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SUMMARY

Engineered barriers are basic elements in the design of repositories for the isolation of high-level radioactive
waste. This paper presents the thermo-hydro-mechanical (THM) analysis of a clay barrier subjected to
heating and hydration. The study focuses on an ongoing large-scale heating test, at almost full scale,
which is being carried out at the CIEMAT laboratory under well-controlled boundary conditions. The test
is intensely instrumented and it has provided the opportunity to study in detail the evolution of the main
THM variables over a long period of time. Comprehensive laboratory tests carried out in the context of
the FEBEX and NF-PRO projects have allowed the identification of the model parameters to describe
the THM behaviour of the compacted expansive clay. A conventional THM approach that assumes the
swelling clay as a single porosity medium has been initially adopted to analyse the evolution of the
test. The model was able to predict correctly the global THM behaviour of the clay barrier in the short
term (i.e. for times shorter than three years), but some model limitations were detected concerning the
prediction of the long-term hydration rate. An additional analysis of the test has been carried out using a
double structure model to describe the actual behaviour of expansive clays. The double structure model
explicitly considers the two dominant pore levels that actually exist in the FEBEX bentonite and it is able
to account for the evolution of the material fabric. The simulation of the experiment using this enhanced
model provides a more satisfactory reproduction of the long-term experimental results. It also contributes
to a better understanding of the observed test behaviour and it provides a physically based explanation
for the very slow hydration of the barrier. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The conceptual design of repositories for high-level nuclear waste generally envisages the placing of
radioactive waste canisters in either horizontal drifts or vertical large diameter boreholes excavated
at great depths in suitable geological media. Canisters are surrounded by engineered barriers made
up of compacted expansive clays. This clay-based isolation system has the multiple purpose of
providing mechanical stability for the waste canister (by absorbing stresses and deformations);
serving as a buffer around it; sealing discontinuities in the emplacement boreholes and drifts; and
delaying the water flow from the host rock. The latter function is an important one, because it
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postpones the contact between water and the waste as long as possible. The time to reach the full
saturation of the barrier is a key parameter due to its impact on the long-term performance of the
system and on the repository lifetime.

The behaviour of the clay barrier is highly complex, since it involves coupled thermo-hydro-
mechanical (THM) phenomena that take place due to the simultaneous heating (generated by the
waste radioactive decay) and hydration of the barrier (due to inflow of water from the surrounding
rock). The understanding of the main THM processes and their couplings requires the contribution
of experimental and fundamental studies. In the last few years, several full-scale tests have been
carried out aimed at advancing the current knowledge about the behaviour of this kind of a system
and to demonstrate the feasibility of different conceptual designs [1–5]. They have been normally
performed in underground research laboratories excavated in a variety of geological media in order
to examine the interaction of the host rock with the engineered barrier. This implies that the results
of the tests are affected by the unavoidable variability and complexity of a natural geological
system.

There is, therefore, merit in performing large-scale tests under controlled laboratory conditions
so that the THM behaviour of the engineered barrier can be observed under well-known initial and
boundary conditions eluding the uncertainties of the natural system. This paper focuses on one such
test: the ‘FEBEX mock-up test’ [6], an ongoing heating experiment, at almost full scale, performed
in the premises of CIEMAT laboratory in Madrid, in the context of the European projects FEBEX
(Full-scale Engineered Barriers Experiment [1]) FEBEX II and NF-PRO [7].

Because of the very low permeability of the bentonite, significant results require observations
over very long periods of time. In this respect, the ‘FEBEX mock-up test’ is quite exceptional as the
evolution of the main THM variables has been recorded since the start of the heating and hydration
of the experiment on 11 February 1997, more than a decade ago. The experiment is intensively
instrumented and most of the sensors (recording. temperature, heater power, relative humidity,
water intake, total pressure, etc.) are still operational. A large amount of data have therefore been
collected from perhaps the large-scale test with the longest duration without changes in the testing
conditions.

The THM formulation proposed by Olivella et al. [8] and the corresponding computer code
CODE_BRIGHT [9] have been used in this work to interpret and describe the behaviour of
the clay barrier. The determination of the model parameters used in the analyses has been
based on an extensive campaign of laboratory tests carried out during the FEBEX and NF-
PRO projects. Application of conventional models to the analysis of the tests has revealed that
the long-term observed behaviour departed from initial predictions, especially those related to
the time required to reach the full saturation of the barrier. The work presented herein explores the
potential role of clay-fabric changes during confined hydration to explain the unexpected barrier
behaviour.

During hydration the clay fabric exhibits an evolving character [10–12] that may affect strongly
the kinetics of hydration, especially if confined conditions prevail. Single porosity models are not
able to tackle properly the role that different pore levels play during the hydration process of
swelling clays. A more detailed analysis of the clay fabric effects in the evolution of the mock-up
test has therefore been performed with the aid of a double structure model [13–15]. Using this
concept, the effect of two dominant pore levels that typically exist in compacted expansive clays
can be explicitly included in the analysis.

The paper is organized as follows: a short description of the mock-up test is presented first,
followed by a brief introduction to the THM formulation and the main constitutive laws adopted in
the analysis. Afterwards, the numerical analysis of the clay barrier evolution using a conventional
model is presented and the differences between observations and predictions are identified. Infor-
mation about the evolving fabric of the compacted clay is then introduced together with the double
structure model used to represent it. The results of the numerical analysis using this enhanced
model are then presented and discussed. Finally, the conclusions draw together the various aspects
of the research presented. Additional information is presented in the Appendix. The meaning of
the symbols used in this paper is listed in Table I.
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Table I. Notation.

�G parameter related to the plastic potential De elastic matrix
�0 parameter for elastic thermal strain Dep elasto-plastic matrix

�1 parameter that relates p∗
0 with T Di

� dispersion tensor of the medium
(i =w,a;�=l,g)

�2 parameter for elastic thermal strain e total void ratio
�3 parameter that relates p∗

0 with T eM macrostructural level void ratio
�m parameter controlling the microstructural

soil stiffness
em microstructural level void ratio

�m parameter controlling the microstructural
soil stiffness

FLC BBM yield surface

� parameter related to the degree of
saturation of the macrostructure

f� interaction function related to the coupling
between macro and micro levels

�T temperature increment (T −T0) G plastic potential
ε strain vector {εx ,εy,εz ,�xy,�xz,�yz}T Gt shear modulus
•
ε
e

elastic strain increment due to stress
changes

g a lode angle function

•
ε
e
s elastic strain increment due to suction

changes
I identity matrix

•
ε
e
T elastic strain increment due to temperature

changes
ii� non-advective mass flux (i =w,a;�=l,g)

εvm elastic volumetric strain at microstructural
level

ic non-advective heat flux

ε
p
v total plastic volumetric strain J second stress invariant of deviatoric stress

tensor
ε
p
LC plastic volumetric strain related to the

yielding of the LC
jE� j advective energy flux in � phase with

respect to a fixed reference system
� macrostructural elastic stiffness parameter

for changes in mean stress
ji� total mass flux of i-species in � phase

with respect to a fixed reference system
�s macrostructural elastic stiffness parameter

for changes in suction
K global bulk modulus

�m parameter controlling the microstructural
soil stiffness

Ks macrostructural bulk modulus for changes
in suction

� thermal conductivity KT macrostructural bulk modulus for changes
in temperature

�(s) macrostructural compressibility parameter
for changes in net mean stress for virgin
states of soil at suction s

KM macrostructural bulk modulus for changes
in mean stress

�(s) macrostructural compressibility parameter
for changes in net mean stress for virgin
states of soil at suction s

Km microstructural bulk modulus for changes
in mean stress plus suction

�0, �d retention curve parameters k0 the intrinsic permeability at a reference
porosity

�LC plastic multiplier related to the BBM b model parameter intrinsic permeability
� poisson’s coefficient k parameter describing the increase in

cohesion with suction
�� dynamic viscosity of � phase (�=l,g) LC Loading–Collapse yield surface (BBM)
	 Lode’s angle n porosity
	i� (=
��

i
� mass of i-species in � phase per

unit volume of � phase (i =w,a;�=l,g)
p̂ microstructural effective stress

�i
� mass fraction of i-species in � phase

(i =w,a;�=l,g)
p mean net stress


 parameter that relates cohesion and T pc reference stress

s solid density p0 net mean yield stress at current suction

and temperature

� mass of � phase per unit of volume of �

phase (�=l,g)
p∗
0 net mean yield stress for saturated

conditions at reference temperature
rt total stress vector.

{�x ,�y ,�z ,xy,xz,yz}Tt
p∗
0T net mean yield stress for saturated

conditions at current temperature
r net stress vector (rt −Ipg) pr reference stress
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Table I. Continued.

� parameter controlling the rate of increase
of macrostructural soils stiffness with
suction

P0, Pd retention curve parameters

Acronyms q� volumetric flux of � phase with respect to
the solid (�=l,g)

BBM Barcelona Basic Model r parameter defining the minimum
macrostructural soil compressibility

Dou Double structure case s matric suction (pg− pl )
OBC Operational Base Case S� volumetric fraction of pore volume

occupied by � phase (�=l,g)
THM Thermo-hydro-mechanical T temperature (T0= reference temperature)

2. FEBEX MOCK-UP TEST

The mock-up test is still being carried out at the CIEMAT laboratory in Madrid. The aim of the
FEBEXs and NF-PRO projects has been to study the behaviour of the barrier components in the
near-field of a high-level radioactive waste repository in crystalline rock (granite). The experiment
is based on the Spanish disposal reference concept, which considers the waste canister placed
horizontally in drifts and surrounded by a clay barrier constructed from highly compacted bentonite
blocks. The experimental study is composed of three main parts [1]: (i) an in situ test under natural
conditions and at full scale [5]; (ii) a mock-up test at almost full scale and (iii) a series of laboratory
tests to complete the information from the two large-scale tests.

The in situ test operates under natural conditions at the underground laboratory managed by
NAGRA, at the Grimsel test site in Switzerland. The mock-up test is performed at the CIEMAT
laboratory in Madrid under well-controlled initial and boundary conditions. A controlled temper-
ature room was built to host the mock-up test. The physical components of the mock-up test
consist of five basic units: the confining structure with its hydration system, the clay barrier, the
instrumentation, and the system for data acquisition and for heater control. Figure 1(a) shows a
picture of the mock-up test and Figure 1(b) presents a schematic representation of the experiment.

The confining structure is a cylindrical steel body with a useful length of 6.00m and an inner
diameter of 1.62m. The hydration system supplies water under pressure to the periphery of the
clay barrier. To simulate the water that saturates the barrier in a repository excavated in granitic
rock ‘granitic water’ was injected. The granitic water has a salinity of 0.02% and a pH of 8.3,
more details about the chemistry of the injected water can be found elsewhere [1]. A flexible
geotextile has been placed around the outer boundary of the barrier to ensure uniform hydration
conditions. The main elements of the heating system are two heaters located concentrically in the
confining structure. The clay barrier is formed from highly compacted blocks of FEBEX bentonite.
The blocks were fabricated with an average water content of 13.6% and the average dry density
of the barrier is 1.65mg/m3. The instrumentation includes sensors installed in the clay barrier, in
the heaters and in the confining structure. The main measured variables are: temperature, relative
humidity, fluid pressure and total pressure. Figure 2 shows the monitored cross sections and the
positions of the different sensors in each of those sections.

The main characteristics of the test can be summarized as: (i) the test has a clay barrier with
an unlimited availability of hydration water, supplied at constant and controlled pressure; (ii) the
mass of water introduced into the system is continuously measured and recorded; (iii) the boundary
conditions are well-defined and controlled; (iv) the initial conditions are well established at the
beginning of the heating phase; (v) the test is intensively instrumented, with several sensors located
along the barrier which register the evolution of the main THM variables and (vi) the experiment
has two electrical heaters, symmetrically placed in relation to the central section of the test.
Therefore, the measurements made in sections located symmetrically with respect to the central
section should be much the same. This provides an excellent way to check on the repeatability
and reliability of the observations.
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(b)

(a)

Figure 1. (a) Mock-up test and (b) schematic representation of the main components of the experiment.

3. THM FORMULATION

Several strongly coupled THM phenomena take place when an unsaturated clay barrier is submitted
to simultaneous heating and hydration. Although they have been qualitatively described else-
where [5, 16], they are briefly considered here for completeness. For example, hydration takes place
from the external boundary inwards driven by the gradient between the applied water pressure and
the suction in the bentonite. Hydration will cause a progressive rise in the degree of saturation.
This affects both the temperature field, due to the modifications of thermal conductivity, and the
stress-strain distribution, due to suction changes. On the other hand, in the inner part of the buffer,
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Heater A Heater B

Zone A Zone B

11A; 11B 12A; 12B 1A; 1B AB
A3; B3
A6; B6

A4; B4
A7; B7 10A; 10B

A2; A5; A8
A9; B2; B5
B8; B9

Instrumented sections       25

Temperature sensors       328
Total pressure sensors      50
Fluid pressure sensors       20
(RH+T) sensors                40

Figure 2. Mock-up test: instrumented sections, sensors types and positions in zones A and B of the barrier.

applied heat causes a temperature rise that moves outwards with time. Temperature-induced water
evaporation causes drying of the bentonite. Vapour coming from the inner part of the barrier will
diffuse towards the outer regions where it will condense causing a local rise of the degree of
saturation. Water transfer is also affected by the dependence of water viscosity on temperature and
by porosity changes arising from variations in stresses and suction. The analysis of this type of a
problem requires a formal and consistent framework.

The theoretical framework used to analyse the problem is the coupled THM formulation proposed
in [8], extended to consider clayey materials. The approach is composed of three main parts:
balance equations, constitutive equations and equilibrium restrictions. The framework is formulated
using a multi-phase, multi-species approach. The subscripts identify the phase (‘s’ for solid, ‘l’
for liquid and ‘g’ for gas). The superscript indicates the species (‘h’ for mineral, ‘w’ for water
and ‘a’ for air). The liquid phase may contain water and dissolved air, and the gas phase may be
a mixture of dry air and water vapour. Dry air is considered as a single species. A brief account
of the formulation is included below; a detailed description can be found elsewhere [5, 8, 9, 16].

3.1. Balance equations

Mass balance equations were established following the compositional approach, which consists of
balancing the species rather than the phases. Water is present in liquid and gas phases. The total
mass balance of water is expressed as

�
�t
(	wl Sln+	wg Sgn)+∇·(jwl +jwg )= f w (1)

where 	wl and 	wg are the masses of water per unit volume of liquid and gas, respectively; n is the
porosity; Sl and Sg represent the volumetric fraction of pore volume occupied by liquid and by
gas (degree of saturation for their respective phases) and jwl and jwg denote the total mass fluxes of
water in the liquid and gas phases (water vapour), with respect to a fixed reference system. f w is
an external supply of water. The main variable associated with this equation is the liquid pressure
(Pl)[9]. Similarly for the air

�
�t
(	al Sln+	agSgn)+∇·(jal +jag)= f a (2)

where 	la and 	ga are the masses of air per unit volume of liquid and gas phases, respectively. jal and
jag denote the total mass fluxes of air in the liquid and gas phases with respect to a fixed reference
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system. f a is the external mass supply of air per unit volume of medium. The gaseous phase
is assumed as a mixture of air and water vapour and the gas pressure (Pg) is the main variable
associated with this equation.

Thermal equilibrium between phases is assumed. This hypothesis means that at a given material
point, the three phases (i.e. solid, liquid and gas) are at the same temperature and, consequently, only
one equation is required to establish the energy balance. This hypothesis is justified considering the
low permeability of the expansive clays. The total internal energy per unit volume of porous media
is obtained adding the internal energy of each phase corresponding to each medium. Applying the
balance equation to this quantity, the following equation is obtained [8]:

�
�t
(Es
s(1−n)+El
lSln+Eg
gSgn)+∇·(ic+jEs+jEl+jEg)= f E (3)

where Es is the solid-specific internal energy; El and Eg are specific internal energies corresponding
to the liquid and gas phases, respectively; 
s is the solid density; 
l and 
g are the liquid and gas
phase densities; ic is the conductive heat flux; jEs is the advective energy flux of solid phase with
respect to a fixed reference system; jEl and jEg are the advective energy flux of liquid and gas
phases, respectively, with respect to a fixed reference system and f E is the energy supply per unit
volume of medium.

The balance of momentum for the porous medium reduces to the equilibrium equation in total
stresses:

∇ ·r+b=0 (4)

where r is the stress tensor and b is the vector of body forces. Through an adequate constitutive
model (presented in the next section), the equilibrium equation is transformed into a form expressed
in terms of solid velocities and fluid pressures. The assumption of small strain rate is also made.
The displacement field (u) is the main variable associated with this equation [9]. In addition, the
mass balance of solid is established for the whole porous medium and it is used to update the
porosity [8, 9].

3.2. Constitutive equations and equilibrium restrictions

The constitutive equations establish the link between the main unknowns (e.g. displacements, fluid
pressures and temperature) and the dependent variables (e.g. stresses and degree of saturation).

Mechanical model. The Barcelona Basic Model (BBM) has been initially adopted to model the
mechanical behaviour of the clay barrier [17]. The BBM is an elasto-plastic strain hardening
model, which extends the concept of critical state for saturated soils to the unsaturated conditions
and it is able to reproduce many of the basic patterns of behaviour observed in unsaturated soils.
The BBM considers two independent stress variables: the net stress (r) computed as the excess
of the total stresses over the gas pressure (rt −Ipg), and the matric suction (s), computed as the
difference between gas pressure and liquid pressure. The model is formulated in terms of the three
stress invariants (p; J ; 	); suction and temperature (the invariants are defined in the Appendix).
In the BBM the yield surface depends also on the matric suction (Figure 3). The trace of the yield
function on the isotropic p−s plane is called the LC (Loading–Collapse) yield curve, because it
represents the locus of activation of irreversible deformations due to loading increments or wetting
(collapse compression). The position of the LC curve is given by the value of the hardening
variable p∗

0 , which is the apparent pre-consolidation yield stress of the saturated state. The ideas
proposed in [18] have been adopted to extend the BBM to non-isothermal condition, considering
that thermal changes affect both elastic and plastic behaviour. Pre-consolidation pressure is affected
by the temperature assuming that temperature increases reduce the size of the yield surface and the
strength of the material. This is a well-established behaviour for saturated conditions [19], and it
can also be extended to the unsaturated conditions, as confirmed in the recent experimental studies
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Figure 3. 3-D representation of the Barcelona Basic Model yield surface, including the LC (Loading
Collapse yield curve), p∗

0 (the history variable of the model), p0 and ps.

Table II. Model parameters related to BBM.

� 0.04 �s 0.25
� 0.4 �is −0.003
�sp −0.147 �ss 0.00
�0 1.5×10−4(◦C−1) �2 0.00
�0 0.15 pc 0.10MPa
p∗
0 14MPa � 0.395

r 0.75 � 0.05
M 1.5 T0 20◦C
k 0.1 
 0.2

[20, 21]. The BBM yield surface (FLC) is then expressed as

FLC=3J 2−
[

g(	)

g(−30◦)

]2
M2(p+ ps)(p0− p)=0 (5)

where M is the slope of the critical state, p0 is the apparent unsaturated isotropic pre-consolidation
pressure at a specific value of suction and ps considers the dependence of shear strength on suction
and temperature. To complete the definition of the yield surface as set out in (5) it is necessary to
adopt a suitable Lode’s angle function, g(	).

When yielding takes place the increment of plastic deformations is evaluated through

•
ε
p
LC=�LC

�G
�r

(6)

where �LC is the plastic multiplier and G is the plastic potential (defined in the Appendix).
The hardening law is expressed as a rate relation between the volumetric plastic strain and the

saturated isotropic pre-consolidation stress ‘p∗
0’ (Figure 3), according to

•
p∗
0

p∗
0

= (1+e)

(�(0)−�)

•
ε
p
v (7)

where e is the void ratio, εpv is the volumetric plastic strain, � is the elastic compression index for
changes in p, evaluated through Equation 8(a) and �(0) is the stiffness parameter for changes in p
for virgin states of the soil in saturated condition.

The yield surface associated with suction increase proposed in the original version of the
BBM [17] is not considered in this analysis. Owing to the high compaction to which the bentonite
blocks have been subjected, the description of the behaviour of the material inside the yield surface
is particularly important. According to the adopted parameters (Table II), it is expected that the
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Figure 4. Main constitutive laws. (a) Mechanical: computed stress path for swelling pressure
tests using the BBM. Experimental results (SP1 and SP2 paths) are provided for comparison. (b)
Hydraulic: variation of saturated permeability with porosity. Experimental data and adopted model
for the intrinsic permeability law. (c) Hydraulic: retention curve adopted in the analyses, together
with the experimental data for FEBEX bentonite (symbols). (d) Thermal: Thermal conductivity:

FEBEX bentonite experimental results (symbols) and model fitting.

whole stress path will lie inside the BBM yield surface. The variation of stress-stiffness with
suction and the variation of swelling potential with stress and suction have been considered [22].
The resulting elastic model is the following:

•
εev= �

(1+e)

•
p

p
+ �s
(1+e)

•
s

(s+0.1)
+(�0+�2�T )

•
T (a);

•
εes =

•
J
Gt

(b) (8)

where �s is the macrostructural elastic stiffness parameter for changes in suction, Gt is the shear
modulus; �0 and �2 are model parameters related to temperature [18]. �, �s and Gt are evaluated
according to

�=�i (1+�ss) (a); �s =�s0(1+�sp ln p/pref) (b); Gt = 3(1−2�)K

2(1+�)
(c) (9)

where � is the Poisson’s coefficient; �s and �sp are model parameters [22] and the bulk modulus
(K ) is obtained from (A5), see Appendix. The parameters of the mechanical model are summarized
in Table II. They were determined from the experimental laboratory campaign carried out during
the FEBEX project [1]. As an example, Figure 4(a) shows the results of two swelling pressure
tests (SP1 and SP2) [23], used for the experimental calibration of the model, together with the
stress path computed with the model.
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Hydraulic models. Advective fluxes are computed using a generalized Darcy’s law, expressed
as [16]

q� =−K�(∇P�−
�g); �= l,g (10)

where P� is the phase pressure. K� is the permeability tensor of � phase and g is the gravity vector.
The permeability tensor is evaluated according to

K� =k
kr�
��

; �= l,g (11)

where k is the intrinsic permeability tensor, �� is the dynamic viscosity of the � phase and kr�
is the phase relative permeability. The dependence of intrinsic permeability on porosity has been
based on Kozeny’s law

k=k0
n3

(1−n)2
(1−n0)2

n30
I (12)

where k0 is the reference saturated permeability at the reference porosity n0. Permeability tests
performed on saturated samples have been used to adopt the reference values: k0=1.9×10−21m2

for a porosity of 0.40 (Figure 4(b)).
The well-known power law has been adopted to describe the dependence of liquid permeability

on the degree of saturation

krl= Snsl (13)

A value of ns=3 has been determined from back-calculating hydration tests on FEBEX
bentonite [24]. As for the gas relative permeability law, the following model has been adopted:

krg= A(1−krl) (14)

For FEBEX bentonite, differences close to 7 orders of magnitude have been measured between
water and gas intrinsic permeabilities [25]. As discussed in Olivella and Gens [26], if the value
of intrinsic permeability for water is used in the analysis, the gas permeability obtained is several
orders of magnitude smaller than the actual values. In order to maintain the concept of intrinsic
permeability and until more experimental information became available, a correction has been
applied to the relative permeability law, adopting a value of ‘A’ large enough (close to 1.0×107)
to ensure a gas mobility in the FEBEX bentonite close to the values of gas permeability measured
in the laboratory tests.

The water retention curve relates the degree of saturation of the material with suction. The law
adopted is based on the van Genuchten model [27], as follows:

Sl=
[
1+

(
s

P0

) 1
1−�0

]−�0

fd (a); fd =
(
1− s

Pd

)�d
(b) (15)

where P0 and �0 are model parameters. The function fd is included in order to model properly
the high suction range. Similar functions were proposed previously [28]. Pd is related with the
suction at 0 degree of saturation and �d is a model parameter. When �d =0 the model adopted
in [18] is recovered. Figure 4(c)) presents the results of tests carried out at conditions of constant
volume on FEBEX bentonite [1, 29], alongside the adopted model is presented. Model parameters
are P0=20 MPa; �0=0.18, Pd =1100MPa and �d =1.10.

The relation between P0 and surface tension (�) suggested in [8] has been applied to this model.
The change of P0 in accordance with the following expression introduces a dependence of the
retention curve with temperature

P0= PT0
�T

�T0
(a); �T =0.03059exp

(
252.93

273.15+T

)
(b) (16)
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For a given degree of saturation, this law predicts a small decrease in suction when temperature
increases, consistent with observations made in laboratory tests [1, 29].

Non-advective fluxes of species inside the fluid phases are computed through Fick’s law, which
expresses them in terms of gradients of mass fraction of species through a hydrodynamic dispersion
tensor that includes both molecular diffusion and mechanical dispersion:

ii� =−Di
�∇�i

� i =w,a; �= l,g (17)

where Di
� is the dispersion tensor of the medium; a more detailed description of the adopted

hydraulic models can be found elsewhere [8, 9].

Thermal model. Fourier’s law has been adopted to describe the conductive flux of heat
(Equation 18(a)). The thermal conductivity (�) depends on the saturation of the clay and is
expressed by the geometric mean of the thermal conductivities of the components (Equation 18(b)):

ic=−�∇T (a); �=�Slsat�
(1−Sl)
dry (b) (18)

Based on experimental results (Figure 4(d)), the following thermal conductivities have been
adopted: �dry=0.47 and �sat=1.15.

Equilibrium restrictions. It is assumed that phase changes are rapid in relation to the character-
istic times typical of the problem under consideration. Hence, they can be considered in local
equilibrium, giving rise to a set of equilibrium restrictions that must be satisfied at all times [8].
The vapour concentration in the gaseous phase is governed by the psychometric law [8] and the
amount of air dissolved in water is given by Henry’s law [8].

4. THM MODELLING

The phase of heating and hydration of the test, known as the ‘operational stage’, started in February
1997 and is still ongoing at present. The numerical analysis presented in this section uses the
conventional model outlined above that considers the bentonite as a single porosity medium. The
analysis is called ‘OBC’ (Operational Base Case). In the following sections, a brief description of
the main results of the ‘OBC’ model is presented with the objective of interpreting the main trends
of the THM behaviour observed in the mock-up test. The experimental results have been supplied
by CIEMAT, the data reported in this paper correspond until the day 18/06/2006 (day 3421).

All the analyses have been carried out using the computer program CODE_BRIGHT. Coupled
analyses have been performed using a 2-D axisymmetric longitudinal section that includes the
heaters, the bentonite barrier, the outer steel container and the geotextile between the barrier
and the container (Figure 5(a)). Only one half of the problem is analysed because of symmetry.
Experimental observations have then confirmed the properness of the idealization adopted in this
modelling [6]. The mesh has 580 quadrilateral bilinear elements (Figure 5(b)) with four integration
points. Selective integration according to [30] has been used.

4.1. Initial conditions

The initial global degree of the saturation of the mock-up test just before switching on the heaters
was 71.50%. The same initial degree of saturation has been assumed in the model. An initially
uniform temperature of 20◦C is assumed in the entire domain. This is consistent with CIEMAT
data [1]. As for the mechanical conditions, a hydrostatic value of 0.11MPa has been adopted,
approximately equal to the weight of the bentonite in the mid-diameter of the buffer.

4.2. Boundary conditions

Hydraulic boundary conditions. An applied water pressure of 0.55MPa is applied in the geotextile
(i.e. at the interface between steel and bentonite) in accordance with the actual test conditions.
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Clay 

Geotextile

    Steel
(Container) 

  Steel 
(Heater) 

(a) (b)

Figure 5. Axisymmetric geometry adopted for the analysis of the mock-up: (a) materials used in the
modelling (no scale figure) and (b) model mesh.

Thermal boundary conditions. The thermal boundary conditions at a radius equal to 0.15m (radial
coordinate of the heater elements) reproduce testing conditions as follows:

(i) Day 0 to 6: constant power (250 W/heater);
(ii) Day 7 to t100: constant power (500 W/heater);
(iii) t100 to the end of the test: constant temperature (T =100◦C)

where t100 is the time at which the temperature reaches 100◦C at some point in the bentonite
(15.6 days for the analysis presented herein). On the external boundary, the following radiation
condition has been applied:

je=�e(T
0−T ) (19)

where je is the heat flow, T 0 is the prescribed temperature (T 0=20◦C) and �e is the radiation
coefficient. A coefficient �e=5 has been used.

Mechanical boundary conditions. For the outer boundary of the steel container, a stress-free
condition has been prescribed. Note that the external steel cylinder is explicitly considered in the
analysis, therefore strains and stresses are calculated by the computer code.

4.3. Results of the OBC analysis

The OBC analysis, reported in this section, corresponds to the modelling performed at the start
of the test using the best information about test conditions and material parameters available at
the time. The results cannot be considered strictly class A predictions because analysis and test
overlapped for a few weeks at the beginning of the test. The main reason for the overlap is that
the heating protocol was not totally defined at the start of the test but it was decided interactively
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Figure 6. Evolution of global variables. (a) Evolution of heater power; observed and computed
values (OBC model). (b) Evolution of heater power; long-term predictions (OBC model).
(c) Evolution of water entry; observed and computed values (OBC model). (d) Evolution of

water entry; long-term prediction (OBC model).

until reaching the desired temperature condition. In any case, the results of the OBC analysis
are compared with the observations during a period of about 10 years; consequently the analysis
results reported can be considered, to a very large extent, predictions.

The evolutions of the global variables of the problem (i.e. heater power and the water intake) are
presented in Figure 6. Figures 7–9 show the time evolution of temperature, relative humidity and
stresses at different points of the barrier. To illustrate the range of different patterns of bentonite
behaviour, the comparisons between model computations and observations are centered on two
characteristic cross sections: one identified as the ‘hot cross section’ (e.g. Sections A4 and B4,
and Sections A5 and B5) is located in the heater area and the other one, called ‘cool cross section’
(e.g. Sections A10 and B10 and Sections A11 and B11), located away from the heater, in an area
of quite small temperature increase. Results involving the other sections are presented in [31]. It
should be noted that, in fact, the experimental observations of two symmetric instrumented sections
are plotted. In a perfect test, they should yield the same results. Therefore, they readily provide a
good check of the reliability of the sensors and of the tests performance.
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Figure 7. Evolution of temperature in the mock-up test. Observed versus computed values (OBC model).
(a) Sections A5–B5 (hot cross section). (b) A11–B11 (cold cross section). (c) Sections A5–B5 long-term

predictions. (d) Sections A11–11 long-term predictions.

Thermal results. The heaters are powered to provide a constant maximum temperature of 100◦C
at the contact between heaters and bentonite. The model yields good results regarding the
thermal problem. This is reflected in the evolutions of the heater power (a global variable of the
problem, Figure 6(a)), and in the comparisons of the model with local measures of temperatures
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Figure 8. Evolution of relative humidity in the mock-up test. Observed versus computed values (OBC
model). Bold symbols correspond to sensors in zone A, empty symbols correspond to sensors in zone B
(Figure 2). (a) Sections A4–B4 (hot cross section). (b) A10–B10 (cold cross section). (c) Sections A4–B4

(long-term predictions). (d) Sections A10–B10 (long-term predictions).

(Figures 7(a) and (b)). It can be noted that there are some small differences in the temperature field,
especially in zones close to the heater. They may be an effect of the lower thermal conductivity
in the discontinuity that may exist between heater and bentonite, not considered in the analysis.
The heater power predictions indicate a slow increment of the heater power (Figure 6(b)). This
is a consequence of the progressive hydration of the bentonite barrier that causes an increase of
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Figure 9. Evolution of stresses in the mock-up test. Observed versus computed values (OBC model). Bold
symbols correspond to sensors in zone A, empty symbols correspond to sensors in zone B (Figure 2).

(a) Sections A6–B6. (b) Sections A10–B10. (c) Sections A12–B12. (d) Long-term predictions.

thermal conductivity. Figures 7(c) and (d) present the long-term results, a slight increase of the
temperature with saturation is predicted by the model.

Hydraulic results. Up to approximately day 900, the overall hydraulic behaviour of the test is
closely reproduced by the model. As expected, an increasing saturation in zones close to the
hydration boundary is observed whereas an initial intense drying in regions close to the heaters is
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followed by a slow hydration (Figure 8(a)). The close agreement of the observations from the two
symmetric sections should be remarked. It is also interesting to note that zones close to a radius
of 0.37m show an initial temporary wetting, due to the condensation of the water vapour coming
from the inner region of the barrier. This phenomenon is also reproduced by the model.

However, from about day 900, some differences are observed between model predictions and
hydraulic behaviour of the test. The water entry calculated by the model moves progressively
away predicting a faster hydration of the barrier (Figure 6(c)). This tendency can be clearly
observed in terms of the rate of water intake; the experimental values undergo an important
reduction in comparison with the results of the OBC model after 900 days. As for the evolution of
relative humidity in sections involving heaters (e.g. Sections A4 and B4, Figure 8(a)) a significant
reduction in the rate of relative humidity increase can be observed. Close to day 1381, some
abnormal observations are obtained; they are due to an accidental overheating event that was
quickly overcome. This episode is explained in detail in [13]. It seems that the transient period
induced by the overheating was practically finished after day 1700; and the tendency to a slowing
down of the barrier hydration is again recovered from that date on.

The hydraulic behaviour in the ‘cool section’ is quite different (Figures 8(b) and (d)). Now, a
steady increase of hydration is observed and computed at all points, no noticeable drying occurs
anywhere in the section. Again, the model results are initially very close to the observations. In this
case, however, the slight departure of computations from the observations occurs at a significantly
later date.

Mechanical results. Figure 9 presents the time evolution of stresses in selected positions of the
barrier, according to the following convention: PT, PZ and PR stand for tangential, longitudinal and
radial stresses, respectively.A lesser repeatability of the observations can be observed, as it is often the
casewhen dealingwith stressmeasurements. It is also apparent that some sensors aremalfunctioning.

Similar trends to those noted in the hydraulic problem are observed in the mechanical problem.
Up to day 900 approximately, there is a good agreement between predictions and observations
in sections close to the heater (Figures 9(a) and 8(b)). From that moment on, measured stresses
respond to the slowing down of hydration, and a tendency to maintain constant values of stresses
can be observed.

The overheating episode had different influences on the mechanical behaviour depending on the
sections considered. In sections away from the heaters, the values and tendency registered prior
to this event are recovered practically immediately (Figures 9(c) and (d)), whereas in sections
close to the heaters, a more marked influence on the evolution of the stress field can be observed
(Figures 9(a) and 8(b)). In those sections, the tendency to maintain a practically constant stress
level (observed previous to this episode) has been recovered after the overheating event. But, the
stresses are now lower compared with the ones measured before this event. This phenomenon has
been explained using double structure concepts [13]. The overheating event has no perceptible
effects in the ‘cool’ zones close to the ends of the experiment and the model captures well the
measured values of stresses (Figure 9(c)). The long-term analysis predicts a maximum stress of
the order of 10MPa (Figure 9(c)).

In summary, thermal observations are generally well described by the model. However, the OBC
analysis, while also reproducing successfully the initial hydration of the barrier, exhibits significant
discrepancies concerning the long-term behaviour. This implies that the time for full saturation is
severely underestimated. Owing to the hydro-mechanical coupling of the problem, stresses in the
heater sections tend to be overestimated.

5. NUMERICAL ANALYSIS USING A DOUBLE STRUCTURE MODEL

5.1. Introduction

The understanding and the explanation of the apparent decay in the rate of the barrier hydration
are key aspects regarding the ability to achieve reliable long-term predictions. Several studies were
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Figure 10. Distributions of incremental pore volume [21].

carried out to explore the possible phenomena that could cause the unexpected barrier behaviour.
Initially it was examined whether, with minor modifications of the constitutive laws or their
parameters, it was possible to explain and reproduce more closely the global and local evolution
of the test. A wide-ranging sensitivity study was carried out to that end but it proved impossible
to obtain a set of constitutive laws and materials parameters (with physical meaning) that led
to predictions consistent with the observations [24]. Another uncertainty concerned whether the
experiment was airtight or not. Hence analyses were carried out considering the two extreme
conditions: free flow of air in and out of the experiment or a completely airtight experiment.
Practically no influence on the results has been observed in relation to this condition. The hydration
system of the experiment was also examined to discard the possibility that the water supply to the
barrier was altered. It was experimentally confirmed that there was no obstruction in the hydration
system or geotextile and that the water intake was nearly uniform over the entire hydration front.
Support for the fact that the observed slowing down of hydration was genuine was provided by
similar observations in other experiments. For instance, a lower level of saturation, compared
with the expected one, has been observed in the large-scale ITT test performed in the Canadian
underground laboratory near Winnipeg [32, 33]. Thomas et al. [33] concluded that ‘standard THM
models’ were not able to capture the slow hydration observed in the experiment. Similar trends
have been observed in other heating and hydration experiments involving expansive clays, as for
example in the thermo-hydraulic cells that are being used at CIEMAT facilities.

An aspect that had not been considered in the formulation used hitherto and that may have
a significant effect on predictions is the evolving nature of the fabric and microstructure of the
compacted bentonite during hydration. Incorporation of this feature requires, however, the use of
more advanced models as described below.

5.2. Fabric of FEBEX bentonite

Mercury intrusion porosimetry (MIP) tests were performed to examine the pore size distribution of
statically compacted samples of FEBEX bentonite [23]. Figure 10 shows the measured incremental
pore volume for two samples compacted to very different values of dry density (
d),1.5 and
1.8mg/m3. It can be observed that the pore size distribution is clearly bimodal, very characteristic
of these types of materials [34]. The dominant values are 10 nm that would correspond to the
pores inside clay aggregates (i.e. small ‘intra-aggregate’, or ‘intra-pedal’, pores that remain largely
saturated), and a larger pore size that depends on the compaction dry density and ranges from
10�m (for 
d=1.8mg/m3) to 40�m (for 
d=1.5mg/m3). These larger voids would correspond
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to the ‘inter-aggregate’ (or ‘inter-pedal’) pores that may, or may not, be saturated but provide
pathways for the movement of ‘free water’. The boundary between the two pore size families can
be seen to be around 0.13�m, as pores smaller than this size do not appear to be affected by
the magnitude of the compaction load. This double structure has also been detected using other
techniques, such as SEM (Scanning Electron Microscope) and water retention curve tests [23].
The two dominant pore sizes could be associated with two basic structural levels (Figure 10):
(i) the macrostructure, associated with the global arrangements of clay aggregates (the skeleton
of the material), with macropores between them and (ii) the microstructure, which corresponds to
the active clay minerals and their vicinity. Evidently, the microstructure organization of expansive
clays is very complex and more pore levels could be distinguished [35–37]. However, for the sake
of simplicity, only the two basic structural levels identified above are considered. The approach
could in fact be extended to include more structural levels in the analysis, if it is deemed relevant.

During hydration the fabric of expansive clays is not static but evolving. A systematic study was
performed using ESEM (Environmental Scanning Electron Microscope) and SEM techniques to
analyse the fabric changes of FEBEX bentonite during progressive wetting [29]. Suction changes
under isochoric conditions were applied to samples before the observations. Figure 11 presents
images taken at different suctions for a bentonite with a dry density around 1.40mg/m3. The
differences in the final dry density are due to the rebound experienced by the bentonite after
unloading. Although these tests provide mainly qualitative information, they clearly show the
progressive occlusion of the inter-aggregate pores (macropores) due to swelling of active clay
particles (microstructure).

5.3. Mechanical model

Based on the general framework for expansive soils proposed by Gens and Alonso [38] a double
structure model has been proposed to describe the behaviour of swelling materials. The model
explicitly considers the two dominant levels of pore sizes actually present in compacted expansive
clays. The distinction between macro- and microstructure provides the opportunity to take into
account the dominant phenomena that affect the behaviour of each structural level and the main
interactions between them. The capabilities of the double structure model to reproduce and predict
the mechanical behaviour of FEBEX bentonite under different stress paths involving loading,
suction and temperature changes have been demonstrated elsewhere [13, 14, 23, 39, 40]. In spite
of the complexity observed in those tests (i.e. yield phenomena, dependency of swelling strains
on applied stresses, stress path dependency of strains and peaks in the swelling pressure tests), a
good reproduction of the behaviour of the compacted bentonite has been achieved.

The complete definition of the double structure model requires the proposal of laws to describe
(i) the macrostructural level, (ii) the microstructural level and (iii) the coupling between both
structural levels. The double structure model has been described in detail elsewhere [13, 14] and
only a brief summary of its main features are presented herein.

Macrostructural model. The inclusion of the macrostructural level in the analysis allows the
consideration of phenomena that affect the skeleton of the material (i.e. inter-pedal behaviour), for
instance yielding due to loading and wetting. The original version of the BBM for non-expansive
materials (i.e. �s =0 and �sp=0, in Equations (9a) and (9b)) has been adopted to describe the
macrostructural behaviour (Section 3.2).

Microstructural model. The microstructure is the seat of the basic physico-chemical phenomena
occurring at clay particle level (i.e. intra-pedal behaviour). The strains arising from microstruc-
tural phenomena are considered non-linear elastic and, for simplicity, volumetric [13, 38]. The
microstructural strains are proportional to the microstructural effective stress ( p̂) through a
microstructural bulk modulus according to

p̂= p+�(s+so) (a); •
εvm=

•
p̂

Km
=

•
p

Km
+�

•
s

Km
(b) (20)
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(a)

(c)

(b)

Figure 11. ESEM analysis of compacted FEBEX bentonite [27]. (a) Sample with hygroscopic water
content (
d=1.40mg/m3). (b) Sample after application of a suction of 10MPa in isochoric (constant
volume) conditions (
d final=1.46mg/m3) on bentonite initially compacted in hygroscopic conditions
(
d=1.65mg/m3). (c) Sample after saturation in isochoric conditions (
d final=1.43mg/m3) on bentonite

initially compacted with hygroscopic water content to 
d=1.65mg/m3.

where the subscript ‘m’ refers to the microstructural level, the subscript ‘v’ refers to the volumetric
component of the strains; p is the net mean stress, so the osmotic suction and (s+so) is the total
suction. The parameter � was originally included (e.g. [41]) to account for the possibility that the
microstructure may become unsaturated. For example, Alonso [41] suggests that � is proportional
to the degree of saturation through the following expression: �(Sl)n ; where n is a coefficient.
Herein it has been assumed that �=1. Under this condition, the mean effective stress controls the
mechanical behaviour at the microstructural level [38].

In this work it is also assumed that the total suction is equal to the matric suction because
the effect of the osmotic suction is not considered in this analysis. Recently, the expansive model
has been extended to include geochemical variables such as osmotic suction and cation exchange
[42]. Km is the microstructural bulk modulus. As explained in Gens and Alonso [38], any elastic
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model able to describe the behaviour of active clay particles can be adopted for the microstructural
law. In this work the exponential type model suggested by Alonso [41] has been adopted (see
Equation A6 in the Appendix). The model has its roots in the exponential type model describing
the clay interlayer distance as a function of effective stress in double layer theories [41]. Hydraulic
equilibrium is assumed between the water potentials of both structural levels, the extension to
non-equilibrium conditions is presented elsewhere [31, 41, 42].

The concept of a Neutral Line (NL) is introduced corresponding to constant p̂ and no microstruc-
tural deformation (Figure 12). The NL divides the p−s plane into two parts, defining two main
generalized stress paths, which are identified as MC (microstructural contraction) when there is
an increase in p̂ and MS (microstructural swelling) in the opposite case [13].

Interaction between macro- and microstructure. Based on experimental evidence, it is assumed
that the macrostructure is affected by microstructural deformations potentially in an irreversible
way [38]. A hypothesis of the model is that the plastic deformations of the macrostructure induced

by microstructural effects (
•
ε
p

vM→m) are proportional (see Equation (21a)) to the microstructural
strains (εvm) according to interaction functions f [13, 38]. Two interaction functions f are defined:
fc for microstructural contraction paths and fS for microstructural swelling paths. The interaction
functions depend on the ratio p/p0. This ratio is a measure of the degree of openness of the
macrostructure relative to the applied stress state [38]. The functions adopted in this analysis are
introduced in the Appendix (A9) and (A10).

The total plastic macrostructural strains (
•
ε
p

v) are obtained (see Equation (21b)) as the sum of the
plastic deformations induced when yielding of the macrostructure takes place (evaluated from (6)),
and the inelastic strains induced by the microstructure through the interaction mechanism [13]
(calculated through 21(a)). This can be expressed mathematically as follows:

•
ε
p

vM→m= f
•
εvm (a); •

ε
p

v= •
ε
p

vLC+ •
ε
p

vM→m (b) (21)

The coupling between macro and micro levels is given by p∗
0 (the hardening variable of the

macrostructure, Figure 3), which depends on the total plastic volumetric strain (7). In this way it
is considered that the microstructural changes can affect the global arrangements of clay aggre-
gates. More details about the interaction between the two structural levels are presented elsewhere
[13, 14, 23, 41].

The experimental validation of the double structure model using experimental data of FEBEX
bentonite was presented in [23]. The main model parameters are presented in Table III. The dry
density of these tests was 1.70mg/m3, whereas the global dry density of the mock-up test is
1.65mg/m3. In order to take into account this difference in dry density, the pre-consolidation
stress has been modified [38]. As mentioned above, p/p0 is a measure of the degree of openness
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Table III. Parameters used to define the elasto-plastic constitutive law.

Parameters defining the Barcelona Basic Model for macrostructural behaviour

� �s �(o) pc (MPa) r � (MPa−1) p∗
0 (MPa) �0 (◦C−1)

0.005 0.001 0.080 0.50 0.90 0.2 5.4 1.0e−5

Parameters defining the law for microstructural behaviour

�m (MPa−1) �m (MPa−1) �
2.0e−02 2.1e−03 1

Interactions functions
fC=1+0.9tanh(20(p/p0)−0.25); fS=0.8−1.1tanh(20(p/p0)−0.25)

emacro emicro
0.20 0.45

of the macrostructure [13, 17] (e.g. a low ratio implies a dense packing). Therefore, the effect of
the soil density can be modelled considering that the higher the soil density (for a given suction),
the higher the p0. A value of 7.5MPa has been adopted for p0, which implies (according to the
adopted LC curve) a value of 5.4MPa for the saturated pre-consolidation stress.

5.4. Hydraulic behaviour

There is a strong interaction between the active clay particles and the water present in their vicinity.
Apart from the free water, the rest of the water in clay is affected by psycho-chemical phenomena
occurring at clay particle level. For example, a noticeable variation of the water viscosity (up to
a factor of 7 for positions close to active clay particles) was estimated by molecular dynamic
simulations [44]. The interlamellar water is strongly attached to the clay surfaces and it has been
considered as practically immobile water under normal environmental loads by some authors (i.e.
[45]). On the other hand, the properties of the intra-aggregate water will depend on its proximity to
the clay particle face [46]. Based on these ideas, in this section it is assumed that the macropores
are the main paths for the movement of water due to advection.

In classical (or conventional) flow models, as the one presented in Section 3.2, the dependence
of permeability on the pore structure is introduced through a relationship between permeability
and total porosity (12). Considering that the macroporosity (i.e. volume of macro-voids divided
by the total volume) is the void fraction that has the main influence on the water movement due
to hydraulic gradient, it seems more appropriate to relate the intrinsic permeability in terms of
macropore changes. An advantage of the double structure model [13] is that as the two pore levels
are explicitly considered in the analysis, the evolution of macro- and microporosity can be tracked
and then they can be used to update the permeability field. In this work it is suggested that the
intrinsic permeability is simply a function of the macroporosity through an exponential law (22),
as follows:

k=k0 exp[b(�M−�M0)]I (22)

where �M is the macroporosity, k0 is the intrinsic permeability at a reference porosity (�M0), b
is a model parameter and I is the identity tensor. The model parameters adopted in the analysis
(k0=5.0×10−20m2; �M0=0.14 and b=50) have been determined from back-calculating the
results of permeability tests performed under conditions of constant volume [31]. For this purpose,
a series of numerical simulations of the permeability tests at different initial dry densities have
been carried out solving them as a boundary value problem using the double structure model
in the simulations. Figure 13 presents the measured saturated permeability of FEBEX bentonite
at different densities together with the results obtained in the simulation using the exponential
model (22).
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Figure 13. Measured saturated water permeability of FEBEX betonite [1], together with model results
obtained after modelling of permeability tests a boundary value problem with the double structure model.

5.5. Numerical results

The double structure models for the mechanical and hydraulic problem presented above
(Sections 5.3 and 5.4) have been used in a new analysis of the THM behaviour of the clay barrier.
All the other constitutive laws defined in Section 3.2 have been left unchanged in the analysis
(i.e. the same retention curve and thermal conductive laws, Figures 4(b) and (d) respectively,
have been adopted). Also, the same initial and boundary conditions adopted for the ‘OBC’ model
(Section 4) have been prescribed for the hydraulic, mechanical and thermal problems.

Figure 14 presents the evolution of temperature for the two representative sections analysed. The
computed values obtained with the double structure model are coded as ‘Dou’, whereas the results
of the conventional model (OBC) are also provided for comparison. As expected, the temperature
field is also well captured by this model. Figures 15(a) and (b) present the results of relative
humidity in a ‘hot cross section’ and a ‘cold cross section’, respectively. Concerning the evolution
of the relative humidity in the section involving heaters (Figure 15(a)), it can be observed that
the model can now capture it quite well, especially in the inner zones (r =0.22m and r =0.37m)
where discrepancies were larger. No significant differences between the two analyses are obtained
in the cold cross section (Figure 15(b)). It can also be observed that the new model captures
the hydro-mechanical coupling of this problem (Figure 15(c)), reproducing the clear tendency to
maintain a practically constant value of the stress level (close to 7MPa in the test). Regarding water
intake (Figure 15(d)), the response of the model is very satisfactory, especially when compared
with the measurements and the OBC model.

The analysis of the distribution of some relevant variables along the barrier computed for
different times can contribute to a deeper insight into the problem. Figures 16(a)–(d) present
the computed distributions of macro-, micro- and global void ratios, and also of the degree of
saturation at different times for the ‘hot section’. It can be noted that the microstructure expands
in the external zones due to hydration and it contracts in zones close to the heater due to strong
drying. The front of the swelled microstructure advances progressively towards the inside of the
barrier as the experiment progresses. As for the macropores, a swelling behaviour can be seen but
only at the beginning of the test and for a very thin zone close to the hydration front. This is due
not only to suction reduction but also to the interaction mechanism between the two structural
levels (a detailed explanation of the different plastic mechanisms of the model during the heating
and hydration of the barrier is presented in [14]). For other times and positions the values of
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Figure 14. Observed temperature versus computed values using ‘Dou’
model: (a) Section A5 and (b) Section A11.

macro void ratio are lower than the initial ones. This is caused by the fact, already mentioned, of
microstructural expansions under conditions of practically constant volume. The final condition
corresponds to significant reductions of the macropores across the barrier, which is more marked
in the external zones of the barrier. Macrostructural compression (collapse) can also be observed
along the barrier moving progressively to more internal zones as hydration goes on. It can be
observed that zones close to a radius of 0.35m are strongly affected by the condensation of water
vapour coming from the inner region of the barrier. This local wetting also induces a marked
macro-void reduction in this region. Regarding the degree of saturation, it can be noted that the
shape of the hydration front is very similar to that of the microstructural void ratio. This result is
in agreement with the adopted conceptual model, which considers that a larger amount of water
is stored in the microstructure. The global void ratio is greater in the outer zones of the barrier
and lower in the inner regions. In that sense, the model reproduces a reduction in clay densities in
zones close to the hydration front, as saturation progresses. The key point is, however, that using
in this approach under constant volume conditions, the reduction in clay density is associated with
a reduction of the volume of the macropores available for water flow.

A better understanding of the differences between the two models on the predicted hydration
process can be achieved by observing the predicted evolution of porosities and their impact on
intrinsic permeability. Figure 17(a) shows the evolution of porosity for two extreme radii computed
using the ‘OBC’ model. Through (12), higher permeabilities are computed in zones close to the
hydration front (associated with lower densities), and lower permeabilities in more internal zones.
Figure 17(b) presents, for the same radii, the evolution of the macroporosity. As can be observed,
in this model the response is quite different, with a tendency to reduce the macroporosity in both
locations and, consequently, to reduce also the associated intrinsic permeability. A more external
radius (r =0.75m) is also included in the figure, it can be seen that this effect is even more
significant in zones near the hydration front. The break observed in Figure 17(b) for a radius of
0.70m close to the day 1400 of the test is due to macrostructural collapse [14]. According to this
simulation, as the barrier is hydrated the pores available to the liquid flow suffer a progressive
reduction, due mainly to microstructure swelling under confined conditions. This is in agreement
with the experimental behaviour observed in Figure 11. As a consequence, the full saturation of
the barrier is delayed. The consequence of this hydration-locking is quite evident in zones close
to the heater; the decrease of the permeability in the zones close to the hydration front reduces the
supply of liquid flow to the internal zones which are subjected to the heater-induced drying. The
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final outcome is that hydration slows down dramatically, leaving an important zone of the barrier
in unsaturated conditions.

The differences between the predictions of the two models (OBC and Dou) are even more
evident when the long-term predictions are analysed. Figure 18 shows the comparisons between
the long-term predictions of both models (alongside the experimental data) in terms of relative
humidity and water intake. The double structure model is able to simulate the type of hydration
locking observed in the test. As can be observed, significant zones of the barrier may remain in a
non-saturated condition for a considerable period of time. This is qualitatively in agreement with
the tendency observed in the barrier up to the present date.

It is possible that other physical and chemical phenomena could have an influence on the slow
hydration observed in the clay barrier [47]. Other alternative phenomena are being explored to
explain the behaviour of the mock-up test, as for example, the effect of a threshold gradient in the
permeability law and the influence of thermo-osmotic flow on the kinetic of the barrier hydration.

Copyright � 2011 John Wiley & Sons, Ltd.

415

DOI: 10.1002/nag
Int. J. Numer. Anal. Meth. Geomech. 2012; 36:391–421



M. SÁNCHEZ, A. GENS AND S. OLIVELLA

0.10

0.14

0.18

0.22

0.26

0.30

0.15

Distance to axis (m)

V
oi

d 
ra

ti
o 

(m
ac

ro
)

0 50
100 500
1400 7300

isolines (day)

0.42

0.46

0.50

0.54

0.15

Distance to axis (m)

V
oi

d 
ra

ti
o 

(m
ic

ro
)

0 50
100 500
1400 7300

isolines (day)

0.56

0.61

0.66

0.71

0.76

0.81

0.15

Distance to axis (m)

V
oi

d 
ra

ti
o 

(g
lo

ba
l)

0 50
100 500
1400 7300

isolines (day)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.15

Distance to axis (m)

L
iq

ui
d 

sa
tu

ra
ti

on
 (

gl
ob

al
)

0 50
100 500
1400 7300

isolines (day)

(a) (b)

(c) (d)

0.35 0.55 0.75 0.35 0.55 0.75

0.35 0.55 0.75 0.35 0.55 0.75

Figure 16. Hot cross section: isolines of macro void ratio (a); micro void
ratio (b); global void ratio (c) and (d) liquid saturation.

0

Time (days)

0.34

0.36

0.38

0.40

0.42

P
or

os
it

y

r = 0.70m

r = 0.22m

0

Time (days)

0.06

0.08

0.10

0.12

M
ac

ro
 p

or
os

it
y

r = 0.70m

r = 0.22m

r = 0.75m

(a) (b)

500 1000 1500 2000 2500 500 1000 1500 2000 2500

Figure 17. Sections A4–B4: computed evolution for two extreme radii of (a) porosity by using the ‘OBC’
model and (b) macroporosity by using the ‘Dou’ model.

Copyright � 2011 John Wiley & Sons, Ltd.

416

DOI: 10.1002/nag
Int. J. Numer. Anal. Meth. Geomech. 2012; 36:391–421



THM ANALYSIS OF A LARGE-SCALE HEATING TEST

0

Time (day)

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
H

um
id

it
y 

(%
)

0.220.37
0.70 Dou

OBC

Test. r (m)  Model

0.55

0

Time (day)

0

200

400

600

800

1000

1200

1400

W
at

er
 I

nt
ak

e 
(k

g)

Test

Dou Model

OBC Model

(a) (b)

2000 4000 6000 2000 4000 6000
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Finally, it is important to bear in mind that there is an important difference between the test
and a radioactive waste disposal site. In the experiment, the temperature is maintained constant at
the contact between heater and bentonite (equal to 100◦C) but, under real repository conditions,
the waste temperature will reduce progressively as the time goes on, altering the kinetics of the
hydration process.

6. CONCLUSIONS

In this paper the analysis of a large-scale heating at almost full scale, performed under well-
controlled THM conditions has been described. The ‘OBC’ model presented in the first part of the
paper was formulated using a fully coupled THM approach for a single porosity medium, in which
all the basic processes and couplings deemed relevant were considered. Extensive laboratory work
carried out in the context of the FEBEX project allowed the identification of the main models
parameters required for the THM model. In spite of a very successful modelling of the early
transient THM behaviour, the results obtained with this model are not totally satisfactory, because
the simulation overpredicts the long-term hydration rate of the barrier. Comparing experimental
data versus model results, a slowing down in the hydration kinetics of the test with respect to
model predictions can be observed after about three years of testing. A tendency to maintain
a constant and very low rate of water intake and nearly constant values of the main variables
(relative humidity and stresses) at different radii of the barrier was particularly observed in the
cross sections involving heaters. Changes in the constitutive law or their parameters could not
reproduce accurately the test evolution. The conventional THM model used in the numerical
analysis predicts a progressive increment of the water permeability in external zones of the barrier
as saturation goes on, due to two main reasons: (a) increases of the relative permeability due to
increasing degree of saturation and (b) swelling of the expansive clay (with the corresponding
increase of porosity). Although the slow hydration and extended unsaturation will be beneficial to
the long-term storage of fuel waste, it is crucial to investigate the source of this unexpected barrier
behaviour. Experimental evidence indicates that the behaviour of expansive clays under confined
hydration is more complex. A progressive occlusion of the macropores has been observed in the
laboratory leading to potentially large reductions in intrinsic permeability.
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Consequently, a double structure framework has been used to simulate the THM behaviour of
the test. The explicit consideration of the two structural levels provides the opportunity to define
the constitutive laws and properties of the two pore levels that actually exist in the compacted
FEBEX bentonite. The inclusion in the modelling of the changes in the clay fabric (through the
double structure approach) has allowed a more detailed analysis of the barrier behaviour. In this
model the evolution of the clay fabric (macro- and microporosity) is controlled by the changes in
the main variables of the problem (displacements, temperature and suction), which are considered
in a fully coupled way. In this context, the main phenomena that affect the changes in both pore
levels, and their mutual interactions, are taken into account.

According to the model results, as the barrier hydration progresses, the macropores available to
the liquid flow suffer a progressive reduction. This is due mainly to microstructural swelling under
confined conditions. As a consequence, the full saturation of the barrier is drastically delayed.
This phenomenon affects especially the zones close to the heater, because the reduction of the
permeability in the zones close to the hydration front reduces the liquid flow supply to the internal
zones which have been subjected to heating-induced drying.

In summary, the use of the double structure approach has allowed the adoption of a conceptual
model for the hydration of the swelling clays closer to the actual behaviour of expansive clays
under confined conditions. The model has also contributed to a better understanding of the complex
behaviour observed in this large-scale heating test and has provided a physically based explanation
for the very slow hydration of the barrier.

APPENDIX A

Mechanical constitutive model

The BBM yield surface (FLC) is given by (4) and the plastic potential (G) is expressed as

G=�G3J
2−

[
g(	)

g(−30◦)

]2
M2(p+ ps)(p0− p)=0 (A1)

where �G is determined according to [17]. The dependence of the tensile strength on suction and
temperature is given by

ps=kse−
�T (A2)

where k and 
 are model parameters [18]. The dependence of p0 on suction is given by

p0= pc

(
p∗
0T

pc

) �(0)−�

�(s)−�

(a); p∗
0T = p∗

0+2(�1�T +�3�T |�T |) (b) (A3)

where pc is a reference stress, �1 and �3 are models parameters [18]. �(s) is the compressibility
parameter for changes in net mean stress for virgin states of the soil. This parameter depends on
suction according to

�(s)=�(0)[r+(1−r )exp(−�s)] (A4)

where r is a parameter which defines the minimum soil compressibility (at infinite suction) and
� is a parameter which controls the rate of decrease of soil compressibility with suction [17].

The macrostructural bulk modulus (K ) for changes in mean stress is evaluated with the
following law:

K = (1+e)

�
p (A5)

where � is evaluated according to (9).
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The microstructural bulk modulus (Km) is calculated as follows [41]:

Km= e−�m p̂

�m
(A6)

where �m and �m are model parameters. The macrostructural bulk modulus for changes in suction
is computed considering the following law:

Ks= (1+eM)(s+ patm)

�s
(A7)

The macrostructural bulk modulus for changes in suction is computed considering the
following law:

KT= 1

(�0+�2�T )
(A8)

where �0 and �2 are parameters related to the elastic thermal strain [18].
The double structure model require the definition of the interaction functions [13, 14, 23, 38, 41].

The interaction functions presented below have been adopted in this work. More details about
these particular functions are presented in [23].

fC = 1+0.9 tanh(20(p/p0)−0.25) (A9)

fS = 0.8−1.1 tanh(20(p/p0)−0.25) (A10)

The stress invariants are defined as follows:

p =
(
1

3

)
(�x +�y+�z) (A11)

J 2 = 1/2trace(s2) (A12)

	 = −1

3
sin−1(1.5

√
3 det s/J 3) (A13)

being

s=r− pI (A14)

where I is the identity tensor.
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