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Abstract

Background: The complex nature of biological data has driven the development of specialized software tools. Scientific
workflow management systems simplify the assembly of such tools into pipelines, assist with job automation, and aid
reproducibility of analyses. Many contemporary workflow tools are specialized or not designed for highly complex
workflows, such as with nested loops, dynamic scheduling, and parametrization, which is common in, e.g., machine
learning. Findings: SciPipe is a workflow programming library implemented in the programming language Go, for managing
complex and dynamic pipelines in bioinformatics, cheminformatics, and other fields. SciPipe helps in particular with
workflow constructs common in machine learning, such as extensive branching, parameter sweeps, and dynamic
scheduling and parametrization of downstream tasks. SciPipe builds on flow-based programming principles to support
agile development of workflows based on a library of self-contained, reusable components. It supports running subsets of
workflows for improved iterative development and provides a data-centric audit logging feature that saves a full audit trace
for every output file of a workflow, which can be converted to other formats such as HTML, TeX, and PDF on demand. The
utility of SciPipe is demonstrated with a machine learning pipeline, a genomics, and a transcriptomics pipeline.
Conclusions: SciPipe provides a solution for agile development of complex and dynamic pipelines, especially in machine
learning, through a flexible application programming interface suitable for scientists used to programming or scripting.
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Findings

Driven by the highly complex and heterogeneous nature of bio-
logical data [1,2], computational biology is characterized by an
extensive ecosystem of command-line tools, each specialized
on one or a few of the many aspects of biological data. Be-
cause of their specialized nature these tools generally need to
be assembled into sequences of processing steps, often called
“pipelines,” to produce meaningful results from raw data. As a

result of the increasingly large sizes of biological data sets [3,4],
such pipelines often require integration with high-performance
computing (HPC) infrastructures or cloud computing resources
to complete in an acceptable time. This has created a need for
tools to coordinate the execution of such pipelines in an effi-
cient, robust. and reproducible manner. This coordination can
in principle be done with simple scripts in languages such as
Bash, Python, or Perl, but plain scripts can quickly become frag-
ile. When the number of tasks becomes sufficiently large and

Received: 6 October 2018; Revised: 3 March 2019; Accepted: 28 March 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/5/giz044/5480570 by guest on 01 February 2021

http://www.oxfordjournals.org
http://orcid.org/0000-0001-6740-9212
http://orcid.org/0000-0001-5447-9465
http://orcid.org/0000-0002-8682-7206
http://orcid.org/0000-0002-8083-2864
mailto:samuel.lampa@farmbio.uu.se
http://orcid.org/0000-0001-6740-9212
http://orcid.org/0000-0001-6740-9212
http://creativecommons.org/licenses/by/4.0/


2 SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines

the execution times long, the risk for failures during the exe-
cution of such scripts increases almost linearly with time, and
simple scripts are not a good strategy for when large jobs need
to be restarted from a failure. This is because they lack the abil-
ity to distinguish between finished and half-finished files. They
also do not provide means to detect whether intermediate out-
put files are already created and can be reused to avoid wasting
time on redoing already finished calculations. These limitations
with simple scripts call for a strategy with a higher level of au-
tomation and more careful management of data and state. This
need is addressed by a class of software commonly referred to as
“scientific workflow management systems” or simply “workflow
tools.” Through a more automated way of handling the execu-
tion, workflow tools can improve the robustness, reproducibility,
and understandability of computational analyses. In concrete
terms, workflow tools provide means for handling atomic writes
(making sure finished and half-finished files can be separated af-
ter a crashed or stopped workflow), caching of intermediate re-
sults, distribution of tasks to the available computing resources,
and automatically keeping or generating records of exactly what
was run, to make analyses reproducible.

It is widely agreed that workflow tools generally make it
easier to develop automated, reproducible, and fault-tolerant
pipelines, although many challenges and potential areas for im-
provement persist with existing tools [5]. This has made scien-
tific workflow systems a highly active area of research. Numer-
ous workflow tools have been developed, and many new ones
are continually being developed.

The workflow tools developed differ widely in terms of how
workflows are defined and what features are included out-of-
the-box. This probably reflects the fact that different types of
workflow tools can be suited for different categories of users
and use cases. Graphical tools such as Galaxy [6,7] and Yabi [8]
provide easy-to-use environments especially well-suited for sci-
entists without scripting experience. Text-based tools such as
Snakemake [9], Nextflow [10], BPipe [11], Cuneiform [12], and
Pachyderm [13], on the other hand, are implemented as domain-
specific languages (DSLs), which can often provide a higher level
of flexibility, at the expense of the ease of use of a graphical user
interface. They can thus be well-suited for “power users” with
experience in scripting or programming.

Even more power and flexibility can be gained from work-
flow tools implemented as programming libraries, which pro-
vide their functionality through a programming application pro-
gramming interface (API) accessed from an existing program-
ming language such as Python, Perl, or Bash. By implementing
the API in an existing language, users get access to the full power
of the implementation language as well as the existing tooling
around the language. One example of a workflow system imple-
mented in this way is Luigi [14]. Another interesting workflow
system implemented as a programming library and that shares
many features with SciPipe is Nipype [15].

As reported by Spjuth et al. [5], although many users find im-
portant benefits in using workflow tools, many also experience
limitations and challenges with existing tools, especially regard-
ing the ability to express complex workflow constructs such as
branching and iteration, as well as limitations in terms of audit
logging and reproducibility. Below we briefly review a few exist-
ing popular systems and highlight areas where we found that
the development of a new approach and tool was desirable, for
use cases that include very complex workflow constructs.

First, graphical tools such as Galaxy and Yabi, although easy
to use even without programming experience, are often per-
ceived to be limited in their flexibility owing to the need to install

and run a web server to use them, which is not always permit-
ted or practical on HPC systems. Text-based tools implemented
as DSLs, such as Snakemake, Nextflow, BPipe, Pachyderm, and
Cuneiform, do not have this limitation but have other charac-
teristics that might be problematic for for complex workflows.

For example, Snakemake is dependent on file-naming strate-
gies for defining dependencies, which can in some situations be
limiting, and also uses a “pull-based” scheduling strategy (the
workflow is invoked by asking for a specific output file, where-
after all tasks required for reproducing the file will be executed).
While this makes it easy to reproduce specific files, it can make
the system hard to use for workflows involving complex con-
structs such as nested parameter sweeps and cross-validation
fold generation, where the final file names are difficult if not im-
possible to foresee. Snakemake also performs scheduling and
execution of the workflow graph in separate stages, meaning
that it does not support dynamic scheduling.

Dynamic scheduling, which basically means on-line schedul-
ing during the workflow execution [16], is useful both where the
number of tasks is unknown before the workflow is executed
and where a task needs to be scheduled with a parameter value
obtained during the workflow execution. An example of the for-
mer is reading row by row from a database, splitting a file of
unknown size into chunks, or processing a continuous stream
of data from an external process such as an automated labora-
tory instrument. An example of the latter is training a machine
learning model with hyper parameters obtained from a param-
eter optimization step prior to the final training step.

BPipe constitutes a sort of middle ground in terms of dy-
namic scheduling. It supports dynamic decisions of what to run
by allowing execution-time logic inside pipeline stages, as long
as the structure of the workflow does not need to change. Dy-
namic change of the workflow structure can be important in
workflows for machine learning, however, e.g., if parametrizing
the number of folds in a cross-validation based on a value cal-
culated during the workflow run, such as data set size.

Nextflow has push-based scheduling and supports dynamic
scheduling via the dataflow paradigm and does not suffer from
this limitation. It does not, however, support creating a library
of reusable workflow components. This is because of its use of
dataflow variables shared across component definitions, which
requires processes and the workflow dependency graph to be
defined together.

Pachyderm is a container-based workflow system that uses a
JavaScript Object Notation (JSON) and YAML-based DSL to define
pipelines. It has a set of innovative features including a version-
controlled data management component with Git-like seman-
tics and support for triggering of pipelines based on data up-
dates, among others. These in combination can provide some
aspects of dynamic scheduling. On the other hand, the more
static nature of the JSON/YAML-based DSL might not be opti-
mal for really complex setups such as creating loops or branches
based on parameter values obtained during the execution of
the workflow. The requirement of Pachyderm to be run on a
Kubernetes [17] cluster can also make it less suitable for some
academic environments where the ability to run pipelines also
on traditional HPC clusters is required. On the other hand, be-
cause of the easy incorporation of existing tools, it is possible
to provide such more complex behavior by including a more dy-
namic workflow tool as a workflow step inside Pachyderm in-
stead. We thus primarily see Pachyderm as a complement to
other lightweight workflow systems, rather than necessarily an
exclusive alternative.
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The usefulness of such an approach where an overarching
framework provides primarily an orchestration role while calling
out to other systems for the actual workflows is demonstrated
by the Arteria project [18]. Arteria builds on the event-based
StackStorm framework to allow triggering of external workflows
based on any type of event, providing a flexible automation
framework for sequencing core facilities.

Another group of workflow tools are those designed around
the Common Workflow Language (CWL) [19] as their primary au-
thoring interface. These include Toil [20] and Rabix [21], as well
as the CWL reference implementation. A detailed review of each
of these tools is outside the scope for this article. We note, how-
ever, that while CWL provides important benefits in terms of
workflow portability, it can at the same time be too limited for
very complex and dynamic workflow constructs because of its
declarative YAML-based nature, just as for Pachyderm.

There is also a class of workflow systems building on Big Data
technologies such as the Hadoop ecosystem, where ADAM [22] is
one prominent example, using Spark [23] as a foundation for its
pipeline component. Through a set of specialized formats, APIs,
and workflow step implementations for genomics data, ADAM
manages to provide impressive scalability of genomics analyses
across multiple compute nodes. By relying on Spark, which has a
programming model in which data operations are expressed di-
rectly, ADAM is quite a different beast than the other workflow
systems reviewed here, however. In these other more traditional
workflow tools, components are generally instead handled in a
black-box fashion and most often are implemented outside the
workflow layer itself. Just as with Pachyderm, the requirement
for additional technology layers for distributed computing, such
as the Hadoop distributed file system (HDFS) [24] and the Spark
execution system, means that ADAM might not always be a fea-
sible solution for HPC clusters with tight restrictions on system
privileges or for local laptops with limited resources.

Returning to traditional workflow systems, Cuneiform takes
a different approach than most workflow tools by wrapping shell
commands in functions in a flexible functional language (de-
scribed by Brandt et al. [25]), which allows leveraging common
benefits in functional programming languages, such as side ef-
fect free functions, to define workflows. It also leverages the
distributed programming capabilities of the Erlang virtual ma-
chine to provide automatic distribution of workloads. It is still a
new DSL, however, which means that tooling and editor support
might not be as extensive as for an established programming
language.

Luigi is a workflow library developed by Spotify, which pro-
vides a high degree of flexibility owing to its implementation
as a programming library in Python. For example, the program-
ming API provides full control over file name generation. Luigi
also provides integration with many Big Data systems such as
Hadoop and Spark, and cloud-centric storage systems such as
HDFS and S3.

SciLuigi [26] is a wrapper library for Luigi, previously devel-
oped by us, which introduces a number of benefits for scien-
tific workflows by leveraging selected principles from flow-based
programming (FBP) (named ports and separate network defini-
tion) to achieve an API that makes iteratively changing the work-
flow connectivity easier than in vanilla Luigi.

While Luigi and SciLuigi have been shown to be a helpful so-
lution for complex workflows in drug discovery, they also have
a number of limitations for highly complex and dynamic work-
flows. First, because Python is an untyped, interpreted language,
certain software bugs are discovered only far into a workflow
run, rather than while the program is being compiled. Second,

the fact that Luigi creates separate processes for each worker
that communicate with the central Luigi scheduler via HTTP re-
quests over the network can lead to robustness problems when
a certain number of workers is exceeded (∼64 in our experience),
leading to HTTP connection timeouts.

Finally Nipype, which is also a programming library imple-
mented in Python and which shares a number of features with
SciPipe such as flexible file name generation, separate named in-
puts and outputs, and a rather FBP-like dependency definition,
is expected to have some of the same limitations as Luigi be-
cause of the lack of static typing and worse performance of the
Python programming language compared to Go.

The aforementioned limitations for complex workflows in
existing tools are the background and motivation for develop-
ing the SciPipe library.

The SciPipe workflow library

SciPipe (SciPipe, RRID:SCR 017086) is a workflow library based
on FBP principles, implemented as a library in the Go pro-
gramming language. The library is freely available as open
source on GitHub [27]. All releases available on GitHub are also
archived on Zenodo [28]. Similarly to Nextflow, SciPipe leverages
the dataflow paradigm to achieve dynamic scheduling of tasks
based on input data, allowing many workflow constructs not
easily coded in many other tools.

Combined with design principles from FBP such as sepa-
rate network definition and named ports bound to processes,
this has resulted in a productive and discoverable API that en-
ables agile authoring of complex and dynamic workflows. The
fact that the workflow network is defined separately from pro-
cesses enables workflows to be built on the basis of a library
of reusable components, although the creation of ad hoc shell-
command−based components is also supported.

SciPipe provides a provenance tracking feature that creates 1
audit log per output file rather than only 1 for the whole work-
flow run. This means that it is always easy to verify exactly how
each output of a workflow was created.

SciPipe also provides a few features that are not very com-
mon among existing tools or that do not commonly occur to-
gether in 1 system. These include support for streaming via Unix
named pipes, the ability to run push-based workflows up to a
specific stage of the workflow, and flexible support for file nam-
ing of intermediate data files generated by workflows.

By implementing SciPipe as a library in an existing language,
the language’s ecosystem of tooling, editor support, and third-
party libraries can be directly used to avoid “reinventing the
wheel” in these areas. By leveraging the built-in concurrency
features of Go, such as go-routines and channels, the developed
code base has been kept small compared with similar tools and
also does not require external dependencies for basic use (some
external tools are used for optional features such as PDF gener-
ation and graph plotting). This means that the code base should
be possible to maintain for a single developer or small team and
that the code base is practical to include in workflow develop-
ers’ own source code repositories, in order to future-proof the
functionality of workflows.

Below, we first briefly describe how SciPipe workflows are cre-
ated. We then describe in some detail the features of SciPipe
that are the most novel or improve most upon existing tools,
followed by a few more commonplace technical considerations.
We finally demonstrate the usefulness of SciPipe by applying it
to a set of case study workflows in machine learning for drug
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1 package main
2

3 import (
4 "github.com/scipipe/scipipe"
5 )
6

7 const dna = "AAAGCCCGTGGGGGACCTGTTC"
8

9 func main() {
10 // Initialize workflow, using max 4 CPU cores
11 wf := scipipe.NewWorkflow("DNA Base Complement Workflow", 4)
12

13 // Initialize processes based on shell commands:
14

15 // makeDNA writes a DNA string to a file
16 makeDNA := wf.NewProc("Make DNA", "echo "+dna+" > {o:dna}")
17 makeDNA.SetOut("dna", "dna.txt")
18

19 // complmt computes the base complement of a DNA string
20 complmt := wf.NewProc("Base Complement", "cat {i:in} | tr ATCG TAGC > {o:compl}")
21 complmt.SetOut("compl", "{i:in|%.txt}.compl.txt")
22

23 // reverse reverses the input DNA string
24 reverse := wf.NewProc("Reverse", "cat {i:in} | rev > {o:rev}")
25 reverse.SetOut("rev", "{i:in|%.txt}.rev.txt")
26

27 // Connect data dependencies between out- and in-ports
28 complmt.In("in").From(makeDNA.Out("dna"))
29 reverse.In("in").From(complmt.Out("compl"))
30

31 // Run the workflow
32 wf.Run()
33 }

Figure 1 A simple example workflow implemented with SciPipe. The workflow computes the reverse base complement of a string of DNA, using standard UNIX tools.
The workflow is a Go program and is supposed to be saved in a file with the .go extension and executed with the go run command. On line 4, the SciPipe library
is imported, to be later accessed as scipipe. On line 7, a short string of DNA is defined. On lines 9–33, the full workflow is implemented in the program’s main()

function, meaning that it will be executed when the resulting program is executed. On line 11, a new workflow object (or “struct” in Go terms) is initiated with a name
and the maximum number of cores to use. On lines 15–25, the workflow components, or ”processes,” are initiated, each with a name and a shell command pattern.
Input file names are defined with a placeholder on the form {i:INPORTNAME} and outputs on the form {o:OUTPORTNAME}. The port-name will be used later to access
the corresponding ports for setting up data dependencies. On line 16, a component that writes the previously defined DNA string to a file is initiated, and on line 17,

the file path pattern for the out-port ”dna” is defined (in this case a static file name). On line 20, a component that translates each DNA base to its complementary
counterpart is initiated. On line 21, the file path pattern for its only out-port is defined. In this case, reusing the file path of the file it will receive on its in-port named
”in,” thus the {i:in} part. The %.txt part removes .txt from the input path. On line 24, a component that will reverse the DNA string is initiated. On lines 27–29, data
dependencies are defined via the in- and out-ports defined earlier as part of the shell command patterns. On line 32, the workflow is being run. This code example is

also available in the SciPipe source code repository Lampa [29].

discovery and next-generation sequencing genomics and tran-
scriptomics.

Writing workflows with SciPipe

SciPipe workflows are written as Go programs, in files ending
with the .go extension. As such, they require the Go tool chain to
be installed for compiling and running them. The Go programs
can be either compiled to self-contained executable files with
the go build command or run directly, using the go run com-
mand.

The simplest way to write a SciPipe program is to write the
workflow definition in the program’s main() function, which is
executed when running the compiled executable file, or running
the file as a script with go run. An example workflow written in
this way is shown in Fig. 1 (also available in Lampa [29]), which
provides a simple example workflow consisting of 3 processes,
demonstrating a few of the basic features of SciPipe. The first
process writes a string of DNA to a file, the second computes the
base complement, and the last process reverses the string. All in
all, the workflow computes the reverse base complement of the
initial string.

As can be seen in Fig. 1 on line 11, a workflow object
(or struct, in Go terminology) is first initialized, with a name
and a setting for the maximum number of tasks to run at a
time. Furthermore, on lines 15–25, processes are defined with
the Workflow.NewProc() method on the workflow struct, with
name and a command pattern that is very similar to the Bash
shell command that would be used to run a command man-
ually, but where concrete file names have been replaced with
placeholders, in the form {i:INPORTNAME}, {o:OUTPORTNAME}, or
{p:PARAMETERNAME}. These placeholders define input and output
files, as well as parameter values, and work as a sort of tem-
plates, which will be replaced with concrete values as concrete
tasks are scheduled and executed.

As can be seen on lines 17, 21, and 25 (Fig. 1), output paths
to use for output files are defined using the Process.SetOut()

method, taking an out-port name and a pattern for how to gen-
erate the path. For simple workflows this can be just a static file
name, but for more complex workflows with processes that pro-
duce >1 output on the same port—e.g., by processing different
input files or using different sets of parameters—it is often best
to reuse some of the input paths and parameter values config-
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1 {
2 "ID": "tuir75c24kxe4rrqmm2p",
3 "ProcessName": "Reverse",
4 "Command": "cat ../dna.compl.txt | rev \u003e dna.compl.rev.txt",
5 "Params": {},
6 "Tags": {},
7 "StartTime": "2018-07-26T13:02:16.855172344+02:00",
8 "FinishTime": "2018-07-26T13:02:16.863536059+02:00",
9 "ExecTimeNS": 8363715,

10 "OutFiles": {
11 "rev": "dna.compl.rev.txt"
12 },
13 "Upstream": {
14 "dna.compl.txt": {
15 "ID": "2g7tr2trhu9zubovwlua",
16 "ProcessName": "Base Complement",
17 "Command": "cat ../dna.txt | tr ATCG TAGC \u003e dna.compl.txt",
18 "Params": {},
19 "Tags": {},
20 "StartTime": "2018-07-26T13:02:16.845769702+02:00",
21 "FinishTime": "2018-07-26T13:02:16.854035213+02:00",
22 "ExecTimeNS": 8265532,
23 "OutFiles": {
24 "compl": "dna.compl.txt"
25 },
26 "Upstream": {
27 "dna.txt": {
28 "ID": "vu8ltmoujzo3vn2b39pr",
29 "ProcessName": "Make DNA",
30 "Command": "echo AAAGCCCGTGGGGGACCTGTTC \u003e dna.txt",
31 "Params": {},
32 "Tags": {},
33 "StartTime": "2018-07-26T13:02:16.842112643+02:00",
34 "FinishTime": "2018-07-26T13:02:16.84486747+02:00",
35 "ExecTimeNS": 2754810,
36 "OutFiles": {
37 "dna": "dna.txt"
38 },
39 "Upstream": {}
40 }
41 }
42 }
43 }
44 }

Figure 2 Example audit log file in JSON format [30] for a file produced by a SciPipe workflow. The workflow used to produce this audit log in particular is the one in
Fig. 1. The audit information is hierarchical, with each level representing a step in the workflow. The first level contains metadata about the task executed last, to
produce the output file that this audit log refers to. The field Upstream on each level contains a list of all tasks upstream of the current task, indexed by the file paths

that each of the upstream tasks produced, and which was subsequently used by the current task. Each task is given a globally unique ID, which helps to deduplicate
any duplicate occurrences of tasks when converting the log to other representations. Execution time is given in nanoseconds. Note that input paths in the command
field are prepended with ../, compared to how they appear in the Upstream field. This is because each task is executed in a temporary directory created directly under
the workflow’s main execution directory, meaning that to access existing data files, it has to first navigate up 1 step out of this temporary directory.

ured earlier in the command pattern to generate a unique path
for each output.

Finally, on lines 27–29, we see how in-ports and out-ports
are connected in order to define the data dependencies between
tasks. Here, the in-port and out-port names used in the place-
holders in the command pattern described above are used to
access the corresponding in-ports and out-ports and make con-
nections between them, with a syntax in the general form of
InPort.From(OutPort).

The last thing needed to do to run the workflow is seen on
line 32, where the Workflow.Run() method is executed. Pro-
vided that the workflow code in Fig. 1 is saved in a file named
workflow.go, it can be run using the go run command, like so:

$ go run workflow.go

This will then produce 3 output files and 1 accompanying au-
dit log for each file, which can be seen by listing the files in a
terminal:

dna.txt

dna.txt.audit.json

dna.compl.txt

dna.compl.txt.audit.json

dna.compl.rev.txt

dna.compl.rev.txt.audit.json

The file dna.txt should now contain the string
AAAGCCCGTGGGGGACCTGTTC, and dna.compl.rev.txt should
contain GAACAGGTCCCCCACGGGCTTT, which is the reverse base
complement of the first string. In the last file above, the full
audit log for this minimal workflow can be found. An example
content of this file is shown in Fig. 2.

In this code example, it can be seen that both of the
commands we executed are available and also that the ”Re-
verse” process lists its ”upstream” processes, which are in-
dexed by the input file names in its command. Thus, under the
dna.compl.txt input file, we find the ”Base Complement” pro-
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cess together with its metadata, and 1 further upstream process
(the ”Make DNA” process). This hierarchic structure of the au-
dit log ensures that the complete audit trace, including all com-
mands contributing to the production of an output file, is avail-
able for each output file of the workflow.

More information about how to write workflows with SciP-
ipe is available on the documentation website [31]. Note that the
full documentation on this website is also available in a folder
named docs inside the SciPipe Git repository, which ensures that
documentation for the version currently used is always avail-
able.

Dynamic scheduling

Because SciPipe is built on the principles from FBP (see the Meth-
ods section for more details), a SciPipe program consists of in-
dependently and concurrently running processes, which sched-
ule new tasks continually during the workflow run. This is here
referred to as ”dynamic scheduling.” This means that it is pos-
sible to create a process that obtains a value and passes it on to
a downstream process as a parameter, so that new tasks can be
scheduled with it. This feature is important in machine learning
workflows, where hyper parameter tuning is often used to find
an optimal value of a parameter, such as cost for support vector
machines, which is then used to parametrize the final training
part of the workflow.

Reusable components

Based on principles from FBP, the workflow graph in SciPipe is
defined by making connections between port objects bound to
processes. This enables the dependency graph definition to be
kept separate from the process definitions. This is in contrast
to other ways of connecting dataflow processes, such as with
dataflow variables, which are shared between process defini-
tions. This makes processes in FBP fully self-contained, mean-
ing that libraries of reusable components can be created and
that components can be loaded on-demand when creating new
workflows. A graphical comparison between dependencies de-
fined with dataflow variables and FBP ports is shown in Fig. 3.

Running subsets of workflows

With pull-based workflow tools such as Snakemake or Luigi, it
is easy to reproduce a particular output file on-demand because
the scheduling mechanism is optimized for the use case of ask-
ing for a specific file and calculating all the tasks required to be
executed based on that.

With push-based workflow tools, however, reproducing a
specific set of files without running the full workflow is not al-
ways straightforward. This is a natural consequence of the push-
based scheduling strategy, and dataflow in particular, because
the identities and quantities of output files might not be known
before the workflow is run.

SciPipe provides a mechanism for partly solving this lack of
“on-demand file generation” in push-based dataflow tools, by
allowing all files of a specified process to be reproduced on-
demand. That is, the user can tell the workflow to run all pro-
cesses in the workflow upstream of, and including, a specified
process, while skipping processes downstream of it.

This has turned out to be very useful when iteratively refac-
toring or developing new pipelines. When a part in the middle
of a long sequence of processes need to be changed, it is helpful
to be able to test-run the workflow up to that particular process

only, not the whole workflow, to speed up the development iter-
ation cycle.

Other characteristics

Below are a few technical characteristics and considerations that
are not necessarily unique to SciPipe but could be of interest to
potential users assessing whether SciPipe fits their use cases.

Data-centric audit log
The audit log feature in SciPipe collects metadata about every
executed task (concrete shell command invocation), which is
passed along with every file that is processed in the workflow. It
writes a file in the ubiquitous JSON format, with the full trace of
tasks executed for every output in the workflow, with the same
name as the output file in question but with the additional file
extension .audit.json. Thus, for every output in the workflow,
it is possible to check the full record of shell commands used to
produce it. An example audit log file can be seen in Fig. 2.

This data-oriented provenance reporting contrasts with
provenance reports common in many workflow tools, which of-
ten provide 1 report per workflow run only, meaning that the link
between data and provenance report is not as direct.

The audit log feature in SciPipe in many aspects reflects the
recommendations by Gil and Garijo [32] for developing prove-
nance reporting in workflows, such as producing a coherent, ac-
curate, inspectable record for every output data item from the
workflow. By producing provenance records for each data out-
put rather than for the full workflow only, SciPipe could provide
a basis for the problem of iteratively developing workflow vari-
ants, as outlined by Carvalho et al. [33].

SciPipe also loads any existing provenance reports for ex-
isting files that it uses, and merges these with the provenance
information from its own execution. This means that even if
a chain of processing is spread over multiple SciPipe workflow
scripts and executed at different times by different users, the
full provenance record is still being kept and assembled, as long
as all workflow steps were executed using SciPipe shell com-
mand processes. The main limitation to this “follow the data”
approach is for data generated externally to the workflow or by
SciPipe components implemented in Go. For external processes,
it is up to the external process to generate any reporting. For
Go-based components in SciPipe, these cannot currently dump
a textual version of the Go code executed. This constitutes an
area of future development.

SciPipe provides experimental support for converting the
JSON structure into reports in HTML and TeX format, or into
executable Bash scripts that can reproduce the file that the au-
dit report describes from available inputs or from scratch. These
tools are available in the scipipe helper command. The TeX re-
port can be easily further converted to PDF using the pdflatex

command of the pdfTex software [34]. An example of such a PDF
report is shown in Fig. 4, which was generated from the audit re-
port for the last file generated by the code example in Fig. 1.

Note that the JSON format used natively by SciPipe is not fo-
cused on adhering to a standard such as the W3C recommended
standard for provenance information, W3C PROV [35]. To follow
the approach taken with the scipipe helper tool, support for W3C
PROV serialized, e.g., to JSON-LD [36] would be a most suitable
additional conversion target and is planned for future develop-
ment.

Note also that the provenance log in SciPipe can be seen
as complementary to more technically comprehensive but
also more low-level approaches to reproducibility such as Re-
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A B

Figure 3 Comparison between dataflow variables and FBP ports in terms of dependency definition. A, How dataflow variables (blue and green) shared between processes

(in grey) make the processes tightly coupled. In other words, process and network definitions get intermixed. B, How ports (in orange) bound to processes in FBP allow
the network definition to be kept separate from process definitions. This enables processes to be reconnected freely without changing their internals.

Figure 4 Audit report for the last file generated by the code example in Fig. 1, converted to TeX with SciPipe’s experimental audit2tex feature and then converted to

PDF with pdfTeX. At the top, the PDF file includes summary information about the SciPipe version used and the total execution time. After this follows an execution
timeline, in a Gantt chart style, that shows the relative execution times of individual tasks in a graphical manner. After this follows a comprehensive list of tables with
information for each task executed towards producing the file to which the audit report belongs. The task boxes are color-coded and ordered in the same way that the
tasks appear in the timeline.
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8 SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines

proZip [37]. ReproZip monitors not just shell command execu-
tions but every system call made during a workflow run to en-
able all required dependencies to be captured and packed into a
reproducible archive. One way to contrast these 2 approaches is
that while the primary goal of ReproZip is reproducible execu-
tion, the provenance report in SciPipe serves multiple purposes,
where understandability of executed analyses has a much more
pronounced role.

Atomic writes
SciPipe ensures that cancelled workflow runs do not result in
half-written output files being mistaken for finished ones. It
does this by executing each task in a temporary folder and mov-
ing all newly created files into their final location after the task
is finished. By using a folder for the execution, any extra files
created by a tool that are not explicitly configured by the work-
flow system are captured and treated in an atomic way. Exam-
ples of where this is needed is for the 5 extra files created by bwa

index [38] when indexing a reference genome in FASTA format.

Streaming support
In data-intensive fields such as next-generation sequencing, it
is common for intermediate steps of pipelines to produce large
amounts of data, often multiplying the storage requirements
considerably compared to the raw data from sequencing ma-
chines [39]. To help ease these storage requirements, SciPipe
provides the ability to optionally stream data between 2 tasks
via random access memory (RAM) instead of saving to disk be-
tween task executions. This approach has 2 benefits. First, the
data do not need to be stored on disk, which can lessen the
storage requirements considerably. Second, it enables the down-
stream task to start processing the data from the upstream task
immediately as soon as the first task has started to produce par-
tial output. It thus enables pipeline parallelism to be achieved in
addition to data parallelism and can thereby shorten the total
execution time of the pipeline.

Flexible file naming and data “caching”
SciPipe allows flexible naming of the file path of every interme-
diate output in the workflow, based on input file names and pa-
rameter values passed to a process. This enables the creation of
meaningful file-naming schemes, to make it easy to manually
explore and sanity-check outputs from workflows.

Configuring a custom file-naming scheme is not required,
however. If no file path is configured, SciPipe will automatically
create a file path that ensures that 2 tasks with different parame-
ters or input data will never clash and that 2 tasks with the same
command signature, parameters, and input files will reuse the
same cached data.

Usage

We have successfully used SciPipe to train machine learning
models for off-target binding profiles for early hazard detection
of candidate drug molecules in early drug discovery [40]. This
study was run on a single HPC node on the Rackham cluster [41]
at UPPMAX HPC center at Uppsala University, which has 2 cen-
tral processing units (CPUs) with 10 physical and 20 virtual cores
each, and 128–256 GB of RAM (we had access to nodes with dif-
ferent amounts of RAM and were using whatever our application
needed).

Owing to some changes in how we performed the training
we did not get the opportunity to try out the exact same situa-
tion that we were struggling with with SciLuigi before, but based

on experiments done on compute nodes on the same HPC clus-
ter, it has been verified that SciPipe is able to handle up to 4,999
concurrent idle shell commands (which could be, e.g., monitor-
ing jobs on the SLURM resource manager [42]), as opposed to the
maximum of ∼64 concurrent commands with SciLuigi.

Apart from that and the occasional workflow in the wild [43],
the SciPipe library has not yet seen much adoption outside our
research group. Based on the high interest for the library on
GitHub (486 stars and 36 forks at the time of writing), we think
this is just a matter of time. We also think the interest in work-
flows implemented in compiled languages will increase as data
sets continue to increase in size and performance and robust-
ness issues grow more and more important. Because SciPipe is
a somewhat more complex tool than the most popular ones such
as Galaxy, we are planning to produce more tutorial material
such as videos and blog posts to help newcomers get started.

Known limitations

Below we list a number of known limitations of SciPipe that
might affect the decision of whether to use SciPipe for a par-
ticular use case.

First, the fact that writing SciPipe workflows requires some
basic knowledge of the Go programming language can be off-
putting to users who are not well-acquainted with program-
ming. Go code, although it takes inspiration from scripting lan-
guages, is still markedly more verbose and low-level in nature
than Python and can take a little longer to get used to.

Second, the level of integration with HPC resource managers
is currently quite basic compared to some other workflow tools.
The SLURM resource manager can readily be used by using the
Prepend field on processes to add a string with a call to the
salloc SLURM command, but more advanced HPC integration
is planned to be addressed in upcoming versions.

Third, the way commands are defined in SciPipe is quite sim-
plistic compared to some other approaches. Approaches such
as the CWL tool description format [44] and the Boutiques [45]
framework provide more semantically comprehensive descrip-
tion of the command-line format. Boutiques also provides cer-
tain features for validation of inputs, which can help avoid con-
necting workflow inputs and outputs that are not compatible.
We see this as an exciting area for future development, and
where community contributions to the open source code will be
especially welcome.

Furthermore, reproducing specific output files is not as natu-
ral and easy as with pull-based tools like Snakemake, although
SciPipe provides a mechanism to partly resolve this problem.

Finally, SciPipe does not yet support integration with the
CWL [19] for interoperability of workflows, and with the W3C
PROV [35] format for provenance information. These are high-
priority areas for future developments.

Case Studies

To demonstrate the usefulness of SciPipe, we have used it to im-
plement a number of representative pipelines from drug discov-
ery and bioinformatics with different characteristics and hence
requirements on the workflow system. These workflows are
available in a dedicated git repository on GitHub [46].

Machine learning pipeline in drug discovery

The initial motivation for building SciPipe stemmed from prob-
lems encountered with complex dynamic workflows in machine
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learning for drug discovery applications. It was thus quite nat-
ural to implement an example of such a workflow in SciPipe.
To this end we re-implemented a workflow implemented previ-
ously for the SciLuigi library [26], which was itself based on an
earlier study [47].

In short, this workflow trains predictive models using the LI-
BLINEAR software [48] with molecules represented by the signa-
ture descriptor [49]. For linear support vector machines a cost
parameter needs to be tuned, and we tested 15 values (0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5) in a
10-fold cross-validated parameter sweep. Five different training
set sizes (500, 1,000, 2,000, 4,000, 8,000) were tested and eval-
uated with a test set size of 1,000. The raw data set consists
of 10,000 logarithmic solubility values chosen randomly from
a data set extracted from PubChem [50] according to details
in Lampa et al. [26]. The workflow is schematically shown in Fig.
5 and was plotted using SciPipe’s built-in plotting function. The
figure has been modified for clarity by collapsing the individual
branches of the parameter sweeps and cross-validation folds, as
well as by manually making the layout more compact.

The implementation in SciPipe was done by creating
components that are defined in separate files (named
comp COMPONENTNAME in the repository), which can thus be
reused in other workflows. This shows how SciPipe can be
used to create workflows based on reusable, externally defined
components.

The fact that SciPipe supports parametrization of workflow
steps with values obtained during the workflow run meant that
the full workflow could be kept in a single workflow definition,
in 1 file. This also made it possible to create audit logs for the
full workflow execution for the final output files and to create
the automatically plotted workflow graph shown in Fig. 5. This
is in contrast to the SciLuigi implementation, where the param-
eter sweep to find the optimal cost, and the final training, had
to be implemented in separate workflow files (wffindcost.py
and wfmm.py in [51]) and executed as a large number of com-
pletely separate workflow runs (1 for each data set size), which
meant that logging became fragmented into a large number of
disparate log files.

Genomics cancer analysis pipeline

Sarek [52] is an open source analysis pipeline to detect germline
or somatic variants from whole-genome sequencing, developed
by the National Genomics Infrastructure and National Bioinfor-
matics Infrastructure Sweden, which are both platforms at Sci-
ence for Life Laboratory. To test and demonstrate the applica-
bility of SciPipe to genomics use cases the pre-processing part
of the Sarek pipeline was implemented in SciPipe. See Fig. 6 for
a directed process graph of the workflow, plotted with SciPipe’s
workflow plotting function.

The test data in the test workflow consists of multiple sam-
ples of normal and tumour pairs. The workflow starts with align-
ing each sample to a reference genome using BWA [38] and for-
warding the results to Samtools [53], which saves the result as a
sorted BAM file. After each sample has been aligned, Samtools
is again used, to merge the normal and tumour samples into
1 BAM [53] file for tumour samples and 1 for normal samples.
Picard [54] is then used to mark duplicate reads in both the nor-
mal and tumour sample BAM files, whereafter GATK [55] is used
to recalibrate the quality scores of all reads. The outcome of the
workflow is 2 BAM files: 1 containing all the normal samples and
1 containing all the tumour samples.

Genomics tools and pipelines have their own set of require-
ments, which was shown by the fact that some aspects of SciP-
ipe had to be modified to ease development of this pipeline. In
particular, many genomics tools produce additional output files
apart from those specified on the command line. One example
of this is the extra files produced by BWA when indexing a ref-
erence genome in FASTA format. The bwa index command pro-
duces some 5 files that are not explicitly defined on the com-
mand line (with the extensions .bwt, .pac, .ann, .amb, and .sa).
Based on this realization, SciPipe was amended with a folder-
based execution mechanism that executes each task in a tempo-
rary folder, which keeps all output files separate from the main
output directory until the whole task has completed. This en-
sures that files that are not explicitly defined and handled by
SciPipe are also captured and handled in an atomic manner,
so that finished and unfinished output files are always properly
separated.

Furthermore, agile development of genomic tools often re-
quires being able to see the full command that is used to execute
a tool, because of the many options that are available to many
bioinformatics tools. This workflow was thus implemented with
ad hoc commands, which are defined in-line in the workflow.
The ability to do this shows that SciPipe supports different ways
of defining components, depending on what fits the use case
best.

The successful implementation of this genomics pipeline in
SciPipe thus both ensures and shows that SciPipe works well for
tools common in genomics.

RNA-seq/transcriptomics pipeline

To test the ability of SciPipe to work with software used in
transcriptomics, some of the initial steps of a generic RNA-
sequencing workflow were also implemented in SciPipe. Com-
mon steps that are needed in transcriptomics are to run quality
controls and generate reports of the analysis steps.

The RNA-sequencing case study pipeline implemented for
this article uses FastQC [56] to evaluate the quality of the raw
data being used in the analysis before aligning the data using
STAR [57]. After the alignment is done, it is evaluated using Qual-
iMap [58], while the Subread package [59] is used to do a feature
counting.

The final step of the workflow is to combine all the previ-
ous steps for a composite analysis using MultiQC [60], which will
summarize the quality of both the raw data and the result of the
alignment into a single quality report. See Fig. 7 for a directed
process graph of the workflow, plotted with SciPipe’s workflow
plotting function.

The successful implementation of this transcriptomics
workflow in SciPipe ensures that SciPipe works well for different
types of bioinformatics workflows and is not limited to 1 specific
sub-field of bioinformatics.

Conclusions

SciPipe is a programming library that provides a way to write
complex and dynamic pipelines in bioinformatics, cheminfor-
matics, and more generally in data science, and machine learn-
ing pipelines involving command-line applications.

Dynamic scheduling allows new tasks to be parametrized
with values obtained during the workflow run, and the FBP prin-
ciples of separate network definition and named ports allow the
creation of a library of reusable components. By having access to
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10 SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines

Figure 5 Directed graph of the machine learning in drug discovery case study workflow, plotted with SciPipe’s workflow plotting function. The graph has been modified

for clarity by collapsing the individual branches of the parameter sweeps and cross-validation fold generation. The layout has also been manually made more compact
to be viewable in print. The collapsed branches are indicated by intervals in the box labels. tr{500-8000} represent branching into training data set sizes 500, 1,000, 2,000,
4,000, 8,000. c{0.0001-5.0000} represent cost values 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5, while fld{1-10} represent cross-validation
folds 1−10. Nodes represent processes, while edges represent data dependencies. The labels on the edge heads and tails represent ports. Solid lines represent data

dependencies via files, while dashed lines represent data dependencies via parameters, which are not persisted to file, only transmitted via RAM.
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Figure 6 Directed graph of workflow processes in the Genomics/Cancer Analysis pre-processing pipeline, plotted with SciPipe’s workflow plotting function. Nodes
represent processes, while edges represent data dependencies. The labels on the edge heads and tails represent ports.
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Figure 7 Directed graph of workflow processes in the RNA-Seq Pre-processing workflow, plotted with SciPipe’s workflow plotting function. Nodes represent processes,

while edges represent data dependencies. The labels on the edge heads and tails represent ports.

the full power of the Go programming language to define work-
flows, existing tooling is leveraged.

SciPipe adopts state-of-the-art strategies for achieving
atomic writes, caching of intermediate files, and a data-centric
audit log feature that allows identification of the full execution
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trace for each output, which can be exported into either human-
readable HTML or TeX/PDF formats or executable Bash scripts.

SciPipe also provides some features not commonly found in
many tools such as support for streaming via Unix named pipes,
the ability to run push-based workflows up to a specific stage of
the workflow, and flexible support for file naming of interme-
diate data files generated by workflows. SciPipe workflows can
also be compiled into stand-alone executables, making deploy-
ment of pipelines maximally easy, requiring only the presence
of Bash and any external command-line tools used on the target
machine.

The fact that SciPipe is a small library without required exter-
nal dependencies apart from the Go tool chain and Bash means
it is expected to be possible to be maintained and developed in
the future even without a large team or organization backing it.

The applicability of SciPipe for cheminformatics, genomics,
and transcriptomics pipelines has been demonstrated with case
study workflows in these fields.

Methods
The Go programming language

The Go programming language (referred to hereafter as ”Go”)
was developed by Robert Griesemer, Rob Pike, and Ken Thomp-
son at Google to provide a statically typed and compiled lan-
guage that makes it easier to build highly concurrent pro-
grams that can also make good use of multiple CPU cores
(i.e., “parallel program”) in contrast to what is the case in
widespread compiled languages like C++ [61]. It tries to pro-
vide this by providing a small, simple language, with concur-
rency primitives—go-routines and channels—built into the lan-
guage. Go-routines, which are so-called lightweight threads, are
automatically mapped, or multiplexed, onto physical threads in
the operating system. This means that very large numbers of go-
routines can be created while maintaining a low number of oper-
ating system threads, such as 1 per CPU core on the computer at
hand. This makes Go an ideal choice for problems where many
asynchronously running processes need to be handled concur-
rently, and for making efficient use of multi-core CPUs.

The Go compiler statically links all its code as part of the
compilation. This means that all dependent libraries are com-
piled into the executable file. Because of this, SciPipe workflows
can be compiled into self-contained executable files without ex-
ternal dependencies apart from the Bash shell and any exter-
nal command-line tools used by the workflow. This makes de-
ploying Go programs (and SciPipe workflows) to production very
easy.

Go programs are high-performing, often an order of magni-
tude faster than interpreted languages like Python, and on the
same order of magnitude as the fastest languages, such as C,
C++, and Java [62].

Dataflow and FBP

Dataflow is a programming paradigm oriented around the idea
of independent, asynchronously running processes that only
talk to each other by passing data between each other. This data
passing can happen in different ways, such as via dataflow vari-
ables or via first-in-first-out channels.

FBP [63] is a paradigm for programming developed by John
Paul Morrison at IBM in the late 60s/early 70s to provide a com-
posable way to assemble programs to be run on mainframe com-
puters by customers such as large banks. It is a specialized ver-

sion of dataflow, adding the ideas of separate network defini-
tion, named ports, channels with bounded buffers, and infor-
mation packets (representing the data) with defined lifetimes.
Just as in dataflow, the idea is to divide a program into indepen-
dent processing units called “processes,” which are allowed to
communicate with the outside world and other processes solely
via message passing. In FBP, this is always done over channels
with bounded buffers, which are connected to named ports on
the processes. Importantly, the network of processes and chan-
nels is in FBP described “separately” from the process implemen-
tations, meaning that the network of processes and channels
can be reconnected freely without changing the internals of pro-
cesses.

This strict separation of the processes, the separation of net-
work structure from processing units, and the loosely coupled
nature of its only way of communication with the outside world
(message passing over channels) makes flow-based programs
extremely composable and naturally component-oriented. Any
process can always be replaced with any other process that sup-
ports the same format of the information packets on its in-ports
and out-ports.

Furthermore, because the processes run asynchronously, FBP
is, just like Go, very well-suited to make efficient use of multi-
core CPUs, where each processing unit can suitably be placed in
its own thread or co-routine to spread out on the available CPU
cores on the computer. FBP has a natural connection to work-
flow systems, where the computing network in an FBP program
can be likened to the network of dependencies between data and
processing components in a workflow [26]. SciPipe leverages the
principles of separate network definition and named ports on
processes. SciPipe has also taken some inspiration for its API de-
sign from the GoFlow [64] Go-based FBP framework.

Availability of supporting source code and
requirements
� Project name: SciPipe (SciPipe, RRID:SCR 017086)
� Documentation and project home page: http://scipipe.or

g [31]
� Source code repository: https://github.com/scipipe/scipi

pe [27]
� Persistent source code archive: https://doi.org/10.5281/zeno

do.1157941 [28]
� Operating system(s): Linux, Unix, Mac
� Other requirements: Go 1.9 or later, Bash, GraphViz (for work-

flow graph plotting), LaTeX (for PDF generation)
� License: MIT

Availability of supporting data and materials
� Source code for case study workflows: https://github.com/p

harmbio/scipipe-demo [46]
� The raw data for the machine learning in drug discovery

demonstration pipeline are available at: https://doi.org/10.5
281/zenodo.1324443 [65]

� The applications for the machine learning in drug discovery
case study are available at: https://doi.org/10.6084/m9.figsh
are.3985674 [66]

� The raw data and tools for the genomics and transcriptomics
workflows are available at: https://doi.org/10.5281/zenodo.1
324425 [67]
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