
IX International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2021

E. Oñate, M. Papadrakakis and B. Schrefler (Eds)

PARTITIONED COUPLING VS. MONOLITHIC
BLOCK-PRECONDITIONING APPROACHES FOR

SOLVING STOKES-DARCY SYSTEMS

JENNY SCHMALFUSS∗?, CEDRIC RIETHMÜLLER†?, MIRCO
ALTENBERND†, KILIAN WEISHAUPT†† AND DOMINIK GÖDDEKE†#

∗Institute for Visualization and Interactive Systems (VIS), University of Stuttgart
70569 Stuttgart, Germany. E-mail: jenny.schmalfuss@vis.uni-stuttgart.de

†Institute of Applied Analysis and Numerical Simulation (IANS), University of Stuttgart

††Institute for Modelling Hydraulic and Environmental Systems (IWS), University of Stuttgart

#Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart

Key words: time dependent Stokes-Darcy flow, iterative vs. direct methods, sub-solver
optimization, partitioned coupling with preCICE

Abstract. We consider the time-dependent Stokes-Darcy problem as a model case for
the challenges involved in solving coupled systems. Keeping the model, its discretiza-
tion, and the underlying numerics for the subproblems in the free-flow domain and the
porous medium constant, we focus on different solver approaches for the coupled prob-
lem. We compare a partitioned coupling approach using the coupling library preCICE
with a monolithic block-preconditioned one that is tailored to different formulations of
the problem. Both approaches enable the reuse of already available iterative solvers and
preconditioners, in our case, from the DuMux framework. Our results indicate that the
approaches can yield performance and scalability improvements compared to using di-
rect solvers: Partitioned coupling is able to solve large problems faster if iterative solvers
with suitable preconditioners are applied for the subproblems. The monolithic approach
shows even stronger requirements on preconditioning, as standard simple solvers fail to
converge. Our monolithic block preconditioning yields the fastest runtimes for large sys-
tems, but they vary strongly with the preconditioner configuration. Interestingly, using
a specialized Uzawa preconditioner for the Stokes subsystem leads to overall increased
runtimes compared to block preconditioners utilizing a more general algebraic multigrid.
This highlights that optimizing for the non-coupled cases does not always pay off.

? The first two authors contributed equally to this paper.

1

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

1 INTRODUCTION

Coupled systems of free flow adjacent to permeable media have a decisive role in many
applications. Examples include the environmental sciences (soil water evaporation), med-
ical contexts (intervascular exchange), material design (optimization of fuel cell water
management) or technical applications (drying of perishable goods) to name just a few.
Capturing the complex interplay between the two flow domains is essential, however, the
governing systems of equations form a coupled problem which can become quite complex
to solve. This even holds for single-phase-flow systems, such as a river flowing over its
porous bed. In this paper, we deliberately restrict ourselves to a simple, stationary, single-
phase-flow problem, i.e., creeping Stokes flow in the free-flow domain, while using Darcy’s
law for the porous domain. While limiting the physical complexity of our model, we fo-
cus on the numerical solution of the arising coupled system using either fully monolithic
coupled schemes or a partitioned, iterative approach.

We build our contribution on the following observation: Practitioners, in particular in
the modeling community, often rely on sparse direct solvers for the (linearized) subprob-
lems, e.g., Umfpack, Pardiso and SuperLU, see [5] for an overview. This holds when
Matlab’s Backslash operator or its equivalent in SciPy are used, as they translate to one
of these sparse direct solvers under the hood. Often this also applies to users of PDE
software frameworks like DuMux [12, 16], whose design is in fact aiming to minimize the
users’ burden of having to deal with every single aspect of the simulation pipeline.

Two issues in this context are often overlooked: First, sparse direct methods for the lin-
ear(ized) system(s) do not scale well in terms of compute time and memory. Second, the
ill-conditioning of a fully assembled monolithic system can lead to severe trustworthiness
issues in the solution. Both issues typically only appear after a model and its corre-
sponding simulation pipeline have been set up, i.e., when test problems are exchanged
for real-world scenarios. Table 1 exemplarily shows the fill-in factors in Umfpack, when
solving the monolithic variant of one of our model problems with the finite volume scheme
described in Section 2. While the matrix density increases mostly linearly due to surface-
to-volume arguments, the fill-in for the computed sparse LU decomposition is clearly
nonlinear in terms of memory. Thus it translates to compute time for generating the
decomposition, and subsequently to solving the linear system using the decomposition.

Table 1: Memory requirements for storing the sparse matrix and its decomposition measured as matrix
entries per degree of freedom.

DoF 156 1 056 10 100 102 720 1 001 000
Discretization 6× 6 16× 16 50× 50 160× 160 500× 500

System matrix 6.7 7.3 7.6 7.7 7.7
Umfpack 19.9 38.6 78.6 145.7 241.4

In this paper, we demonstrate how carefully devised iterative and thus scalable solvers

2

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

can alleviate these issues for two different solution strategies for coupled problems: We
consider both a partitioned coupling approach where the subproblems are solved alter-
nately, and a monolithic approach that honors the saddle point structure of the system.
The former is realized with the coupling library preCICE [6], while the latter is tailored
to standard PDE frameworks like DuMux. An important part of our contribution is a
thorough comparison of these fundamentally different approaches.

2 MODEL PROBLEM

We consider an instationary, coupled Stokes-Darcy two-domain problem. It comprises
a free flow of an incompressible fluid over a porous medium, see Figure 1a.

free flow Ωff

porous media

Γff

Γff

Γpm

Γpm

Γpm

Γff

Γ
npm

nff

Ωpm

(a) Coupled problem illustration.

v = 0

p = pout

p = 0

v = 0

p = pin(t)

Neumann

v = 0

Coupling
v = 0 v = 0

(b) Boundary conditions.

Figure 1: The instationary Stokes-Darcy problem and its boundary conditions.

We mark quantities that are associated with the free-flow domain with ff , and use pm

to denote the porous medium. The domains are denoted by Ωff and Ωpm, and share the
common boundary Γ. Boundaries that are not shared are called Γff and Γpm. The normal
vectors nff and npm are orthogonal to Γ and point outwards their respective domains. The
time dependent quantities pressure p and velocity v are used to describe the flow in each
domain. We use the transient and incompressible Stokes equations to model the free flow:

∂v

∂t
+∇ · (−ν

(
∇vff +∇vff,T

)
+ ρ−1pffI) = 0 in Ωff (1)

∇ · vff = 0 in Ωff (2)

Above, ρ and ν are the fluid density and kinematic viscosity, and I is a suitable identity
map. In the porous medium, Darcy’s law and the continuity equation are used:

vpm = −Kµ−1∇ppm in Ωpm (3)

∇ · vpm = 0 in Ωpm (4)

K is the intrinsic permeability of the porous medium and µ = νρ the dynamic viscosity of
the fluid. As coupling conditions [17], we use the continuity of the normal stresses (5), the

3

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

Beavers-Joseph-Saffman condition [21] in equation (6) and the continuity of the normal
mass fluxes (7):

n · [(pI − τ)n]ff = [p]pm on Γ (5)

[(v +
√
K(αBJµ)−1τn) · tff,pm]ff = 0 on Γ (6)

[v · n]pm = −[v · n]ff on Γ (7)

We use n for the normal of the respective flow component, τ for the viscous stresses and
αBJ is the Beavers-Joseph coefficient. Further, tff,pm is the basis of the tangent plane that
describes the interface between Ωff and Ωpm. To close this system, boundary conditions
for the nonshared domain boundaries are illustrated in Figure 1b. Note that the pressure
pin on the left free-flow boundary changes over time.

The system of equations is discretized with a first-order backward Euler scheme in time,
and finite volumes in space [16]. In the Darcy domain, a two-point flux approximation
is used for the finite volume approximation of the pressure [13, Chap. 4]. In the Stokes
domain, a staggered grid is used for the quantities pressure and velocity, and the fluxes
are approximated with an upwind scheme [16, 22]. In summary, the discrete model, to be
solved for every time step, has the form

Ax = b =

(
A′ B′

C ′ D′

)(
xff

ppm

)
=

(
bff

0

)
(8)

=

[
V B
C 0

] [
B′1
0

]

[
C ′1 0

]
D′

[
vff

pff

]

ppm

 =

[
g
0

]

0

 . (9)

Formulation (8) is denoted as two-domain (td) formulation of the problem, because the
matrix blocks correspond to the free-flow and porous-medium phase of the problem. Fur-
ther, we dub equation (9) the pressure-velocity (pv) formulation, due to the correspon-
dence of the matrix blocks to the variables pressure and velocity.

3 PARTITIONED COUPLING APPROACH

Partitioned coupling approaches are a common strategy to solve coupled problems. In
our setting, this means that the flow fields in the two flow domains are calculated sepa-
rately, and the coupling between the subdomains is ensured by exchanging information
over the sharp interface Γ. The benefit of this approach is that existing, optimized solvers
for the subdomains can be used. We rely on DuMux for the subdomain solvers, and
preCICE for the coupling.

Looking at the two-domain formulation (8), it is clear that boundary conditions on
the common interface Γ need to be exchanged in order to get a well-defined solution. For
this, we use a serial implicit coupling technique [9] where the subdomain problems are
solved sequentially and the boundary values for the other domain are written after the

4

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

Sff Mapping etc. Spm

pff pff

vpm · ~n vpm · ~n

Figure 2: Subdomain coupling scheme implemented with preCICE.

solution step is performed. The coupling procedure is depicted in Figure 2 and comprises
a Dirichlet-Neumann coupling between the subdomains. We start the coupling by solving
the free-flow problem, to determine Dirichlet pressure values on the interface Γ. The
porous-medium-flow solver then determines Neumann velocity values on the interface.
Thus, the pressure in the Darcy domain is fixed at the coupling interface Γ, and the
Dirichlet-Neumann coupling leads to a well-defined solution. In more detail, let k be the
coupling iteration index and vpm,Γ

k the normal velocity at the interface Γ. The free-flow

solver Sff computes a new flow state, which leads to an updated pressure pff,Γ
k+1 on the

interface. With this updated pressure, the porous-medium-flow solver Spm computes a
new flow state, which then leads to an updated normal velocity vpm,Γ

k+1 on the interface.
When we combine the two interface equations

Sff
(
vpm,Γ
k

)
= pff,Γ

k+1

Spm
(
pff,Γ
k+1

)
= vpm,Γ

k+1

 ⇔ Spm

(
Sff
(
vpm,Γ
k

))
= vpm,Γ

k+1 , (10)

we can interpret the coupling scheme as an iterative solver for the fixed-point problem

Spm
(
Sff
(
vpm,Γ

))
= vpm,Γ ⇔ R

(
vpm,Γ

)
:= Spm

(
Sff
(
vpm,Γ

))
− vpm,Γ = 0. (11)

The scheme stops when the interface values converge, i.e., the fixed-point problem is
solved to a prescribed accuracy. We emphasize that when the residual R is sufficiently
close to zero, we recover the monolithic solution.

Solving the fixed-point problem (11) with a Picard fixed-point iteration is prone to
divergence for problems with strong instabilities or oscillations. In order to improve sta-
bility and convergence speed, fixed-point acceleration methods enrich the Picard iteration.
These methods are applied as a post-processing step that we denote as Ipost. Figure 3 illus-
trates our accelerated fixed-point iteration. Now, the flow update from the porous-medium
solver is denoted by ṽpm,Γ

k+1 (previously: vpm,Γ
k+1), as it is the solution before the improvement

by Ipost. The post-processing scheme receives ṽpm,Γ
k+1 from the porous-medium solver and

computes an improved velocity vpm,Γ
k+1 . This new velocity depends on the current value

and a history of previously calculated values. For our experiments, we choose the inverse
least-squares interface quasi-Newton method [10] for the post-processing. This method
approximates the inverse Jacobian of the residual operator R of the nonlinear coupling

5

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

Sff Spm Ipost
vpm,Γ
k pff,Γ

k+1 ṽpm,Γ
k+1 vpm,Γ

k+1

k 7→ k + 1

vpm,Γ
k+1 = Ipost

(
Spm

(
Sff

(
vpm,Γ
k

)))

Figure 3: preCICE coupling scheme with enabled post-processing.

equation, based on input-output relations. Then, it performs Newton-like update steps
where a norm minimization is carried out. For more details on post-processing schemes
and their implementation, see [9] and [6] respectively. To determine when the iteration
can be stopped, we use the relative convergence measures

∥∥∥pff,Γ
k+1 − pff,Γ

k

∥∥∥
2
< ε

∥∥∥pff,Γ
k+1

∥∥∥
2

and
∥∥∥ṽpm,Γ

k+1 − vpm,Γ
k

∥∥∥
2
< ε

∥∥∥ṽpm,Γ
k+1

∥∥∥
2
. (12)

Our choice of post-processing method and convergence measure is based on [15]. There,
it is shown that for a similar model problem, the coupling approach as outlined above
is consistent and converges to the monolithic solution. This finding is the basis for our
convergence study in Section 5. As solvers Sff and Spm, we use problem specific pre-
conditioned iterative subdomain solvers in order to benefit from their smaller memory
footprint, which results in a better numerical scaling with respect to the problem size.

preCICE follows a pure library approach, and is called from within DuMux by the
participating solvers, and not by the general framework. Through the library approach,
the coupling is minimally invasive and provides a black-box functionality that allows us
to use optimized solvers for the two domains.

4 MONOLITHIC BLOCK PRECONDITIONING

As an alternative to the partitioned approach, we consider a block-preconditioning
strategy to iteratively solve the linear system in its entirety, allowing to consider both
formulations (8) and (9) separately. The saddle point structure of A′ implies one of
the diagonal matrix blocks to be zero, which prevents the direct application of many
preconditioning techniques like simple splitting based schemes [20, Chap. 10.2] or incom-
plete LU (ILU) preconditioning [14, 18]. To address this, we apply two types of block-
preconditioning schemes that use exchangeable preconditioners for the respective matrix
blocks. This allows to select the preconditioners for the matrix blocks based on structural
or model-based properties of the block. The two considered block-preconditioning ap-
proaches are a block-Jacobi PBJ and a block-Gauss-Seidel preconditioning scheme PBGS,
which themselves are formulated to regard the linear system either as the 2 × 2 block
matrix (8) or as the 3× 3 block matrix (9).

To construct the PBJ preconditioners, we consider the block diagonal of the matrices (8)
and (9). Additionally incorporating all block lower triangular parts is the basis for the
PBGS preconditioners. Block-‘inverting’ those reduced block matrices yields the block

6

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

preconditioners. The procedure to acquire the PBGS preconditioner is similar in spirit
to [7]. There are two points to note: Firstly, an exact block inversion requires the exact
inverses of the diagonal blocks, which is infeasible for preconditioners. We thus replace the
inverses of the blocks A′, D′ and V with preconditioners for these blocks that approximate
the action of the exact inverses on the quantities of interest. We denote these block specific
preconditioners by PA′ , PD′ and PV . Secondly, we formally replace the zero block on the
diagonal of the reduced matrix (9) with an identity matrix, preventing the ‘inversion’ of
the zero block. In our implementation, this means that no preconditioner is applied to
this block. We thus obtain general PBJ and PBGS preconditioner formulations.

In the implementation, a variety of concrete preconditioners for the respective ma-
trix blocks can be used. For the two-domain formulation (8), this yields the two-domain
block-Jacobi preconditioner Ptd

BJ(PA′ ,PD′) and the two-domain block-Gauss-Seidel precon-
ditioner Ptd

BGS(PA′ ,PD′). Both depend on suitable preconditioners PA′ and PD′ for the
blocks A′ and D′:

Ptd
BJ(PA′ ,PD′) :=

(
PA′ 0
0 PD′

)
, Ptd

BGS(PA′ ,PD′) :=

(
PA′ 0

−PD′C ′PA′ PD′

)
(13)

Likewise, we obtain the pressure-velocity block-Jacobi preconditioner Ppv
BJ(PV ,PD′) and

the pressure-velocity block-Gauss-Seidel preconditioner Ppv
BGS(PV ,PD′). They depend on

preconditioners PV and PD′ for the blocks V and D′:

Ppv
BJ(PV ,PD′) :=

PV 0 0
0 I 0
0 0 PD′

 , Ppv

BGS(PV ,PD′) :=

PV 0 0
−ICPV I 0
−PD′C ′1PV 0 PD′

 (14)

The differences between the four variants directly influence the possible choices of the sub-
preconditioners PA′ , PD′ and PV , as well as the computational efficiency of the whole block
preconditioner. We begin with the difference between the two-domain Ptd

∗ and pressure-
velocity Ppv

∗ preconditioner formulations. The two-domain block preconditioners treat
the saddle point structure of A′ as one block. This permits specialized saddle point pre-
conditioning techniques PA′ , like an Uzawa preconditioner [11], which may lead to better
results due to their construction for the specific structure. The pressure-velocity formula-
tion explicitly treats the saddle point structure by introducing an identity preconditioner
on the critical diagonal block. This allows using a wider range of preconditioning tech-
niques for PV and PD′ , like splitting techniques, ILU(p) or algebraic multigrid (AMG) [2,
4] preconditioners. Also, this weakens the prerequisites on the preconditioners and allows
using techniques that are not specialized for the problem’s structure.

Comparing the P∗BJ and P∗BGS preconditioners, the sparsity pattern of the block-Jacobi
matrices suggests that their application requires fewer computational steps. The Gauss-
Seidel preconditioners use additional coupling entries below the diagonal. Intuitively, one
may expect an improved conditioning with a formulation that makes use of such additional
information. However, this comes at the cost of more computation in the preconditioner

7

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

application and setup. Without numerical experiments it is unclear whether the envi-
sioned improvement of the system’s condition leads to shorter solution times compared to
a preconditioner that is cheaper in its application but less capable to improve the systems
condition number.

We highlight that preconditioners are commonly implemented as their application to
vectors, i.e., for a vector x, it is of the form P(x). If such an implementation is already
given, applying the block preconditioners to a blocked vector is a simple block matrix-
vector product. This allows using existing preconditioner implementations within the
blocked preconditioner. We use the ones available in DuMux for our experiments.

5 COMPARISON AND RESULTS

We now assess the iterative solution of a coupled Stokes-Darcy system with partitioned
coupling and block preconditioning, compared to the direct solver Umfpack [8]. We
compare the runtime for solving increasingly large systems, and also comment on the
memory requirement for all approaches. In the model problem from Section 2, we set
K = 10−6m2 and αBJ = 1.0. The simulation is stopped at tend = 50 · 105s, with a time
step size of dt = 2 · 105s. A time dependent pressure difference is applied between the left
and right boundary, which changes in the form of a half cosine-wave, with a maximum
difference of 10−9Pa. The Stokes domain is a 1× 3 rectangle over a 1× 1 square for the
Darcy domain, see also Figure 1. Each 1×1 square uses the same number of spatial cells.

As solvers, we either use Umfpack, or preconditioned versions of the iterative solvers
PD-GMRES [19] or Bi-CGSTAB [23]. As preconditioners we use an AMG method [2, 4],
Uzawa-iterations [11] or an ILU(0) factorization [14, 18]. PD-GMRES uses minit = mmin =
3 and mstep = 5, other parameters are chosen according to the original publication. Dune-
Istl’s non-smooth aggregation AMG is used as solver or preconditioner, and performs
one V-cycle [3, 4]. Pre- and post-smoothing is a single Gauss-Seidel iteration each with
ω = 1. In our setup, we restrict ourselves to Umfpack as coarse grid solver, and
limit the hierarchy to 3 levels, which results in comparatively large coarse grid problems
for the velocity blocks at scale. Our standard Uzawa configuration is an inexact Uzawa
that executes one Richardson iteration where the optimal relaxation parameter ωopt is
estimated via power iteration. In the inexact case, the AMG method as specified above
is used as solver, while Umfpack is used for the exact Uzawa iteration (Uzawae). All
simulations are run on a single core of an AMD EPYC 7551P CPU with 2.0 GHz.

To assess the runtime scaling of our different approaches, we increase the number of
degrees of freedom. As baseline, we solve the linear system (9) with the direct solver
Umfpack. The evaluations tested for the two iterative schemes are listed in Table 2,
and schematically illustrated in Figure 4. The iterative methods are stopped when the
residual’s norm is in the same order of magnitude as the Umfpack’s residual.

Figure 5 shows the measured runtime scaling behavior. To allow a comparison between
the approaches, we choose the preconditioners for the subsystems to be either AMG or
Uzawa. We observe that using iterative methods pays off in terms of runtime already for

8

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

UmfpackUmfpack

(a) Umfpack

[]

[
Ppm

]

Pff

SffSff

SpmSpm

preCICEpreCICE

(b) preCICE

[]

[
Ppm

]

Pff

PD-GMRESPD-GMRES

(c) Preconditioner Ptd

[]
[]

[
Ppm

]

Pff

I

PD-GMRESPD-GMRES

(d) Preconditioner Ppv

Figure 4: Evaluation setup conceptual visualization. Solvers are marked in blue around the matrix
block they are applied to, preconditioners P are marked within their block.

Table 2: Evaluation setup comparison. Cells marked with n.a. are not applicable.

Name Iterative Monolithic Solver Preconditioner
System Stokes Darcy System Stokes Darcy

Umfpack 7 3 Umfpack n.a. n.a. n.a. n.a. n.a.

preCICE Umfpack 3 7 preCICE Umfpack Umfpack n.a. n.a. n.a.
preCICE P(Uzawae,AMG) 3 7 preCICE PD-GMRES Bi-CGSTAB n.a. Uzawa-exact AMG
preCICE P(Uzawa,AMG) 3 7 preCICE PD-GMRES Bi-CGSTAB n.a. Uzawa AMG

PD-GMRES Ppv
BJ(AMG,AMG) 3 3 PD-GMRES n.a. n.a. B-Jacobi AMG AMG

PD-GMRES Ppv
BGS(AMG,AMG) 3 3 PD-GMRES n.a. n.a. B-Gauss-Seidel AMG AMG

PD-GMRES Ptd
BJ(Uzawa,AMG) 3 3 PD-GMRES n.a. n.a. B-Jacobi Uzawa AMG

PD-GMRES Ptd
BGS(Uzawa,AMG) 3 3 PD-GMRES n.a. n.a. B-Gauss-Seidel Uzawa AMG

PD-GMRES Ptd
BJ(Uzawa, ILU(0)) 3 3 PD-GMRES n.a. n.a. B-Jacobi Uzawa ILU(0)

PD-GMRES Ptd
BGS(Uzawa, ILU(0)) 3 3 PD-GMRES n.a. n.a. B-Gauss-Seidel Uzawa ILU(0)

moderate problem sizes with 104 degrees of freedom, benefiting from their better numerical
scaling with respect to the problem size n. Partitioned coupling with preconditioned
iterative solvers is able to outperform Umfpack for large n, while using the partitioned
coupling approach with Umfpack for both subsystems is not beneficial and always slower
than directly applying Umfpack to the monolithic system. The performance of our block-
preconditioning approach yields the fastest runtimes for large systems, but varies strongly
with the preconditioner configuration. Interestingly, we observe that using the specialized
Uzawa preconditioner for Stokes in Ptd

∗ leads to increased runtimes compared to the less
specialized Ppv

∗ block preconditioner with two AMG preconditioners. In general, the P∗BJ

configurations lead to slightly improved runtimes compared to the corresponding P∗BGS

preconditioners.
In Figure 6 we show that tweaking the preconditioner configurations has the poten-

tial to further speed up the runtime, especially for the block-preconditioning approaches.
While Umfpack scales roughly as O(n · log(n)), our partitioned and block-preconditioned
approaches suggest a linear runtime increase with respect to the problem size n. In gen-
eral, this behavior is also expected for the Ppv

∗ (AMG,AMG) approaches but due to our
setup we see an increase in runtime to a level similar to the Umfpack setting. This is
caused by our restriction to use Umfpack as coarse grid solver in the preconditioner,
and limiting the multigrid hierarchy to 3 levels: The resulting comparatively large coarse
grid problems for the velocity blocks start to dominate the overall runtime. Increas-
ing the multigrid hierarchy and/or switching to more efficient iterative solver for the

9

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

Figure 5: Runtime comparison of the direct solver Umfpack and iterative solvers with partitioned
coupling and block preconditioning.

Figure 6: Runtime comparison of the best performing solver configurations.

coarse grid problems is expected to reduce the runtimes to or below the level of our
Ptd
∗ (Uzawa, ILU(0)) approaches.
In terms of memory requirements both considered approaches are very similar when

configured to use the same iterative solver(s) and preconditioners. Then, the memory
consumption is dominated by the auxiliary vectors used by the iterative solvers to solve
the linear system - in parts or as a whole. If limited memory is an issue, the partitioned
coupling approach has the advantage to solve one subsystem at a time, requiring only the
memory for solving the current subsystem.

10

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

6 CONCLUSION AND FUTURE WORK

Our experiments clearly indicate that both partitioned coupling and block-preconditioning
approaches yield superior performance compared to using a sparse direct solver. This
holds already for moderate problems sizes in single-threaded computations, and we ex-
pect the benefits to be substantially larger in parallel computations. Our implementation
in DuMux is very general, and can in principle also be applied for the nonlinear Navier-
Stokes case, or for coupled flows involving more physics. Initial experiments show that our
sophisticated coupling/preconditioning techniques are then obligatory, as simple mono-
lithic iterative schemes fail due to the severe ill-conditioning.

7 ACKNOWLEDGEMENTS

This work was financially supported by the German Research Foundation (DFG),
within the Collaborative Research Center on Interface-Driven Multi-Field Processes in
Porous Media (SFB 1313, Project Number 327154368).

References

[2] Bastian, P., Blatt, M., and Scheichl, R. “Algebraic multigrid for discontinuous
Galerkin discretizations of heterogeneous elliptic problems”. Numerical Linear Al-
gebra with Applications. (2012) 19(2):367–388.

[3] Blatt, M. and Bastian, P. “The Iterative Solver Template Library”. International
Workshop on Applied Parallel Computing. Springer. (2006) 666–675.

[4] Blatt, M., Ippisch, O., and Bastian, P. A Massively Parallel Algebraic Multigrid
Preconditioner Based on Aggregation for Elliptic Problems with Heterogeneous Co-
efficients. Tech. rep. (arXiv:1209.0960). arXiv, (2012).

[5] Bollhöfer, M., Schenk, O., Janaĺık, R., Hamm, S., and Gullapalli, K. State-of-the-Art
Sparse Direct Solvers. Tech. rep. (arXiv:1907.05309). arXiv, (2019).

[6] Bungartz, H.-J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev,
A., and Uekermann, B. “preCICE – A fully parallel library for multi-physics surface
coupling”. Computers and Fluids. (2016) 141:250–258.

[7] Cai, M., Mu, M., and Xu, J. “Preconditioning Techniques for a Mixed Stokes/Darcy
Model in Porous Media Applications”. Journal of Computational and Applied Math-
ematics. (2009) 233(2):346–355.

[8] Davis, T. A. “UMFPACK User Guide”. Website: http://www.suitesparse.com. (2018).

[9] Degroote, J. “Partitioned Simulation of Fluid-Structure Interaction”. Archives of
Computational Methods in Engineering. (2013) 20:185–238.

[10] Degroote, J., Bathe, K.-J., and Vierendeels, J. “Performance of a new partitioned
procedure versus a monolithic procedure in fluid-structure interaction”. Computers
& Structures. (2009) 87(11):793–801.

11

Jenny Schmalfuss, Cedric Riethmüller, Mirco Altenbernd, Kilian Weishaupt and Dominik Göddeke

[11] Elman, H. C. and Golub, G. H. “Inexact and Preconditioned Uzawa Algorithms for
Saddle Point Problems”. SIAM Journal on Numerical Analysis. (1994) 31(6):1645–
1661.

[12] Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K.,
Müthing, S., Nuske, P., Tatomir, A., Wolff, M., and Helmig, R. “DuMux: DUNE
for Multi-{Phase, Component, Scale, Physics, . . . } Flow and Transport in Porous
Media”. Advances in Water Resources. (2011) 34(9):1102–1112.

[13] Grüninger, C. Numerical Coupling of Navier–Stokes and Darcy Flow for Soil-Water
Evaporation. Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung
der Universität Stuttgart, (2017).

[14] Hysom, D. and Pothen, A. “Level-Based Incomplete LU Factorization: Graph Model
and Algorithms”. SIAM Journal on Matrix Analysis and Applications. (2002).

[15] Jaust, A., Weishaupt, K., Mehl, M., and Flemisch, B. “Partitioned Coupling Schemes
for Free-Flow and Porous-Media Applications with Sharp Interfaces”. Finite Vol-
umes for Complex Applications IX - Methods, Theoretical Aspects, Examples. Springer,
(2020) 605–613.

[16] Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Bur-
bulla, S., Class, H., Coltman, E., Emmert, S., et al. “DuMux 3—An Open-Source
Simulator for Solving Flow and Transport Problems in Porous Media with a Focus
on Model Coupling”. Computers & Mathematics with Applications. (2021) 81:423–
443.

[17] Layton, W. J., Schieweck, F., and Yotov, I. “Coupling Fluid Flow with Porous
Media Flow”. SIAM Journal on Numerical Analysis. (2002) 40(6):2195–2218.

[18] Meijerink, J. A. and Vorst, H. A. van der. “An Iterative Solution Method for Linear
Systems of Which the Coefficient Matrix Is a Symmetric M-matrix”. Mathematics
of Computation. (1977) 31:148–162.

[19] Núñez, R. C., Schaerer, C. E., and Bhaya, A. “A Proportional-Derivative Control
Strategy for Restarting the GMRES(m) Algorithm”. Journal of Computational and
Applied Mathematics. (2018) 337:209–224.

[20] Saad, Y. Iterative Methods for Sparse Linear Systems. Second. SIAM, (2003).

[21] Saffman, P. G. “On the boundary condition at the surface of a porous medium”.
Studies in Applied Mathematics. (1971) 50(2):93–101.

[22] Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., and Helmig, R. “Coupling
Staggered-Grid and MPFA Finite Volume Methods for Free Flow/Porous-Medium
Flow Problems”. Journal of Computational Physics. (2020) 401:109012.

[23] Vorst, H. A. van der. “Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems”. SIAM Journal on scientific
and Statistical Computing. (1992) 13(2):631–644.

12

