j) = Ck
riqj − P k

ri + πri ∀ ((r, i), (q, j)) ∈ Ak, (30)

Ĉ(r,i),d(k) = −P k
ri + πri ∀ ((r, i), d(k)) ∈ Ak. (31)

As mentioned above, we solve the SPPRC using a dynamic programming algorithm. Such
algorithms for this particular problem build new schedules for ship k ∈ V by starting with the
trivial, partial schedule s = {o(k)}. Schedules are then built incrementally by extending partial
schedules in all feasible ways. Partial schedules are represented by so-called labels. That is, for
each partial schedule sn ending in node n we associate a label L(sn) = (C̄(sn), T (sn),M(sn)).
Here C̄(sn) is the negative of the reduced cost for the schedule, i.e. the sum of the arc costs Ĉn1,n2

for all (n1, n2) ∈ sn. T (sn) and M(sn) denote, respectively, the arrival time at node n and the
maintenance indicator on arrival at node n on schedule sn.

Two partial schedules generated at the same node can be compared by defining a partial order
relation between the respective labels. This partial order allows us to determine if one label
dominates another that can, hence, be discarded. This dominance concept ensures that only the
best schedules, i.e. Pareto optimal, are kept during the iterative process of the algorithm as only
they can contribute to the optimal schedule. It is important to note that here “optimal” refers to
the LP relaxed master problem, without constraints (23). The success of the algorithm relies on an
efficient domination procedure for the labels to eliminate non-useful partial schedules. In our case
we note that a schedule sn ending at node n dominates another schedule s′n also ending at node
n if and only if L(sn) 6= L(s′n), C̄(sn) ≤ C̄(s′n), T (sn) ≤ T (s′n) (since there is no cost for waiting)
and M(sn) ≥M(s′n).

In order to augment a partial path, label extension is necessary. Label extension is associated
with a particular arc in the underlying network and utilizes specific resource extension functions
that dictate how each resource level will change when traversing the arc. For the case at hand,
the reduced cost resource is extended using simply C̄(sn2

) = C̄(sn1
) + Ĉn1,n2

. The time resource
is extended using T (sn2

) = max{an2
, T (sn1

) + Tn1n2
}, where an2

is the start of the time window
on node n2. This extension is deemed feasible if T (sn1

) + Tn1n2
≤ bn2

, where bn2
is the end of the

time window on node n2. The maintenance resource is updated using M(sn2) = M(sn1) +Mn1n2

which is deemed feasible if M(sn2) ∈ [Mmin
n2

,Mmax
n2

], where Mmin
n2

and Mmax
n2

are, respectively, the
lower and upper limit of the maintenance window for node n2.

The dynamic programming algorithm we implement is hence a standard label setting algorithm,
which begins at o(k) with an initial label. Nodes are considered in topological order, and processed
in turn. In processing a node, all non-dominated labels for the current node are extended, using the
resource extension functions defined above and consider the node’s set of outgoing arcs. When the
algorithm terminates, several resource feasible and Pareto optimal schedules might exist differing
in both reduced cost and time. In Section 4.3 we discuss what to do with these schedules. See
Algorithm 1 for a general overview of our label setting algorithm.

4.3 Pricing Strategy

As already discussed, because of the VSR constraints we must consider any feasible schedule for a
ship a valuable contribution to the master problem. This suggests that the shortest path solvers
in the subproblems should return all resource feasible and Pareto optimal schedules with positive
reduced costs, i.e. C̄(s) < 0, to the RMP rather than just the best one or best ones. Preliminary
tests verify this assumption and so, in each iteration we allow the subproblems to convert all
resource feasible and Pareto optimal schedules with positive reduced costs to master problem
columns.
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Algorithm 1: Label Setting Algorithm

Input: Directed, Acyclic Graph G = (N ,A), two nodes o, d ∈ N
Output: Set of Pareto Optimal Schedules S

1 Sorted Node List N̂ ← topologicalSort(G);
2 CreateInitialLabel(o);

3 for u ∈ N̂ and u 6= d do
4 Lu ← getLabels(u);
5 for l ∈ Lu do
6 if l is not dominated then
7 for a ∈ outgoingArcs(u) do
8 if extension(l, a) is feasible then
9 v ← headNode(a);

10 createLabel(l, a, v);
11 Lv ← getLabels(v);
12 dominanceCheck(Lv);

13 end

14 end

15 end

16 end

17 end
18 Ld ← getLabels(d);
19 S ← constructSchedules(Ld);
20 return S;

Preliminary tests also indicate that for this problem it is most efficient to solve all subproblems
in each iteration, i.e. using the same dual values, as opposed to solving one subproblem in each
iteration and then solving the master problem to obtain new dual values before solving the next
subproblem. This makes sense since we can expect the master problem to grow rather quickly and
therefore become quite time consuming to solve. Hence, it will be inefficient to solve it repeatedly
just to obtain slightly better dual values from the columns generated by one single subproblem.

So, our pricing strategy is to solve all subproblems in each iteration and for each of these, we
return all columns with positive reduced costs.

5 Branching

If the optimal solution to the restricted master problem is both integer (λ does not have to be
integer as long as all positive λ’s for each ship correspond to the same geographical route) and
fulfills all the VSR constraints (23) and time window restrictions for spot vessels (24), the solution
is also optimal for the full master problem (19)-(26) and thereby also for the original problem
(1)-(18). However, if this is not the case, we must apply a branching scheme to restore feasibility.
The VSR constraints and spot vessel time window constraints fit naturally into a time window
branching scheme as presented by Gélinas et al. (1995). Furthermore, Gélinas et al. (1995) show
that this branching procedure can also help enforce integrality, though only to a certain point.
Therefore, we will apply time window branching and complement this with constraint branching
(see Ryan and Foster (1981)) which is an effective branching strategy for restoring integrality on
problems with similar structure to that of model (19)-(26).

5.1 Time Window Branching

The overall idea in time window branching is to split a given time window into two smaller time
windows that each correspond to a new problem, i.e. to a new branch in the branch-and-bound
tree. The trick is to select the time window and the split time in such a way that the current
solution becomes infeasible in each of the two new problems, i.e. in a way that makes at least one
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chosen schedule infeasible in each branch. Gélinas et al. (1995) note that their method works best
on problems with small time windows and few cycles in the linear relaxation solution. As already
mentioned, we expect few if any cycles in our data instances. However, time windows are relatively
wide and so, it remains to be investigated if time window branching can work well for our problem.
The method described by Gélinas et al. (1995) was developed to restore integrality and does not
factor in VSR constraints. Therefore, we extend their method to incorporate such constraints just
as e.g. Dohn et al. (2011) and Rasmussen et al. (2012) have done it to accommodate temporal
dependencies for, respectively, vehicle routing and home care crew scheduling. Furthermore, we
extend their methods to also account for the spot vessel time window constraints (24) and use a
slightly modified approach that will improve efficiency of the branching scheme. Note that without
the VSR constraints (23), the spot vessel time window constraints can never give rise to infeasibility.
Therefore, the spot vessel time windows are only relevant when we consider violations of VSR
constraints. Time window branching is not a complete branching strategy; i.e. fractionality can
remain despite the fact that there are no time windows to branch on. That is why we complement
this strategy with constraint branching.

5.1.1 Time Window Reduction

In order for the time window branching scheme to effectively restore feasibility with respect to the
VSR constraints, we need to simultaneously apply a time window reduction rule based on these
constraints. Table 1 therefore states the possible time window reductions for two consecutive nodes
(r, i) and (r, i+ 1) on trade r. The reduction process is illustrated in Figure 1.

Table 1: Time window reduction rule

Node (r, i) Node (r, i+ 1)

Old time window [ari, bri] [ar,i+1, br,i+1]

New time window [ari,min{bri, br,i+1 −Br}] [max{ar,i+1, ari +Br}, br,i+1]

(a) Before reduction (b) After reduction

Figure 1: Time window reduction process for two consecutive nodes on a trade

We use the reduction rule not only for preprocessing but also in each branch-and-bound node
where time window branching is applied. In fact, the time window branching scheme used for VSR
violations can only work properly if we combine it with the reduction rule. In each new branch
after time window branching on a node (r, i), we therefore apply the reduction rule not only to
nodes (r, i− 1) and (r, i+ 1) but iteratively to all nodes affected directly or indirectly by the time
window changes for node (r, i) until no further reductions are possible. Note that if we did not
require the VSR constraints to also hold for spot vessel voyages, then when a voyage (r, i) was
assigned to a spot vessel, we would have to undo all previous time window reductions on trade r
based on the time window of voyage (r, i)

5.1.2 Candidate time windows

Any node with a time window that can be split in a way that renders at least one currently chosen
schedule infeasible in each of the two new branches, is a candidate for branching. If the current
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master problem solution is fractional, then to fulfill constraints (20) or (21) there must be a node i
(omitting the trade index r for now) that is visited by more than one schedule, one of them possibly
a spot vessel schedule, or several times in a cycle by the same schedule. Hence, we must split the
time window at this node so that there is only a single visit to the node. For each fractional
schedule that visits node i, it might be possible to change the start time at node i slightly without
rendering the schedule infeasible. For each visit to node i, we determine a feasibility interval
defined by the earliest and latest possible start time at this node that will allow the corresponding
schedule to remain feasible. For spot vessel schedules the feasibility interval simply corresponds
to the (possibly reduced) time window at the node. The label setting algorithm used to generate
schedules for fleet vessels, schedules each node visit as early as possible. This means that the
feasibility interval at each node for regular schedules will simply correspond to allowing the ship to
wait at long as possible. Assume now that node i is visited twice by two different schedules or twice
by the same schedule. It does not matter if the two visits correspond to the same ship or to different
ships, and so we can omit the k index here. Therefore, we abuse notation slightly by letting T 1

i

and T 2
i denote the visit time for these two visits respectively. Now let [T 1

i , u1] and [T 2
i , u2] be the

corresponding feasibility intervals and let ε > 0 be a very small tolerance. If these two intervals are
disjoint as shown in Figure 2, we can choose a split time for node i in (u1, T

2
i ], say ts, and create

one branch where the time window for node i is [ari, ts − ε] and the second visit is infeasible, and
one branch where the time window is [ts, bri] where the first visit is infeasible. We can generalise
this to state that any node for which two visits to the node have disjoint feasibility intervals, is a
candidate for branching. A formal description and a proof for this, can be found in Gélinas et al.
(1995). Note that split times within one of the feasibility intervals would also render one visit
infeasible in each branch. However, during the next iteration of schedule generation, the visit, for
which we selected a split time within its feasibility interval, could be regenerated though only a
little later in time. This means that in one branch we will actually regenerate a fractional solution
similar to the one from the parent node. Hence, it will be ineffective to use time window branching
when the feasibility intervals are not disjoint. Note that in both Dohn et al. (2011) and Rasmussen
et al. (2012) feasibility intervals are ignored whereby their branching scheme potentially becomes
ineffective, both due to regeneration of fractionality but also because this approach causes them to
consider more nodes as candidates for branching than if they had included the feasibility intervals.
Since each candidate node must be further investigated to determine both the best split time for
each node and in turn select the best node, this makes their approach more time consuming.

Figure 2: Time window branching due to fractionality

As already mentioned, the feasibility interval for a spot vessel visit will always correspond to
the entire time window. Hence, such visits can never lead to disjoint feasibility intervals and so,
time window branching will be ineffective. Therefore, when fractionality occurs partly due to a
spot vessel visit, we will instead resort to constraint branching to restore feasibility.

When branching, we check if node i is on a trade r where VSRs exist. If it is, we can use the
new time windows at node i to reduce the time windows of other nodes on trade r. Afterwards,
all previously generated schedules violating these new time windows, are removed from the master
problem in each new branch and the corresponding subproblems and spot vessel time windows are
updated to reflect the new time windows.

Extending this concept to include VSR constraints and spot vessel time windows, further can-
didate time windows arise. Assume now that the VSR constraint for two consecutive voyages, i
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and i + 1, on trade r is violated and that yri = yr,i+1 = 0, i.e. no spot vessels are involved. If
the current solution is integral, there is only one visit to each of these two nodes and these two
visits per assumption violate the VSR constraint. If the current solution is fractional, there can
be multiple visits to each of nodes (r, i) and (r, i + 1). For the VSR constraint to be violated,
there must however be at least one pair of visits that on their own violate the VSR constraint.
Whether the solution is integral or fractional, this means that there must exist positive λk1

s1 and

λk2
s2 in the current RMP solution such that T k1

ris1
+ Br > T k2

r,i+1,s2
. Note that it is possible that

s1 = s2 and k1 = k2. For the branching we generally do not need to know the specific schedule or
ship index but simply that two visits for consecutive voyages on the same trade are violating the
VSR. Therefore, we continue to abuse notation by letting Ti and Ti+1 denote the visit times at
these two nodes. To restore feasibility of the VSR constraint, we can force the start time of node
(r, i) to be scheduled earlier, namely no later than Ti+1 − Br, we can postpone the start time of
node (r, i+ 1) so that it occurs at the earliest at Ti +Br or we can use a combination of these two
time window alterations. In essence, the above corresponds to splitting the time window for node
(r, i) and then reducing the time window of node (r, i+ 1) accordingly so that the minimum time
spread, Br, is adhered to. Therefore, we use a split time, ts, in the interval [Ti+1 −Br + ε, Ti] and
create a left branch where the time window of node (r, i) is restricted to [ari, ts − ε] whereby the
schedule visiting node i becomes infeasible, and a right branch where the time window for node i
is restricted to [ts, bri]. In the left branch the time window for node (r, i + 1) remains unchanged
while in the right branch we use the reduction rule from Section 5.1.1 to reduce it to [ts +Br, bri+1]
whereby the schedule visiting node i + 1 becomes infeasible. Figure 3 demonstrates this process.
Note that the process can be reversed to similarly enable a split of the time window at node (r, i)
if instead the VSR violation stems from the node pair (r, i− 1) and (r, i).

Figure 3: Time window branching due to VSR violation

In Dohn et al. (2011) they consider any node i a candidate node for branching if they can find
s1, s2, k1, k2 with λk1

s1 > 0 and λk2
s2 > 0 such that (using our notation) T k1

r,i−1,s1 + Br > T k2
ris2

. In
Rasmussen et al. (2012) they reverse the search to consider any node i a candidate for branching
if they can find s1, s2, k1, k2 with λk1

s1 > 0 and λk2
s2 > 0 such that (again using our notation)

T k1
ris1

+ Br > T k2
r,i+1,s2

. However, it is important to understand that finding such a pair of visit
times that on their own violate the corresponding VSR constraint, does not mean that the full
VSR constraint is also violated, since this includes the weighted sum of all visit times currently in
the solution. Obviously, if the current solution is integral, finding a pair of visit times that violate
the VSR constraint, means that the full VSR constraint is also violated. However, when we factor
in fractionality, this is not necessarily true. Therefore, the approach from both Dohn et al. (2011)
and Rasmussen et al. (2012) means that the candidate list of nodes to branch on also includes
nodes involved in VSR constraints that are not actually violated by the current solution. Two
direct implications of this strategy are:

1. Branching on non-violated VSR constraints could lead to an ineffective branching scheme

2. Also considering nodes involved in non-violated VSR constraints to be branching candidates,
could give rise to excessively long candidate lists. The selection of the best node for branching
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involves further investigation of each of the node candidates to determine the best split time
as well as the flow elimination from this best split time. Therefore, having a long candidate
list will be time consuming.

Due to the above arguments, we refrain from using this process of running through all nodes
and searching for pairs of visit times that on their own violate the corresponding VSR constraints.
Instead, we will run through the VSR constraints and from each violated constraint for a node
pair ((r, i), (r, i+ 1)), we will consider both node (r, i) and (r, i+ 1) a candidate for branching.

Now we extend further to include spot vessel schedules in the current (possibly fractional)
solution. Therefore, we now assume that yri > 0 while yr,i+1 = 0 as previously and again consider
the VSR constraint for (r, i) and (r, i + 1). To know whether or not this constraint is violated,
we need to check whether or not a solution exists to the following small linear program (LP). To
ease notation we have omitted the geographical route concept and simply sum over all schedules
for each ship: ∑

k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i+1,sλ

k
s , (32)

ari ≤ tSri ≤ bri. (33)

We might find that tSri = ari is a feasible solution and therefore conclude that the VSR constraint
is not violated. However, assume now that yr,i−1 = 0 and consider the similar LP for voyage pair
((r, i− 1), (r, i)): ∑

k∈V

∑
s∈Sk

T k
r,i−1,sλ

k
s +Br ≤

∑
k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri, (34)

ari ≤ tSri ≤ bri. (35)

If we insert tSri = ari in (34), we might find that the constraint is violated and thereby conclude
that the VSR constraint for voyage pair ((r, i − 1), (r, i)) is violated even though the constraint
need not be if we just select a different value for tSri. Therefore, these two VSR constraints must
be considered simultaneously. If yr,i−1 is also positive, we must also include the VSR constraint
for voyage pair ((r, i − 2), (r, i − 1)) along with the spot vessel time window for tSr,i−1 and so it
continues until we reach a voyage (r, i−m) for which yr,i−m = 0, or until we reach the first voyage
on this particular trade. All of these VSR constraints and their corresponding spot vessel time
windows form an LP for this particular VSR group:∑

k∈V

∑
s∈Sk

T k
r,i−m,sλ

k
s +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i−m+1,sλ

k
s + tSr,i−m+1yr,i−m+1,

(36)∑
k∈V

∑
s∈Sk

T k
r,i−m+1,sλ

k
s + tSr,i−m+1yr,i−m+1 +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i−m+2,sλ

k
s + tSr,i−m+2yr,i−m+2,

(37)

...
...

...∑
k∈V

∑
s∈Sk

T k
r,i−1,sλ

k
s + tSr,i−1yr,i−1 +Br ≤

∑
k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri, (38)

∑
k∈V

∑
s∈Sk

T k
risλ

k
s + tSriyri +Br ≤

∑
k∈V

∑
s∈Sk

T k
r,i+1,sλ

k
s , (39)

ar,i−m+1 ≤ tSr,i−m+1 ≤ br,i−m+1, (40)

ar,i−m+2 ≤ tSr,i−m+2 ≤ br,i−m+2, (41)

...
...

... (42)

ar,i−1 ≤ tSr,i−1 ≤ br,i−1, (43)

ari ≤ tSri ≤ bri. (44)
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If a feasible solution exists to the LP (36)-(44), the VSR group is not violated. If on the other
hand no solution exists, at least one of the following statements must be true:

∃g ∈ {0, 1, . . . ,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 +Br > T k2

r,i−g+1,s2
, (45)

∃g ∈ {1, 2, . . . ,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 + 2Br > T k2

r,i−g+2,s2
, (46)

∃g ∈ {2, 3, . . . ,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 + 3Br > T k2

r,i−g+3,s2
, (47)

...
...

...

∃g ∈ {m− 1,m}, s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−g,s1 +mBr > T k2

r,i−g+m,s2
, (48)

∃s1, s2, k1, k2 : λk1
s1 > 0, λk2

s2 > 0, T k1
r,i−m,s1

+ (m+ 1)Br > T k2
r,i+1,s2

. (49)

To exemplify, assume that the current solution has yr,i−1 and yri positive while yr,i−2 = yr,i+1 =
0. Thereby, we have a VSR group consisting of the constraints for voyage pairs ((r, i−2), (r, i−1)),
((r, i− 1), (r, i)) and ((r, i), (r, i+ 1)). If the LP for this VSR group does not have a solution, there

must exist s1, s2, k1, k2 with λk1
s1 > 0 and λk

2

s2 > 0 such that at least one of the following is true:

T k1
r,i−2,s1 +Br > T k2

r,i−1,s2 (50)

T k1
r,i−1,s1 +Br > T k2

ris2
(51)

T k1
ris1

+Br > T k2
r,i+1,s2

(52)

T k1
r,i−2,s1 + 2Br > T k2

ris2
(53)

T k1
r,i−1,s1 + 2Br > T k2

r,i+1,s2
(54)

T k1
r,i−2,s1 + 3Br > T k2

r,i+1,s2
(55)

Constraint (52) corresponds to the illustration in Figure 3 and this figure must now be extended
to include the time windows and visit times corresponding to constraints (51) and (53). The
remaining violations will be handled when branching on nodes (r, i− 2), (r, i− 1) and (r, i+ 1).

Spot vessels act as a shipping specific version of uncovered tasks, and these are not considered
in Dohn et al. (2011), and in Rasmussen et al. (2012) they do not require uncovered tasks to be
within the time windows. With our inclusion of spot vessels and time window restrictions it would
be extremely time consuming to use the approach of Dohn et al. (2011) and Rasmussen et al.
(2012) to run through all nodes and search for individual visit times that violate the constraints
corresponding to the VSR group, i.e. constraints (45)-(49). Instead we run through each VSR
group and only for the violated ones, we search for visit times that fulfill constraints (45)-(49),
starting from (45). If we find one or several pairs of visit times that fulfill constraints (45), we have
one or several pairs of candidate nodes for branching. In that case we do not check constraints
(46)-(49) since these can be implicitly handled by branching to fulfill constraints (45) and using the
time window reduction rule. However, if we do not find a pair of visit times that fulfill constraints
(45), we move on to check constraints (46) and so the process continues until we find branching
candidates.

As can be understood from the above, there can be numerous candidate time windows for
branching in each iteration and we must decide on a selection strategy. However, the specific split
time chosen within each candidate time window can be used in the selection procedure and so we
postpone the discussion on how to select which time window to branch on, until after we have
described how to choose the exact split time. For now, we therefore assume that we have chosen
to split the time window for voyage i (ignoring again the trade index r).

5.1.3 Selecting the best split time within a time window

Assume for now that the current solution is fractional but fulfills all VSR constraints and spot vessel
time restrictions. In this case, the window branching scheme simply aims at restoring integrality.
A formal description of the split time selection procedure for this situation can be found in Gélinas
et al. (1995); accordingly, we here give a more informal description.

Earlier we stated that any node, for which at least two non-spot vessel visits to the node have
disjoint feasibility intervals, is a candidate for branching. When deciding on the best split time for
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a given node, we consider the feasibility intervals of all visits to the node, again excluding visits
from spot vessels. We illustrate the process in Figure 4 for a situation where node i is visited by
four schedules included in the current solution with fractional values. We denote the four visit
times at node i, respectively, T 1

i , T 2
i , T 3

i and T 4
i . In Figure 4 the grey boxes represent the feasibility

intervals for each of the four fractional visits to node i.

Figure 4: Choosing a split time to restore integrality

In order to render the current solution infeasible in both new branches, at least one of the
four schedules must become infeasible in each of these branches. Therefore, the split time must
be chosen somewhere in the interval between two disjoint feasibility intervals; hence, as depicted
by the line marked ’Feas. splits’ in Figure 4. Note that split times in this interval lie outside the
feasibility interval corresponding to visit time T 1

i . Thereby, we can never regenerate a similar visit
in the right branch, where visit time T 1

i becomes infeasible. Comparing the intervals (t∗2, t
∗
3], (t∗3, t

∗
4]

and (t∗4, t
∗
5] we see that split times within these three intervals have the same affect with respect

to immediate flow elimination. However, if we select a split time in (t∗2, t
∗
3] we risk regenerating

the schedules corresponding to both T 2
i and T 3

i by redistributing waiting time. If instead we select
a split time in (t∗3, t

∗
4], we cannot regenerate the schedule corresponding to T 2

i , and selecting a
split time in (t∗4, t

∗
5] we cannot regenerate either of the schedules corresponding to T 2

i and T 3
i . In

order to avoid regenerating schedules that lead to fractionality, we will therefore never consider
selecting a split time within (t∗2, t

∗
4]. More generally, the open ended candidate intervals for split

time should not include starting or end points of feasibility intervals and we should seek split times
on the boundaries of the feasibility intervals. Thereby, we generally seek split times that lie outside
the feasibility intervals. Hence, we can reduce the set of candidate split times to the two smaller
intervals shown in Figure 4 as ’Cand. splits’. Within each of these two intervals the amount of
flow eliminated is independent of the chosen split time. However, as discussed, the label setting
algorithm used to generate the schedules, ensures that each visit is scheduled as early as possible.
Thereby, no visit can be regenerated at an earlier point in time but it can however be postponed.
Selecting the split time as late as possible within a given candidate interval therefore generally
minimises the risk that an eliminated visit will be regenerated. In Figure 4 this means that in the
interval (t∗1, t

∗
2] we select t∗2 as the split time while in (t∗4, t

∗
5] we select t∗5. Note that t∗2 and t∗5 both

correspond to visit times. We generalise this to say that each currently selected visit time, Ti, after
the feasibility interval of the earliest selected visit at the node, is a candidate split time. By using
this approach, we only need to calculate the feasibility interval of the first visit to the node.

Now we extend to include VSR violations and assume that nodes (r, i− 1), (r, i) and (r, i+ 1)
together form a VSR group. Figure 5 therefore extends the example from Figure 4 to include VSR
violations for node pair (r, i− 1) and (r, i) as well as for node pair (r, i) and (r, i+ 1). Here T 1

i−1
and T 1

i+1 denote, respectively, the visit time of a visit to node i − 1 and i + 1 for two schedules
included in the current solution. Note that for VSR violations we do not care about feasibility
intervals since it is the exact visit time at the node that impacts the VSR constraint. Therefore,
the feasibility intervals are not included in Figure 5. There are four VSR violations and each of
these leads to an interval of feasible split times. These are marked ’Feasible split intervals’ in the
bottom of the figure. The start and end points of these four intervals are marked as t∗6 to t∗11 and
together they define five intervals, i.e. (t∗6, t

∗
7] to (t∗10, t

∗
11], which each have a distinct elimination

of flow. Using the same reasoning as above, within each of these five intervals we prefer to select
the latest time. Therefore, in Figure 5, t∗7 to t∗11 are all candidates for split times. We note that
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t∗7, t∗10 and t∗11 all correspond to visit times at the node while t∗8 and t∗9 correspond to, respectively,
T 1
i+1 − Br and T 1

i−1 + Br. We can generalise this to say that, limiting the search to schedules
included in the current solution with a positive value, the start time of every visit to the node,
except the first, is a candidate split time. Furthermore, for any visit at node i − 1, for which the
visit time Ti−1 causes a violation of the VSR for nodes i−1 and i, T 1

i−1+Br is also a candidate split
time. Similarly, any visit at node i+ 1, for which the visit time Ti+1 causes a violation of the VSR
for nodes i and i+ 1, Ti+1 −Br is a candidate split time. Furthermore, for various integer values
of m, depending on the size of the VSR group that node i belongs to, Ti±m ±mBr can also be
candidate split times. Note that this extends the candidate split times derived from fractionality
since all start times at the node except the first one is now a candidate split time.

Figure 5: Choosing a split time to restore VSR

Assume now that the schedules corresponding to T 1
i , T 2

i , T 3
i and T 4

i are in the current solution
with values 0.1, 0.1, 0.4 and 0.4, respectively. Furthermore, assume that the two visits at nodes
i − 1 and i + 1 are the only visits to these nodes, i.e. that the schedules corresponding to these
visits are both in the solution with a value of 1. Table 2 then shows the infeasible visits and
the corresponding eliminated flow in, respectively, the left and right branch when choosing one of
the candidate split times derived from Figure 5 (which also covers the candidate split times from
Figure 4).

Note that since the branching applied to restore feasibility with respect to VSRs only factors
in the exact visit times and ignores the feasibility intervals, this type of branching allows us to
regenerate similar schedules with visit times just slightly postponed. This is sufficient for the VSR
constraints, however it might not be sufficient to rule out regeneration of fractionality. As an
example, consider the split time candidate t∗7 = T 2

i where the right branch will exclude visit time
T 1
i . According to Figure 4, T 2

i is within the feasibility interval of the schedule, say s1, corresponding
to visit time T 1

i . Therefore, we can easily generate a new schedule similar to s1 with the visit at
node i postponed slightly. Thereby, the exact same fractionality will occur again. Therefore, when
branching on a node where there is no VSR violations, we reinclude the feasibility interval aspect
to more effectively eliminate fractionality.

Table 2: Flow elimination from candidate split times

Infeasible visits Eliminated flow

Left Right Left Right
Candidate branch branch branch branch Minimum

t∗7 T 2
i , T

3
i , T

4
i , T

1
i−1 T 1

i 1.9 0.1 0.1

t∗8 T 3
i , T

4
i , T

1
i−1 T 1

i , T
2
i 1.8 0.2 0.2

t∗9 T 3
i , T

4
i , T

1
i−1 T 1

i , T
2
i , T

1
i+1 1.8 1.2 1.2

t∗10 T 3
i , T

4
i T 1

i , T
2
i , T

1
i+1 0.8 1.2 0.8

t∗11 T 4
i T 1

i , T
2
i , T

3
i , T

1
i+1 0.4 1.6 0.4
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To motivate flow elimination while maintaining a balanced search tree, we prefer the candidate
that eliminates the most flow in the worst of the branches, i.e. the candidate with the highest value
of flow elimination in the branch where it eliminates the least flow. This number is given in Table 2
in column ’Minimum’ for each candidate, and we see that the best worst case flow elimination is
achieved for t∗9.

Note that Table 2 only lists flow immediately eliminated and not flow implicitly eliminated from
further time window reductions. Since each trade can consist of many voyages, calculating the full
flow elimination for each candidate split time for each candidate node, can be time consuming.
Therefore, we refrain from such extensive calculations and simply consider the direct flow elimi-
nation. This is another reason to use the best worst case flow elimination as a selection criteria,
since we know that regardless of the implicit flow elimination, we can never do worse than this.

5.1.4 Selecting the best time window for branching

Now that we know how to find candidate time windows for branching and also how to actually split
the chosen time window, we are ready to choose which time window to branch on. Again, aiming
at eliminating as much flow as possible while maintaining a well balanced search tree, we select
the time window that has the best worse case flow elimination. I.e. the approach from Table 2 for
selecting the best split time for a given time window, is also used to select the best time window
to split.

5.2 Constraint Branching

If slack variables, yri, are inserted into constraints (21), the RMP is modelled as a set partitioning
problem with generalised upper bound constraints (22). Due to the generalised upper bound con-
straints (22), the submatrix for each ship is perfect. Thereby, fractional solutions can only appear
across submatrices for different ships and never within one of the individual ship submatrices.
This means that the LP solution can only be fractional if two or more ships are competing for the
same voyage. Note the word ’voyage’ since ships can never compete for the individual maintenance
requirements. We refer the reader to Padberg (1973) and Conforti et al. (2001) for a discussion
on perfect matrices and their properties. This strong integer property of the RMP constraint
matrix means that the upper bounds in the branch-and-bound algorithm are very tight and that
we can expect to reach integral solutions after only a few iterations of branching. We exploit this
underlying structure of the constraint matrix in the branching scheme to apply so called constraint
branching, see Ryan and Foster (1981). Note that this strong integer property also means that we
can refrain from checking for ’equal geographical routes’ for each ship.

5.2.1 Candidate voyage-ship pairs

If the current solution is fractional, there must be a voyage (r, i) ∈ NC ∪ NO that is performed
by several ships. Since, by definition, each spot vessel (we can also view slack variables as a form
of spot vessel schedules) can only perform one voyage, the spot vessels cannot compete with each
other for voyages. Therefore, at least one of the ships currently competing for voyage (r, i) must
be a non-spot vessel and we denote this ship k. In an integral solution, the voyage can only be
performed by one ship and therefore ship k can either perform or not perform voyage (r, i). For
each ship k ∈ V and voyage (r, i) ∈ NC ∪NO we introduce the sum

Sk
ri =

∑
s∈Sk′

Ak
risλ

k
s .

If the current solution is fractional, there must exist a voyage (r, i) and a ship k for which 0 <
Sk
ri < 1. The branching strategy is then to construct a left branch where ship k is forced to

perform voyage (r, i) and a right branch where ship k is not allowed to perform voyage (r, i). In
the left branch this means that Aris = 1 for all s ∈ Sk. Thereby, we can remove all schedules for
k that do not include voyage (r, i) and all columns for other ships that do include voyage (r, i).
This also means removing the spot vessel schedule for voyage (r, i) or equivalently setting yri = 0.
Furthermore, we remove voyage (r, i) in all subproblems networks not corresponding to ship k.
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We rely on the dual variables to eventually enforce the construction of schedules for ship k that
include voyage (r, i). In the right branch, we instead have Aris = 0 for all s ∈ Sk. This is the
opposite process of the left branch, and so we instead remove all schedules for k that do include
voyage (r, i). Furthermore, we remove voyage (r, i) in the subproblem network corresponding to
ship k while we cannot make any changes in the networks corresponding to other ships.

To ease notation, we let SS
ri denote the similar sum for spot vessels (including slack variables)

even though this simply correspond to yri. When 0 < SS
ri < 1, we can then use the same branching

approach as just described for regular ships though the corresponding updates of the RMP and
subproblems must of course be modified accordingly. Also note that since spot vessels cannot
compete for the same voyages, we can never have fractional y-variables without also having at
least one fractional λ-variable. Therefore, in a fractional solution we can always find at least one
voyage (r, i) and one regular ship k ∈ V for which 0 < Sk

ri < 1.

5.2.2 Selecting the voyage-ship pair for branching

Competition for a voyage (r, i) requires at least two different ships. Thereby, in a fractional solution
there must be at least two distinct ships (one of them possibly a spot vessel), k1 and k2, for which
Sk1
ri and Sk2

ri are fractional. Therefore, in any fractional solution we have at least two candidate
voyage-ship pairs for branching and we must select one of these.

If Sk
ri is close to 1, the solution favours ship k for performing voyage (r, i); hence, forcing ship

k to perform the voyage, as we do in the left branch, will probably not change the solution much
and thereby not the upper bound either. In the right branch, where we force ship k not to perform
the voyage, we can on the other hand expect to see a greater impact on the upper bound. This
could potentially create an unbalanced search tree. The situation is similar, though reversed, if
Sk
ri is close to 0. To maintain a balanced search tree we therefore prefer branching on candidates

that are as fractional as possible, i.e. as close to 1/2. We denote the list of candidate pairs by C,
i.e

C = {((r, i), k) ∈ NC ∪NO × V ∪ {S} : 0 < Sk
ri < 1}.

We then select the candidate pair that leads to the most balanced search tree, i.e. select

((r, i), k)∗ = arg min
((r,i),k)∈C

{∣∣Sk
ri −

1

2

∣∣}.
5.3 Branching Strategy

We use depth-first search and consider three different branching strategies with different priorities
to the different branching schemes:

1. Constraint branching first, time window branching second.

2. Time window branching first, constraint branching second.

3. VSR related time window branching first, constraint branching second.

The first strategy initially uses constraint branching to eliminate fractionality and then turns to
time window branching to handle violations of VSR constraints. Note that in this case, the time
window branching scheme will be simplified since only one visit to each node exists and we do not
have to consider feasibility intervals. The second strategy uses time window branching to handle
both VSR violations and fractionality and only turns to constraint branching if we run out of time
windows to branch on. The third strategy starts by handling all violations of VSR constraints
while ignoring fractionality, i.e. disregarding feasibility intervals and in general nodes that are
not involved in VSR violations. Afterwards, all fractionality is eliminated through constraint
branching. Note though that the VSR related time window branching will simultaneously help to
eliminate fractionality.

Preliminary tests show that the strategy that first performs VSR related time window branching
and then constraint branching, consistently outperforms the other strategies, and so we use this
strategy for our computational study.
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6 Computational Study

In this section, we describe data and results from our computational study to evaluate the per-
formance of the developed algorithm. As a reference point for this evaluation, we compare our
method with the a priori path generation method from Norstad et al. (2013).

6.1 Data instances

To properly evaluate the performance of the devised algorithm, we test it on 16 problem instances of
varying complexity and size. These instances have been generated by the test instance generator
described in Norstad et al. (2013) which is based on industry data. Table 3 presents the main
characteristics of the 16 data instances. The column labels are almost self explanatory but for
completeness sake we note that from left to right they give the instance number, the number of
ships, the number of trades, the number of voyages where the number in parenthesis gives the
number of spot voyages and finally, the length of the planning horizon in days. Note that this
horizon is defined as the length of the period that contains the earliest allowed starting time
for each voyage. Thereby, planning will continue well beyond this horizon since voyages can be
performed later than the earliest allowed time and must also be completed.

Table 3: Data instance characteristics

No. Ships Trades Voyages Horizon

1 10 4 21(5) 90
2 10 7 32(9) 90
3 10 4 19(0) 90
4 10 4 25(0) 120
5 10 5 34(9) 120
6 10 5 36(5) 120
7 10 5 42(11) 150
8 10 6 52(13) 150
9 10 6 47(8) 150
10 25 8 49(10) 90
11 25 8 44(11) 90
12 25 8 53(11) 90
13 25 8 57(10) 105
14 25 8 55(5) 105
15 25 8 64(12) 120
16 32 13 55(12) 90

6.2 Computational Results

In order to evaluate the performance of the devised algorithm, we run it on all 16 data instances,
and compare the results obtained from these tests with results from using the path generation
method from Norstad et al. (2013).

6.2.1 Results from devised Branch-and-Price method

The results from our developed Branch-and-Price method are obtained using a PC with 4.0 GB
RAM and an Intel(R) Core(TM)2 Duo CPU P8600, 2.4 GHz processor under a 64 bit Windows
7. The algorithm is implemented in C++ using Cplex 12.4 with default settings to solve the
master problem and the time window branching parameter ε set to 0.001, which corresponds to
1.44 minutes on our data instances. Table 4 shows the results from running our algorithm on the
16 data instances. The column ‘Inst’ gives the instance number while columns ‘Objective’ and
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‘Gap’ contains, respectively, the objective value of the best solution found and the integrality gap
in percentage for this solution. In column ‘Time’ we list the time used to solve the problem. We
allow a maximum running time of 3600 seconds and if the algorithm runs out of time before closing
the integrality gap, we list the time it took to find the best solution and put a ‘*’ to indicate that
we ran out of time. Column ‘Vars’ lists the number of variables in the final master problem, i.e. the
number of columns generated. Column ‘Nodes’ gives the number of explored Branch-and-Bound
nodes and, finally, in columns ‘TimeLP’ and ‘TimeSub’ we have the time spent solving, respectively,
the master problem and the subproblems.

Table 4: Results from Branch-and-Price method

Inst Objective Gap Time Vars Nodes TimeLP TimeSub

1 12 423 322 - 0 377 153 0 0
2 17 769 109 - 0 401 33 0 0
3 12 993 990 - 0 231 9 0 0
4 15 817 224 - 1 1512 311 0 0
5 15 422 210 - 1 887 139 0 0
6 21 555 416 - 0 660 29 0 0
7 20 252 953 - 0 476 5 0 0
8 21 026 411 - 0 330 1 0 0
9 23 201 012 - 2 1415 275 0 1
10 36 703 643 0.79 0* 27821 75780 2243 283
11 28 988 536 - 0 780 4 0 0
12 38 871 251 - 7 2464 967 1 4
13 37 650 390 - 0 1393 3 0 0
14 37 505 930 0.23 0* 4510 175184 1088 931
15 43 260 992 0.07 1* 4326 167019 979 1096
16 40 909 308 0.23 1046* 73059 15441 2131 149

From Table 4 we first see that on four instances the algorithm is unable to close the integrality
gap after 3600 seconds. However, all four integrality gaps are well below 1% and hence very small.
Next, we see that, aside from instance 16, the algorithm very quickly finds a good if not optimal
solution. On instance 16, the time to find the best solution is however 1046 seconds. Looking at
the number of generated variables, we see that it ranges from as low as just 231 variables up to
73,059. The number of Branch-and-Bound nodes shows a similar diversity of the test instances as
this number ranges from just 1 node, i.e. problem solved at root node, up to as many as 175,184
nodes. Combining the number of variables and the number of nodes with the time usage for master
problem and subproblems, we note that the four occasions where the algorithm runs out of time
can be divided into two different categories. For problem instances 10 and 16, so many variables
are generated that the master problem becomes so large, that the computation time to solve it
repeatedly dominates the procedure. For these instances, it would probably help to use a higher
value for the time window branching parameter ε. This will in general speed up the algorithm;
however, it can sacrifice optimality. On the other hand, for instances 14 and 15, the number of
generated variables is not very high. Instead, the number of explored nodes is huge and suggests
that for these instances it would help to implement a different search strategy for the branch-
and-bound tree, e.g. Best-First-Search. It could also help to use different selection rules for time
windows and split times in the time window branching scheme, or for ship-voyage pairs in the
constraint branching scheme. More generally, the branching scheme might be improved by using
strong branching (see Achterberg et al. (2005)). Overall we note that our algorithm is able to find
very good if not optimal solutions extremely fast, though one instance requires longer time.

As already mentioned, Norstad et al. (2013) find that voyage separation requirements can
significantly improve the spread of the voyages and at only marginal profit reductions. Although
we do not wish to repeat their analysis here, we note that we arrive at similar findings after running
the 16 instances again without voyage separation requirements. In fact, the profit reduction is below
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1% on all 16 instances. The complexity added from the voyage separation requirements is however
not insignificant and this is most notable for instance 10 where we ran out of time when voyage
separation requirements were included in the problem. Running instance 10 again, though this
time without these separation requirements, we are able to solve the instance to optimality using
just 0.12 seconds and exploring just 7 nodes. On instance 16 we still run out of time but now
the best solution is found after just 535 seconds, where it was 1046 seconds with the separation
requirements included.

6.2.2 Results from A Priori Path Generation method

To properly evaluate the efficiency of our Branch-and-Price algorithm we want to compare our
results with results obtained from using the A Priori Path Generation (APPG) method described
in Norstad et al. (2013). This method first a priori generates feasible paths and then uses a
commercial solver to solve the path flow formulation containing these generated paths. We use
Section 6.2.3 to compare the results from the two methods while in this section we focus solely on
the APPG method and the results obtained from it.

The authors from (Norstad et al., 2013) have provided us with results from running their
APPG method on the same 16 data instances that we use here. Their results are obtained using a
comparable DELL Latitude Laptop with Intel Core i5 CPU (4x2.40 GHz), 4GB DDR2 RM running
on Windows 7. Their path generator is implemented in C# while the path flow model is solved
with Xpress MP 7.0 64 bit. Results from running their method also with a time limit of 3600
seconds on the 16 data instances considered here are given in Table 5. The column headers are
the same as in Table 4 though we have added a column denoted ‘Constrs’ which lists the number
of constraints in the path flow model.

Table 5: Results from A Priori Path Generation method

Inst Objective Time Vars Constrs

1 12 423 322 0 946 4866
2 17 638 764 1 2897 10936
3 12 993 990 0 1150 4035
4 15 817 224 15 3139 6820
5 15 422 210 1 6050 12302
6 21 555 416 2 12285 13768
7 20 252 953 2 14344 18567
8 20 062 828 4 14781 28194
9 22 916 245 44 15554 23138
10 34 894 744 4 9461 62462
11 28 906 248 3 7175 50569
12 38 871 251 19 11291 72853
13 37 626 000 13 32346 84093
14 37 465 639 678 26344 78412
15 40 822 868 119 52625 105636
16 40 883 752 13 8314 103590

Ignoring the objective function values for now, we first note from the ‘Time’ column in Table 5
that the time usage from this method is generally a lot longer than from our algorithm. However,
this method never runs out of time and therefore never exhibits any integrality gaps. It would
therefore be natural to conclude that the APPG method is slower but more stable than our method.
However, although Norstad et al. (2013) present their APPG method as an exact one, we claim
that this is not the case. We discuss this further in the next section when comparing results from
the APPG method and our Branch-and-Price method. For now we focus on the APPG method
itself and further investigate the actual implementation of it. From Norstad et al. (2013) we have
the following quote describing the details of their implementation:
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”In order to generate the parameters for the path flow model a path generator program has been
implemented. All feasible paths for each ship are generated a priori to the optimization. Since the

required maintenance operations and also some the voyages can have quite wide time windows,
there may be several feasible sequences or paths a ship can follow while performing the same set of

voyages. A simple dominance test is therefore performed to make sure that only the most
profitable one is passed on to the optimization model.”

As discussed in Section 4, without the voyage separation requirements it is sufficient to in-
clude the profit maximising schedule for each ship and cargo set. However, with the separation
requirements included in the problem this is no longer true since the actual timing of port calls in
a schedule for one ship can affect the timing of port calls for schedules of other ships. Instead, any
feasible schedule for a ship can potentially be part of the optimal solution and the master problem,
or in their case the path flow formulation, can contain several schedules all corresponding to the
same set of voyage and maintenance stops. Therefore, the ‘simple dominance test’ mentioned in
the quote above actually sacrifices optimality of the APPG method as implemented by Norstad
et al. (2013). With the voyage separation requirements included the a priori generation approach
should be quite time consuming which is why we turned to dynamic column generation. However,
because of this dominance test the APPG method becomes manageable even with these separa-
tion requirements included. So, this dominance test makes their APPG implementation extremely
efficient, though it does sacrifice optimality.

6.2.3 Comparing the two methods

To properly evaluate our devised Branch-and-Price method we use this section to compare it with
the APPG method from Norstad et al. (2013). Table 6 therefore summarises the key values from
Tables 4 and 5 from running each of these two methods on the considered 16 data instances. For
the APPG method we have added a column denoted ‘Gap’ which contains the integrality gap in
percentage from comparing the APPG solution with the bound obtained from our Branch-and-
Price method. Furthermore, the last column denoted ‘Obj. Incr.’ lists the percentage increase in
objective function value from using our algorithm compared to the APPG algorithm.

Table 6: Comparing solution methods

A Priori Path Generation Branch-and-Price

Inst Obj Gap Time Vars Obj Gap Time Vars Obj. Incr.

1 12 423 322 - 0 946 12 423 322 - 0 377 -
2 17 638 764 0.7 1 2897 17 769 109 - 0 401 0.7
3 12 993 990 - 0 1150 12 993 990 - 0 231 -
4 15 817 224 - 15 3139 15 817 224 - 1 1512 -
5 15 422 210 - 1 6050 15 422 210 - 1 887 -
6 21 555 416 - 2 12285 21 555 416 - 0 660 -
7 20 252 953 - 2 14344 20 252 953 - 0 476 -
8 20 062 828 4.6 4 14781 21 026 411 - 0 330 4.8
9 22 916 245 1.2 44 15554 23 201 012 - 2 1415 1.2
10 34 894 744 5.7 4 9461 36 703 643 0.8 0* 27821 5.2
11 28 906 248 0.3 3 7175 28 988 536 - 0 780 0.3
12 38 871 251 - 19 11291 38 871 251 - 7 2464 -
13 37 626 000 0.1 13 32346 37 650 390 - 0 1393 0.1
14 37 465 639 0.3 678 26344 37 505 930 0.2 0* 4510 0.1
15 40 822 868 5.7 119 52625 43 260 992 0.1 1* 4326 6.0
16 40 883 752 0.3 13 8314 40 909 308 0.2 1046* 73059 0.1
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From Table 6 we first note that, compared to the bound obtained from our algorithm, the
APPG method now experiences integrality gaps for 9 out of the 16 instances. We also note that
these gaps are consistently larger than our gaps which is consistent with the fact that our solutions
are consistently equal to or better than the ones obtained from the APPG method. In fact, the
profit increase from using our algorithm compared to the APPG method is as high as 6% for one
instance. Focusing instead on the time usage of the two algorithms, we see that on the instances
where our algorithm does not run out of time, the APPG method consistently uses the same or
longer time. On the four instances where our algorithm runs out time, we manage to find a better
solution than the APPG method and for three out of these four instances this better solution is
found much faster than the solution from the APPG method. However, for instance 16 this is not
true. Finally, we turn to the variable count for each algorithm and note that, aside from instances
10 and 16 where our algorithm runs out time due to an extensive generation of variables, the APPG
method consistently includes much more variables than our method. This is consistent with our
dynamic column generation approach which only generates columns as needed.

Overall we find that our devised Branch-and-Price algorithm provides very good if not optimal
solutions extremely fast. In fact, it consistently finds equal or better solutions than the APPG
method and for all but one instance the solution is found in the same or a shorter time than the
APPG method uses.

7 Concluding Remarks

In this paper we have considered the tramp ship routing and scheduling problem with voyage
separation requirements. These separation requirements enforce a minimum time spread between
voyages on the same trade. This is done in an attempt to improve the situation for the charterer
who faces increased inventory costs if voyages are not performed ’fairly evenly spread’ in time. In
this respect, the separation requirements correspond to a crude way of viewing the tramp ship
routing and scheduling problem in the broader context of the supply chain.

We have developed a new and exact method for this problem. It is a Branch-and-Price procedure
with a dynamic programming algorithm to dynamically generate columns and with the voyage
separation requirements relaxed in the master problem and instead enforced through a modified
time window branching scheme. Computational results from 16 data instances show that our
algorithm finds very good if not optimal solutions extremely fast though one instance requires
longer time. On four instances our algorithm is unable to prove optimality within 3600 seconds
and, although the integrality gap is small for all four instances, it would still be interesting to
explore different search strategies for the branch-and-bound procedure and different modifications
to the branching schemes.

Running our algorithm on all 16 instances without the voyage separation requirements showed
that the profit reduction from including the separation requirements is below 1% on all instances.
This is consistent with the findings in Norstad et al. (2013) who conclude that voyage separa-
tion requirements can significantly improve the spread of the voyages and at only marginal profit
reductions. There is however a significant increase in problem complexity from these additional
requirements and for one instance this increase caused the algorithm to require more than 3600 sec-
onds to solve a problem that was otherwise solvable within just 0.12 seconds without the additional
requirements.

We compared our Branch-and-Price method to the APPG method from Norstad et al. (2013)
that we have shown is not optimal. Results from comparing the two methods on the 16 data
instances confirm this. In fact, our solutions are consistently equal to or better than the ones
obtained from the APPG method and the profit increase from using our algorithm compared to
the APPG method is as high as 6% for one instance. Furthermore, on all but one instance, our
solution is found in equal or shorter time than what the APPG method uses.

Overall we have developed a new, exact method for the tramp ship routing and scheduling
problem with voyage separation requirements. This method is extremely fast at finding very good
if not optimal solutions, although one instance requires longer time. An interesting extension of
this work would be to explore different branch-and-bound search procedures as well as different
modifications to the branching schemes. Finally, it would also be interesting to investigate the
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effect of modifying the APPG method to obtain optimal solutions, i.e. removing the dominance
test discussed in Section 6.2.2.
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