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Abstract

Model order reduction is one of the most appealing choices for real-time simulation of
non-linear solids. In this work a method is presented in which real time performance is
achieved by means of the off-line solution of a (high dimensional) parametric problem
that provides a sort of response surface or computational vademecum. This solution is
then evaluated in real-time at feedback rates compatible with haptic devices, for
instance (i.e., more than 1 kHz). This high dimensional problem can be solved without
the limitations imposed by the curse of dimensionality by employing proper
generalized decomposition (PGD) methods. Essentially, PGD assumes a separated
representation for the essential field of the problem. Here, an error estimator is
proposed for this type of solutions that takes into account the non-linear character of
the studied problems. This error estimator allows to compute the necessary number of
modes employed to obtain an approximation to the solution within a prescribed error
tolerance in a given quantity of interest.

Keywords: Error estimation, Real time, Model order reduction, Proper generalized
decomposition

Background
Real-time simulation of non-linear solids is always a delicate task due to the heavy com-
putational cost associated with the linearization of the equations. Applications are ubiq-
uitous, ranging from industrial uses [1] to surgery planning and training [2,3] or movies
[4].
Probably, the field in which more effort has been paid to the development of real-time

simulation techniques is that of computational surgery [5–10]. This is because surgery
training systems are equipped with haptic peripherals, those that provide the user with
realistic touch sensations (force feedback). Just like some 25 pictures per second are
necessary for a realistic perception of movement in films, haptic feedback needs for some
500 Hz to 1 kHz in order to achieve the necessary realism. The difficulty of the task is
thus readily understood: to perform500–1000 simulations of highly non-linear solids (soft
tissues are frequently assumed to be hyperelastic), possibly suffering contact, cutting, etc.
Among the very few truly non-linear surgery simulators developed so far, one can cite

[10–13]. Essentially, the former employ some type of explicit, lumped mass, Lagrangian
finite elements to perform the simulations, possibly including an intensive usage of GPUs.
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However, in previous works of the authors, see [13–16], a different approach has been
studied by employing model order reduction techniques, see Fig. 1.
Basically, our approach to real-time simulations consists on the off-line computation of

a sort of high-dimensional solution to the problem at hand,

u = u(x, t, q1, q2, . . . , qp), (1)

where u represents the essential field of the problem (usually, the displacement field of
the solid), x the coordinates of each physical point, and q1, q2, . . . , qp a set of parameters
that could affect the solution and whose meaning will be clear in brief.
Equation (1) thus represents a sort of response surface in the sense that it provides with

the solution for anyphysical coordinate, time instant andvalueof thepparameters. Instead
of response surface, and to highlight the fact that no set of a priori experiments will be
necessary to obtain such a response in ourmethod,weprefer to call Eq. (1) a computational
vademecum [17], inspired by thework of ancient engineers (such as Bernoulli, for instance
[18]), who compiled sets of known solutions to problems of interest.
The problem with an approach such as that introduced in Eq. (1) is that such an expres-

sion is inherently high dimensional. If we try to discretize the governing equations of the
problem so as to obtain an approximation to Eq. (1), and do it by a mesh-based method
such as finite differences, volumes or elements, we will soon realize that the complexity
of the problem will make us run out of computer memory very soon. This is due to the
well-known exponential growth of the number of degrees of freedom (nodes of the mesh)
with the number of dimensions of the problem. In other words, the well-known curse of
dimensionality [19].
In order to overcome the curse of dimensionality, the authors proposed some years ago a

technique inspired by proper orthogonal decomposition methods (POD) that generalizes
its properties to high dimensional spaces and operates a priori. Such a technique has been
coined as proper generalized decomposition (PGD) [20–24] and its main characteristic is
to assume that the essential field (1) can be approximated in a separated form, i.e.,

Fig. 1 Surgical simulator. Prototype of surgical simulator developed by the authors. On the left, the haptic
peripheral is shown
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u(x, t, q1, q2, . . . , qp) ≈
n∑

i=1
F i(x) ◦ Gi(t) ◦ Q1

i (q1) ◦ Q2
i (q2) ◦ . . . ◦ Qp

i (qp), (2)

where the symbol “◦” appears for the Hadamard, Schur or entry-wise product of vectorial
functions. Since functions F i(x),Gi(t),Q1

i (q1),Q2
i (q2), . . . ,Q

p
i (qp) are a priori unknown,

one readily recognizes the inherent non-linear character of the problem of finding such
an approximation (even if the governing equations are linear). PGD operates through a
greedy algorithm, in which usually a fixed point alternating directions algorithm is used.
More details will be given in the “Formulation of the problem in a PGD setting”.
One crucial problem related to such an approximation, see Eq. (2), is the choice of the

number of terms n employed in the approximation. Being themain objetive of a simulator
to provide theuserwith a realistic force feedback, the aimof theworkpresentedherein is to
develop a suitable error estimator that allows us to fix the number of functional products
n necessary for a given tolerance in the error of the transmitted force. The literature
on error estimation for model order reduction is vast, see [25–31], to name but a few. In
“Formulation of the problem in a PGD setting” we recall the basics of the PGD approach to
the problem at hand. In “One possible explicit linearization of the formulation” we revisit
one of the possible linearization of the problem and, finally, in “An error estimator based
on the dual formulation” we develop the sought error estimator for the force feedback.
The paper is completed with two different numerical examples in “Numerical examples”
that show the performance of the method.

Formulation of the problem in a PGD setting
As a model non-linear problem hyperelasticity has been chosen. This constitutes a suffi-
ciently general theory, with important implications in the simulation of soft living tissues
[32,33], for instance, and therefore in surgical simulators as an ubiquitous example of the
restrictions placed by real-time constraints.
In what follows we follow closely the explicit linearization procedure first developed by

the authors in [13], although more sophisticated approaches were developed in [15]. For
the sake of simplicity, consider a particularly useful instance of the vademecum given by
Eq. (1),

u = u(x, s),
i.e., a generalized solution of the displacement field of a solid undergoing a load at any
possible point of its boundary, s. Therefore, the loading point s acts here as the parameter
q1 in (1). For simplicity, we assume the acting force t as vertical and of unity module
(a more general setting can be established by letting t itself be an additional vectorial
parameter). Under this rationale, the weak form of the static equilibrium equations of the
solid can be established as find the displacement u ∈ H1 such that for all u∗ ∈ H1

0:∫

�̄

∫

�

∇(s)u∗ : σd�d�̄ =
∫

�̄

∫

�t2
u∗ · td�d�̄ (3)

where� = �u∪�t represents the boundary of the solid, divided into essential and natural
regions, and where �t = �t1 ∪ �t2, i.e., regions of homogeneous and non-homogeneous,
respectively, natural boundary conditions.∇(s) stands for the symmetric part of the gradi-
ent. �̄ ⊆ �t2 represents the possible loading area within the exposed surface of the body
and is actually a choice of the analyst. In surgery simulators, it is often taken as the portion
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of the organ surface accesible for the surgeon. Here, t = ek · δ(x − s), where δ represents
the Dirac-delta function and ek the unit vector along the z-coordinate axis.
In the spirit of PGD techniques, the external load is then decomposed (by applying SVD

techniques, for instance) as

tj ≈
m∑

i=1
f ij (x)gij (s)

where m represents the order of truncation and f ij , g
i
j represent the jth component of

vectorial functions in space and boundary position, respectively. Following Eq. (2), the
high dimensional solution of the problem will be sought as

unj (x, s) =
n∑

k=1
Xk
j (x) · Y k

j (s), (4)

where the term uj refers to the j-th component of the displacement vector, j = 1, 2, 3 and
functionsXk and Y k represent the separated functions used to approximate the unknown
field.
PGD techniques proceed by finding iteratively new terms improving this approximation

in a greedy framework. Therefore, if a new functional pair R(x) ◦ S(s) is sought,
un+1
j (x, s) = unj (x, s) + Rj(x) · Sj(s), (5)

a linearization algorithm is compulsory, since the unknown is now a pair of functions.
This is usually accomplished by iterative fixed point, alternating directions algorithms
that proceed as follows.

Computation of S(s) assuming R(x) is known
If standard assumptions of variational calculus are applied,

u∗
j (x, s) = Rj(x) · S∗

j (s). (6)

This admissible variation of the (high dimensional) displacement field, indicated by the
star symbol, is then injected into the weak form of the problem, Eq. (3), thus giving

∫

�̄

∫

�

∇(s)(R ◦ S∗) : C : ∇(s)
( n∑

k=1
Xk ◦ Y k + R ◦ S

)
d�d�̄

=
∫

�̄

∫

�t2
(R ◦ S∗) ·

( m∑

k=1
f k ◦ gk

)
d�d�̄, (7)

or, ∫

�̄

∫

�

∇(s)(R ◦ S∗) : C : ∇(s)(R ◦ S)d�d�̄

=
∫

�̄

∫

�t2
(R ◦ S∗) ·

( m∑

k=1
f k ◦ gk

)
d�d�̄ −

∫

�̄

∫

�

∇(s) (R ◦ S∗) · Rnd�d�̄, (8)

whereRn represents:

Rn = C : ∇(s)un. (9)

Since the symmetric gradient operates on spatial variables only, we arrive at:
∫

�̄

∫

�

(∇(s)R ◦ S∗) : C : (∇(s)R ◦ S)d�d�̄

=
∫

�̄

∫

�t2
(R ◦ S∗) ·

( m∑

k=1
f k ◦ gk

)
d�d�̄ −

∫

�̄

∫

�

(
∇(s)R ◦ S∗) · Rnd�d�̄ (10)
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where all the terms depending on x are known and hence all integrals over � and �t2
(support of the regularization of the initially punctual load) can be computed to arrive at
an equation for S(s).

Computation of R(x) assuming S(s) is known
Proceeding in an entirely similar way,

u∗
j (x, s) = R∗

j (x) · Sj(s), (11)

which, substituted in the weak form of the problem, Eq. (3), gives
∫

�̄

∫

�

∇(s)(R∗ ◦ S) : C : ∇(s)
( n∑

k=1
Xk ◦ Y k + R ◦ S

)
d�d�̄

=
∫

�̄

∫

�t2
(R∗ ◦ S) ·

( m∑

k=1
f k ◦ gk

)
d�d�̄. (12)

Again, all the terms depending on s (load position) can be integrated on �̄, thus giving
an elasticity-like problem to obtain the function R(x).

One possible explicit linearization of the formulation
The simplest hyperelastic constitutive model is the Kirchhoff–Saint Venant (KSV)model.
Despite its well-known instabilities in compression, KSV provides with a very neat for-
mulation in which to apply the developments that are to come. Therefore, for the sake of
simplicity, we assume that the energy density functional is given by

� = λ

2
(tr(E))2 + μE : E (13)

where λ and μ are Lame’s constants. The Green-Lagrange strain tensor, E, is classically
defined as

E = 1
2
(FTF − I ) = ∇(s)u + 1

2
(∇u · ∇uT ) (14)

where F = ∇u + I is the gradient of deformation tensor. Correspondingly, the second
Piola-Kirchhoff stress tensor can be obtained by

S = ∂�(E)
∂E = C : E (15)

in which C is the fourth-order constitutive (here, linear elastic) tensor.
The simplest linearization of the resulting problem comes from an explicit assumption

inwhich load is applied in a series of pseudo-time increments�t, producing displacement
increments �u(x, s). At each time increment, the previously described PGD fixed point
alternating directions algorithm is employed. So, by introducing the non-linear strain
measure given by Eq. (14), into this incremental framework, the following expression is
obtained:

Et+�t = ∇s
(ut + �u) + 1

2

(
∇(ut + �u) · ∇T (ut + �u)

)
. (16)

Equivalently, admissible variations of strain take the form

E∗ = ∇(s)(�u∗) + 1
2
(∇(�u∗)) · ∇T (ut + �u) + 1

2
∇(ut + �u) · ∇T (�u∗)

= ∇(s)(�u∗) + ∇(�u∗) · ∇T (ut + �u) (17)

By substituting into the weak form of the equilibrium equation, Eqs. (16) and (17) the
following left hand side term of Eq. (3) is obtained
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∫

�̄

∫

�(t)
E∗ : C : Ed�d�̄

=
∫

�̄

∫

�(t)

(
∇(s)(�u∗) + ∇(�u∗) · ∇T (ut + �u)

)
: C

:
(

∇s
(ut + �u) + 1

2

(
∇(ut + �u) · ∇T (ut + �u)

))
d�d�̄. (18)

To linearize Eq. (18), in [13] a strategy is proposed by keeping in the formulation only
constant terms and those linear in �u. The resulting weak form is composed by the
following long albeit simple collection of terms:

∫

�̄

∫

�(t)
E∗ : C : Ed�d�̄

=
∫

�̄

∫

�(t)
∇(s)(�u∗) : C : ∇(s)utd�d�̄

+
∫

�̄

∫

�(t)
∇(s)(�u∗) : C : ∇(s)(�u)d�d�̄

+
∫

�̄

∫

�(t)
∇(s)(�u∗) : C :

1
2
∇ut · ∇Tutd�d�̄

+
∫

�̄

∫

�(t)
∇(s)(�u∗) : C : ∇ut · ∇T (�u)d�d�̄

+
∫

�̄

∫

�(t)
∇(�u∗) · ∇Tut : C : ∇(s)utd�d�̄

+
∫

�̄

∫

�(t)
∇(�u∗) · ∇Tut : C : ∇(s)(�u)d�d�̄

+
∫

�̄

∫

�(t)
∇(�u∗) · ∇Tut : C :

1
2
∇ut · ∇Tutd�d�̄

+
∫

�̄

∫

�(t)
∇(�u∗) · ∇Tut : C : ∇ut · ∇T (�u)d�d�̄

+
∫

�̄

∫

�(t)
∇(�u∗) · ∇T (�u) : C : ∇(s)utd�d�̄

+
∫

�̄

∫

�(t)
∇(�u∗) · ∇T (�u) : C :

1
2
∇ut · ∇Tutd�d�̄. (19)

Despite the apparent complexity of these equations, a very simple scheme results that
has provided, however, very good results.
However, a critical issue remains in this case (or, in general, when dealing with PGD

approximations of non-linear problems), which is that of selecting the number of terms n
composing the approximation, see Eq. (4). This must be done on the basis of predictions
given by a suitable error estimator, which is the main objective of this work and will be
detailed in the following section.

An error estimator based on the dual formulation
What Eq. (19) represents in fact is an incremental, explicit linearization of the originally
non-linear problem. Thus, by using a compact notation, we can say that at pseudo-time
step p the weak form of the problem looks like

ap(�u,�u∗) = bp(�u∗).
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Errors in the PGD solution of this linearized equation come from two sources. First, the
separated representation of the solution, given by Eq. (2), involves a truncation of the sum
at a number n of terms. Secondly, the sought functions F i, Gi, ..., are actually expressed
by projecting them onto a finite element mesh of size h. In brief, the following diagram
depicts the situation:

un
h(x, s) un=∞

h (x, s) = uh

un
h=0(x, s) u(x, s)

ePGD

eFEM eFEM

ePGD

e

where we have denoted ePGD = ‖un=∞
h − un

h‖ = ‖u− un
h=0‖ and eFEM = ‖un

h=0 − un
h‖ =

‖u − uh‖. Finally, the sought, total committed error would be e = ‖u − un
h‖.

It is noteworthy to mention that, if the FE mesh size, h is not chosen judiciously, the
total error in the simulation, composed by the sum of the FEM error plus the PGD error,
will never get below a prescribed tolerance despite the number of modes added to the
PGD approximation. Therefore, care must be paid not only to the number of terms n in
the PGD approximation, but to the mesh size, h.
The objective of this paper is to determine the number of terms necessary to reach some

error threshold in the non-linear problem given by Eq. (3), equipped with the non-linear
constitutive equations (13). This error assessment is performed by establishing a (here,
linear) functional 	o(·), used to extract certain quantity of interest. For the application we
are pursuing (surgery simulators with haptic feedback), this quantity of interest would be
the perceived reaction force at the peripheral. The main advantage of the linearization
introduced in Eq. (19) is precisely that within each time step the increment in the reaction
force is a linear function of the increment of (vertical, for simplicity) displacement (at the
loading point), i.e.,

	o(�un
h) = �uz(x0, s0),

in other words, the increment of vertical displacement at x0 provoked by the load acting
at s0. In our approach, since we interested in estimating the error on the force value, we
simply take x0 = s0, with x0 a particular point on the loading surface.
Following [34] (althoughother approaches are equally feasible for PGD, see [35–37]), the

error in the quantity of interest is obtained through an auxiliary problem, often referred to
as dual or adjoint problem. In [34], the exact solutionof the auxiliary problem is replacedby
amore accurate solution, which in a PGD context can naturally be obtained by performing
some extra enrichment increments (i.e., letting n grow sufficiently to a value N ).
Therefore, the dual or adjoint problem will now look like

a(�u∗,ϕ) = 	o(�u∗), (20)

withϕ thedual unknown.Theerror in thequantity of interest could thereforebe computed
by

	o(e) = b(ϕ) − a(un
h,ϕ),

or, equivalently,

	o(e) = a(e, ε) ≤ |e| · |ε|,
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X Y

Z

Fig. 2 Model for the beam bending problem
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Y

Z
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-0.05
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-0.15
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-0.25
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-0.35
-0.4
-0.45

Fig. 3 Deformed beam for a particular location of the point load

with ε = ‖ϕ − ϕh‖. As mentioned before, the exact solution of the dual problem, ϕ is not
often available, so that it is approximated as

ϕ ≈ ϕN�n
h .

Although different possibilities exist, see for instance [31], in [34] different strategies
were analyzed todetermine thenecessary valueofN . For instance, results takingN = n+5,
N = 2n or, simply, N = n were analyzed. In general some extra terms, say 5, are enough
to determine a good dual solution.
In what follows, we show two examples of application of the proposed methodology for

twonon-linear problems, formulatedunder the frameworkof the theory of hyperelasticity.
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Fig. 4 First four spatial modes X k (x), k = 1, . . . , 4

Numerical examples
Cantilever beam

We consider the example of a cantilevered Kirchhoff-Saint Venant beamwhose geometry
is shown in Fig. 2. Beam nodes are assumed fixed at one of the ends, while the rest of the
degrees of freedomare assumed to be free. Themesh is composed by tetrahedral elements,
with 3 × 3 nodes in the 40 × 40 mm2 cross-section and 21 nodes in the longitudinal
direction, 400 mm long. Material parameters were Young’s modulus E = 2× 1011 Pa and
Poisson’s coefficient ν = 0.3. The applied force is assumed to be always vertical and its
value taken as 108 N.
The deformed configuration of the beam for one particular location of the load is shown

in Fig. 3. The four first modes Xk (x), k = 1, 2, . . . , 4 are shown in Fig. 4.
For this example we have considered that the load could be applied at any of the 24

farthest nodes of the upper face of the beam (nodes within the black rectangular area in
Fig. 2). For this admissible loading region, the resultingfirst fourmodesY k (s), k = 1, . . . , 4,
are depicted in Fig. 5.
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Fig. 5 First four spatial modes Y k (s), k = 1, . . . , 4

The loading process was solved by taking p = 8 pseudo-time steps, both for the primal
and dual problems. The dual problem was solved by applying a stopping criterion such
that ‖ϕn+1 − ϕn‖ ≤ 10−8. With such a criterion, the computation of ϕ involved eight
modes, one per time step. The evolution of the predicted error with the number of modes
n employed in the computation of the primal variable is shown in Fig. 6.

Remark 1 It is important to note that, despite the fact that we have considered 24 possible
positions for the load vector, the fact of finding up to 60 modes to express the solution is
not an inconsistency. One could think that obtaining a singular value decomposition of
the 24 displacement vectors corresponding to the distinct 24 possible load positionswould
give up to 24 possiblemodes to express the high-dimensional solution u(x, s). However, in
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Fig. 6 Convergence of the error with the number of modes n

X
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Z

Fig. 7 Model for the liver palpation problem. In red, the region in which loading is allowed

this case we have performed an explicit, incremental solution of the non-linear problem,
by dividing it into p = 8 pseudo-time steps. Therefore, in none of the examples shown
the limit number of 24 modes has been reached. The highest number of modes for a
particular load incrementwas11, thus very far from24.This is consistentwithourprevious
experience in the development of computational vademecums by PGD techniques.

Remark 2 In addition, modes for the different load steps are not mutually orthogonal. An
additional compression of themodeswith the so-called PGD-projection, see [38], provides
with a very restricted number of modes. In this case, the modes could be compressed so
as to consider less than 12 modes for the whole loading process without further increase
in the error in the approximation.

Palpation of the liver

In this example we apply the dust developed error estimator to the simulation of liver
palpation. The liver model, already shown in Fig. 1, is essentially the same developed in
previous references by the authors, see details in [13,14].
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a
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d

Fig. 8 First four spatial modes of the liver problem, X k (x), k = 1, . . . , 4

The model, see Fig. 7, is composed by 2853 nodes and 10,519 linear tetrahedra. For
the ease exposition, a Kirchhoff-Saint Venant constitutive law with E = 160,000 Pa and
ν = 0.48 is considered. More sophisticated constitutive laws are equally possible, see
[7] and references therein. In Fig. 7 the region �̄ in which the load can be applied
has been highlighted in red. Only 66 nodes have been chosen as candidates for load-
ing, but of course even the entire surface of the organ can be chosen, as in [13], for
instance.
As in the previous example, the first four spatial and loading modes Xk (x) and Y k (s),

k = 1, . . . , 4, are depicted in Figs. 8 and 9, respectively. A load of 30 N was applied in a
sequence of three pseudo-time steps (a quasi-static process is here considered, see [16]
for details on the dynamic problem).
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a

b

c

d

Fig. 9 First four spatial modes of the liver problem, Y k (s), k = 1, . . . , 4

The dual problem was solved by applying a stopping criterion such that ‖ϕn+1 − ϕn‖ ≤
10−8. The evolution of the predicted error with the number of modes n employed in the
computation of the primal variable is shown in Fig. 10.

Conclusions
In applications with haptic response, the development of a suitable error indicator of the
force being transmitted to the user is of utmost importance, as can be readily understood.
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Fig. 10 Convergence of the error with the number of modes n for the liver problem

In this paper, we have developed a method for the error estimation in such a quantity of
interest for a real-time simulator based on the use of reduced order models. In particular,
proper generalized decomposition techniques have been employed.
Based on previous developments of the authors, an explicit linearization of the originally

non-linear constitutive equations in the framework of PGD has been employed. This
renders the problem in the form of a sequence of linear problems, for which an error
estimator in the spirit of [34] has been employed. It is based on the employ of the so-called
dual problem as a stopping criterion for the original (or primal) one.
The result is the first example (up to our knowledge) of an error estimator for non-

linear problems in the framework of PGD methods in general, and haptic simulators in
particular.
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