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Abstract. Krylov subspace recycling [1] is often deployed to accelerate the iterative solution of
sequences of linear systems. Such approaches reuse a continuously updated deflation subspace
to reach a converged solution within a low number of iterations. This procedure is justified
for problems that describe gradually evolving phenomena, such as crack propagation, and thus
involve a sequence of systems that are not simultaneously available. However considering para-
metric systems, these techniques might induce an unnecessary overhead cost. Specifically, by
constantly updating the recycled subspace a new projection on the newly constructed subspace
needs to be operated for each new system, inducing a cost that scales with O(ℓ×N2) for dense
systems, where N is the size of the system and ℓ is the size of the employed recycled basis. In
that context, this work proposes an accelerated recycling procedure for parametric systems that
is inspired by the Galerkin Model Order Reduction strategy and employs an offline – online
operation splitting. In the offline part, the subspace to be recycled is constructed via an Auto-
matic Krylov subspaces Recycling algorithm (AKR) [2] and the parametric system is projected
on the subspace to yield a Reduced Order Model (ROM). Then, in the online part the construc-
tion of the deflation preconditioner only requires employing the ROM and as a result the cost
of constructing the preconditioner is reduced to O(ℓ2). The proposed procedure is tested on a
randomly parametrized linear system and is compared the non-deflated GMRES algorithm and
a conventional recycling strategy presented in [11].

1 INTRODUCTION

The paper is concerned with the acceleration of the solution of parametric problems of the
form
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A(ω)x(ω) = b(ω), ω ∈ Ψ (1)

where A : Ψ → CN×N and b,x : Ψ → CN and Ψ being a parameter interval. Such problems
often need to be solved for multiple values of the parameter ω ∈ Ψ, i.e. in a multi-resolution
manner. Typically, a single linear system for a specific value of ω can be solved by employing
an iterative solver, such as the conjugate gradient method [3], GMRES [4] and BiCG [5]. Such
methods involve the expansion of some kind of Krylov subspaces and their efficiency depends
on the distribution of the eigenvalues of the considered system. Exploiting this fact, it is pos-
sible to devise deflation and augmentation strategies to accelerate the iterative convergence to
the solution [6, 7]. Specifically, a great advantage can be offered by deflating the system with
eigenvectors or approximated eigenvectors (Ritz vectors) as demonstrated in [6] with FGMRES
and [7] with GMRES-DR. The same approach can be employed for systems with multiple right
hand-sides (RHS) as proposed in [8]. The idea of recycling information among different linear
systems is exploited in [9] for solving sequences of varying RHSs. Finally, additional techniques
such as the ones reported in [1, 10, 11] made the step to extend this approach for slowly varying
systems and were based on the idea of recycling information from the a current system config-
uration to a subsequent one, arising due to a slow evolution of a physical phenomenon, such as
a crack propagation evolution problem [1].

Moving in the same direction, the same concept has been recently exploited for the accelera-
tion of the solution of parametric linear systems such as the ones arising for the deployment of
the Boundary Element Method (BEM) within acoustic problems [12]. Most existing algorithms,
such as [11] and [1], employ a sequential treatment of systems updating the recycled space
W = span{W} “on the fly”. However, this approach can incur a considerable cost, especially
when attempting to solve non-sparse systems, such as the ones arising in the BEM. Specifically,
employing such recycling strategies requires the computation of a new projector matrix P for
each new system. However, to compute such a matrix requires to project the system matrix A
on W and thus is accompanied by the cost of multiplying matrix A with the constantly evolving
basis W. As proposed in this work, this cost can be mitigated for the case of affine parametric
systems, where this product can be precomputed.

Nevertheless, to precompute this product, it is essential that a high quality recycling basis W
is available in advance. Employing a deflation strategy with Ritz vectors, such a basis needs to be
able to describe their variations, occurring due to the parameter dependence with ω, as denoted
in (1). To construct such a basis, it is possible to deploy a sampling of Krylov subspaces across
the parametric domain, as proposed in [2] with the Automatic Krylov subspaces Recycling
(AKR) algorithm. In brief, this algorithm constructs a global solution basis by adaptively
sampling Krylov subspaces and guarantees minimal sampling of the parametric domain, therefore
facilitating potentially the offline stage of a respective Model Order Reduction scheme.

In that context, within this paper an accelerated deflation-based preconditioner for paramet-
ric linear systems is employed, by splitting operations to an offline and an online part and by
leveraging a high quality deflation basis constructed with the AKR algorithm. In the offline part
the AKR algorithm is deployed and the resulting basis W, with W = span{W}, is used within a
Galerkin projection scheme to yield a reduced order model (ROM). However, instead of employ-
ing this ROM to compute an approximate solution, this is only used within the construction of
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a projector P onto W, therefore accelerating the construction of a high quality deflation-based
preconditioner.

The paper is organized as follows. In section 2 the basic recycling strategy employed in [1]
and [11] is introduced. In section 3 the accelerated recycling scheme is presented along with the
AKR algorithm that allows the construction of a high quality deflation basis. Then, in section
4 the proposed technique is assessed on a random parametrization example. Finally, section 5
summarizes and concludes the paper.

2 A BASIC KRYLOV SUBSPACE RECYCLING SCHEME

The solution of linear systems is typically accelerated by employing iterative solvers. In this
paper the GMRES (Generalized Minimal Residual) method is employed as this is a method
suitable for solving generic problems. The idea of the method is based on the fact that it
minimizes the residual within each iteration solving a small least square problem. The derivation
and more details for this method can be found in the seminal work of Saad [4].

2.1 A deflation based preconditioning GMRES

Aiming to solve a linear system of equations

Ax = b, (2)

where A ∈ CN×N and b,x ∈ CN , the GMRES can significantly speed up its solution by
iteratively approximating it. However, in order to solve problematic cases, where a large number
of iterations is required to yield an accurate solution, this method is typically combined with
a suitable preconditioner. A large family of such preconditioners is based on the calculation of
approximate eigenvectors and their use to deflate the solution space. In this section, a deflation
framework is presented, following [13], which can be fit into different iterative solvers, e.g. within
GMRES [7], GCR [1] and CG [14].

Assuming a deflation subspace W ⊂ CN×N of fixed dimension ℓ, which is also chosen as the
constraint subspace, and the iteratively built subspaceVm, Ṽm, where dim(Vm) = dim(Ṽm)−1 =
m. The goal of the deflated iterative method is to find an approximate solution

x̂m = x0 + s+ tm, s ∈W, tm ∈Vm, (3)

for the system (2), such that the residual

rm := b−Ax̂m ⊥ (W + Ṽm). (4)

In this paper it is assumed that x0 = 0 and Ṽm = AVm resulting in the following formulas
in a Galerkin projection onto W and an oblique projection onto Vm and constraint subspace
Ṽm. The subspaces W,Vm are spanned by the bases W ∈ CN×ℓ and Vm ∈ CN×m respectively.
Having W, the corresponding orthogonal projector onto W can be defined as

P = W(W∗AW)−1W∗A, (5)

along with the sibling projector onto AW,

Q = AW(W∗AW)−1W∗. (6)
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Algorithm 1 Deflated GMRES

1: Input: system A ∈ CN×N ,b ∈ CN , initial guess x0 ∈ CN , residual tolerance rtol ∈ R and
deflation basis W;

2: s = Px = W(W∗AW)−1W∗b
3: r0 ← b−A(x0 + s); v1 ← r0

∥r0∥ ;

4: V1 ← [v1]; m← 1;
5: while ∥rm−1∥ ≥ rtol do
6: vm+1 ← (I−Q)Avm; vm+1 ← vm+1

∥vm+1∥ ;
7: for p← 1 : m do
8: hp,m ← vH

p vm+1; vm+1 ← vm+1 − hp,mvp;
9: end for

10: hm+1,m ← ∥vm+1∥; vm+1 ← vm+1

∥vm+1∥ ; Vm+1 ← [Vm vm+1];

11: Find zm ∈ Cm such that min ∥∥r0∥e1 − Ĥmzm∥
12: x̂m ← x0 +Vmzm ;
13: rm ← r0 − (I−Q)Ax̂m; m← m+ 1;
14: end while
15: Output: Approximation basis V ∈ CN×m−1 and solution approximation x̂m−1 ∈ CN

The two projectors are linked by QA = AP. Having defined the pair of orthogonal projectors,
the deflation preconditioning strategy proceeds by splitting the solution into the part s ∈ W

and a part t ⊥W, which can be expressed as

x = Px+ (I−P)x = s+ t, (7)

where I is the identity matrix. Combining equations (2) and (5), the contribution of W for the
solution x can be computed by s = Px = W(W∗AW)−1W∗b. After manipulating the system,
the contribution t can be calculated by

(I−Q)At = (I−Q)b, (8)

which is the deflated system from subspace W. The deflated version of the GMRES method is
given in Algorithm 1. The steps 6-13 of the algorithm correspond to a conventional GMRES
procedure considering the deflated system (I−Q)A.

2.2 Recycling of Krylov subspaces for sequences of linear systems

Deflation strategies were initially used to accelerate the solution of a single system, as in
equation (2). However, this framework was generalized in [1] and [10, 15] allowing the recycling
of subspaces among different linear systems, such as the successive solution of a sequence of
linear systems as in equation (1). Typically, within such techniques the recycled information is
updated for each system of the given sequence. For example, in [11] it is proposed to construct
the recycled subspace for the system i+1 by employing all Arnoldi vectors used for the solution
of the system i.

The procedure for recycling subspaces for a sequence of linear systems is outlined in Algorithm
2. Regardless of the updating scheme used for the construction of the deflation basis W for each
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Algorithm 2 Recycling of Krylov subspaces for sequences of linear systems.

1: Input: sequence of linear systems A(i) ∈ CN×N ,b(i) ∈ CN , i = 1, . . . , Lmax, initial deflation
basis W.

2: for i← 1 : Lmax do
3: Solve A(i)x(i) = b(i) with Deflated GMRES (Algorithm 1)
4: Update W as in [11] or [1]
5: end for
6: Output: Deflation basis W and solution approximations x(i) ∈ CN , i = 1, . . . , Lmax

system, as stated in step 4, such a basis needs to be updated for each new system. Although such
a basis might prove highly efficient, from the algorithmic perspective it results into a inefficient
procedure, as a new projector P needs to be constructed for each system. The assembly of such
a projector can become quite time consuming as it involves the computation of the product
AW.

3 AN ACCELERATED RECYCLING STRATEGY

As indicated in section 2, the cost of employing a deflation basis can often hinder the de-
ployment of such a technique. In this section, an accelerated recycling strategy is proposed for
parametric systems of the form (1). Exploiting the parameter dependency in (1) it is possible to
cut down the cost of the deflation framework presented in section 2.1 by shifting the most com-
putationally intensive operations of creating the projector matrix P onto the deflation subspace
W offline. However, in order to enable the splitting of operations, the deflation basis W ∈ CN×ℓ

needs to be available upfront. For that reason, the AKR algorithm [2, 16] is employed in the
offline stage of the technique. Nevertheless, the produced basis is not employed as a global
solution basis, but rather as a global deflation basis.

3.1 An accelerated recycling strategy for parametric systems

In this section an accelerated recycling framework is provided for the deflation of paramet-
ric systems of the form (1). Assuming a deflation subspace W and the family of parameter
dependent subspaces Vm(ω)(ω), the goal is to provide an approximated solution

x̂m(ω) = x0(ω) + s(ω) + tm(ω), s(ω) ∈W, tm(ω) ∈Vm(ω)(ω), (9)

of the system (1) such that

rm(ω) := b(ω)−A(ω)x̂m(ω) ⊥ (W + Ṽm(ω)(ω)). (10)

for each value of ω ∈ Ψ. Accelerating the deflation strategy in Algorithm 1, the parametric
description of the system (1) is taken into account. For the sake of simplicity, the parametric
dependency of the system is considered affine, i.e. it can be expressed as

A(ω) =

Mmax∑
i=1

Aifi(ω), b(ω) =

qmax∑
i=1

bigi(ω), ω ∈ Ψ, (11)
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Algorithm 3 Accelerated recycling scheme for parametric systems

1: Input: system Ai ∈ CN×N ,bi ∈ CN , residual tolerance rtol ∈ R and deflation basis W;
2: Obtain Ai,red,bi,red through a Galerkin projection of Ai,bi on W;
3: for all ω ∈ Φ do
4: Assemble Ared(ω);
5: Calculate s ∈W by s = W(Ared(ω))

−1W∗b;
6: Continue with lines 3-13 of Algorithm 1 employing Ared(ω) in operations containing

P,Q;
7: end for
8: Output: Approximated solution x̂(ω)

where Ai ∈ CN×N , bi ∈ CN and fi, gi : Ψ → C. Additionally, the basis W is assumed to be
available upfront and as such it does not need to be updated for the different values of ω.

Constructing W upfront, it is possible to follow a Model Order Reduction (MOR) scheme
to split operations into an offline and an online part. The offline part contains the most time
consuming operations (related with N), where a Reduced Order Model (ROM) is constructed.
Then, in the online part most of the operations demonstrate an algorithmic complexity that
scales favourably with the size of the ROM ℓ := rank(W). The method proposed in this paper,
instead of attempting to provide an approximate solution x̂(ω) ∈W, it employs the basis W in
a deflation framework.

Specifically, in the offline part of the proposed method a Galerkin projection, i.e. W ≡ W̃, is
deployed to the parametric system (1). An approximation s of the true solution x is expressed
as a linear combination of the basis vectors of W

x(ω) ≈ s(ω) = x0(ω) +Wy(ω), (12)

where y : Ψ → Cℓ includes the participation coefficients of each basis vector of W and x0(ω)
an initial guess for the solution. Since, often in MOR the initial guess is elected as x0(ω) = 0,
in the following expressions x0(ω) is omitted. Substituting (12) in (1) and multiplying from the
left with the conjugate transpose of the deflation basis WH , yields the reduced system

WHA(ω)Wy(ω) = WHb(ω), (13)

which can be assembled efficiently, i.e. demonstrating an algorithmic efficiency that scales with
ℓ2. Given that A(ω),b(ω) have an affine structure as in (11), inserting the affine expressions in
(13) yields

Mmax∑
i=0

fi(ω)Ai,redy(ω) =

qmax∑
q=0

gq(ω)bq,red, (14)

where Ai,red ∈ Cℓ×ℓ and bq,red ∈ Cℓ are the coefficients of the reduced affine system. Incorpo-
rating this strategy within the deployment of Algorithm 1 in case of parametric systems can
significantly speed up the procedure of solving a sequence of L = |Φ| linear systems assuming
that L≫Mmax.

In Algorithm 3 the proposed accelerated procedure for the sequential solution of the linear
systems for all ω ∈ Φ is outlined. A ROM is built in line 2, which is subsequently employed within
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all operations related to the orthogonal projectors P and Q. Having efficiently constructed P
and Q, the remaining lines of Algorithm 1 are executed without any changes for all ω ∈ Φ.

3.2 An Automatic Krylov Recycling algorithm for the construction of a global
deflation basis

The above introduced strategy is based on the assumption that a high quality deflation basis
is available beforehand. To construct such a basis the Automatic Krylov subspaces Recycling
(AKR) [2] and its generalization for multi-parameter systems [16] can be employed. These
algorithms construct high quality global solution bases that can be used in the offline stages
of the corresponding MOR and pMOR strategies. Since the resulting bases sample Krylov
subspaces from systems arising from different parameter configurations, they are rich in spectral
content, thus capturing the variations of the spectrum across the entire parameter range.

The AKR algorithm constructs an appropriate ordered set of parameter values Ω of which
the subspaces Km(ω), ω ∈ Ω are recycled and a sufficiently high dimension of the subspaces to
be recycled, the construction of a global basis is possible by combining the Krylov subspaces as

Ktot = Kω1

m(ω1)
∪Kω2

m(ω2)
∪ · · · ∪K

ωS

m(ωS)
, (15)

where S := |Ω| and m(ωj) with j = 1, . . . , S the dimension of the respective Krylov subspaces
for each ωj ∈ Ω. The spacing between two consecutive values of Ω as well as the respective
subspace dimension m(ωj) are adaptively selected by ensuring a predefined residual threshold
for each ωm := (ωj + ωj+1)/2), where ωj , ωj+1 ∈ Ω. Having constructed the basis W, where
Ktot ≡ W = span{W}, it is straightforward to obtain the reduced order system of equation
(14), by sequentially projecting all Ai onto W.

4 NUMERICAL ASSESSMENT

In this section the performance of the proposed technique is investigated in comparison with
the non-deflated GMRES technique and a conventional recycling technique (TRKS) given in [11].
To emphasize on the general applicability of the technique, it is deployed to solve a randomly
parametrized multiresolution problem, not stemming from any specific application.

4.1 Construction of the dense system

The first example constitutes a random dense system of the form (1) with a given single
parameter affine dependency and predefined eigenvalue distribution. The parametrized matrix
can be expressed as

A(ω) = A0 + ωA1, (16)

where A : Ψ → CN×N , with Ψ := [0, 10] and N := 5000. Since the right-hand side vector
b : Ψ→ CN does not significantly influence the convergence of iterative techniques, without loss
of generality it can be selected as constant, namely b(ω) := [1 1 . . . 1]T . The affine coefficients
A0 and A1 are constructed as

Ai := rand(5000) + j · rand(5000), (17)
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where Ai ∈ C5000×5000, with i := 0, 1, j is the imaginary unit and rand(N) constitutes the
Matlab® function that generates anN×N array of uniformly distributed values. As documented
in section 2 and elaborated in [17], iterative solution techniques are more efficient for systems
with eigenvalues clustered far from 0. Thus, in order to obtain such a system, the eigenvalues of
the matrix are manipulated accordingly. In detail, assumingA0 is diagonalizable, after deploying
the eigendecomposition

Λi = Θ−1
i AiΘi i := 0, 1, (18)

the diagonal matrix Λi = diag(λi,1, . . . , λi,N ) containing the eigenvalues λi,κ of each matrix Ai,
as well as the corresponding eigenvector matrix Θi are obtained. In order to construct a system
with acceptable convergence properties the eigenvalues of A0 are replaced by

λ0,κ = 5 +
30ej20κ√

κ
, κ := 1, · · · , N, (19)

which creates an eigenspectrum which corresponds to matrices stemming from the second kind
Fredholm integral operator, commonly encountered in discretizations of the Helmholtz equation
[17]. Such an eigenspectrum is characterized by a cluster of eigenvalues around 5 and the
corresponding system converges with a rate that depends on the decay of the sequence to zero.
Additionally, the eigenvalues of A1 are shifted by the highest eigenvalue magnitude as Λ1,κ :=
Λ1+Imax(∥λ1,κ∥), κ := 1, . . . , N , where I is the identity matrix, to guarantee that even at higher
values of ω, any systems resulting from expression (16) will yield an acceptable convergence
behaviour. The eigenvalue distribution of A0 and A1 are given in Figure 1.

(a) Eigenvalue distribution A0 (b) Eigenvalue distribution A1

Figure 1: Eigenspectra of coefficient matrices

4.2 Construction of the deflation basis

Having a system in the form (1) with a dependency of the system matrix of (16), it is possible
to employ the AKR algorithm [2] to construct a global solution basis. For the setup of the AKR
algorithm it is selected rtol := 0.1. Executing the AKR algorithm yields a global basis W
recycling 669 vectors collected from 20 systems sampled across the whole parameter domain,
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Figure 2: Vectors recycled for a randomly parametrized dense system for a basis constructed
with AKR algorithm

Figure 3: Convergence of system with deflation bases for different values of a randomly
parametrized dense system

thus |Ω| = 20. The sampling pattern to construct the basis is given in Figure 2. As illustrated,
the sampling procedure employed with AKR is adaptive with certain regions of the parameter
interval being more intensively sampled, while for others a coarse sampling is sufficient.

The effect of employing W as a deflation basis can be seen in Figure 3, where the convergence
for three different values of ω is depicted. The convergence is accelerated in two ways, as not
only the convergence rate is higher, but also a good initial guess is produced by computing the
approximate solution on W. This initial guess demonstrates the effect of the AKR algorithm,
when used in a MOR scheme, as the approximate solution satisfies the predefined rtol. This
secondary effect was exploited to provide a global solution basis in [2, 16].

4.3 Deployment of the accelerated recycling strategy

Having created a high quality deflation basis W, it is possible to employ the accelerated
recycling scheme outlined in Algorithm 3 to solve the system described in (16) for a dense grid
of parameter values Φ := [0 : 0.05 : 10] resulting into the solution of a sequence of |Φ| = 201 linear
systems. The main advantage of employing the proposed technique comes from sampling the
subspaces in advance. In that way, during the online phase of the method only a limited number
of iterations is required to achieve convergence of the solution. In addition, since the sampling is
adaptive, essentially sampling more vectors where necessary, the number of iterations required
in the online stage remains relatively constant for all ω ∈ Ψ. Comparing to the conventional
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Figure 4: Iterations with accelerated recycling scheme and TRKS (Algorithm 2) for a randomly
parametrized dense system

recycling technique (TRKS) given in Algorithm 2, it is noticed that gradually enriching the
TRKS basis results in a very low number of iterations (Figure 4).

The total cost required for the parameter sweep is demonstrated in Table 1, where the total
number of matrix-vector multiplications is used as a metric. As it is seen in the table, the
proposed technique employs a large number of matrix vector multiplications in the offline stage
to project the matrices A0,A1 onto W. Comparing the total costs involved in the proposed
method (offline+online) with the total cost of running an individual GMRES procedure for
each system sequentially, the benefit of the proposed technique is apparent, reducing the total
cost of the sweep to 24% of the initial cost. Finally, comparing to the TRKS conventional
recycling scheme, it is noticed that although in terms of the iteration gain TRKS is superior to
the proposed scheme, in terms of the total numerical cost induced the situation is reversed.

Solver Matvecs Online Matvecs Offline Total Ratio
GMRES (Non-Deflated) 35220 – 35220 1

TRKS 95231 – 95231 2.7
AKR – rtol = 0.1 7176 1338 8514 0.24

Table 1: Cumulative matrix-vector products with accelerated recycling scheme, TRKS and
GMRES for a randomly parametrized dense system

5 CONCLUSIONS

In this paper an accelerated recycling scheme is proposed. The presented technique imple-
ments a split of operations to an offline and an online stage aiming at accelerating the construc-
tion of a deflation based preconditioner. In order to achieve such a separation of operations, the
AKR algorithm is deployed to construct a high quality deflation basis in the offline stage. The
technique is tested on a randomly parametrized dense system and succeeds in speeding up the
total cost of a parameter sweep by a factor of 4. Finally, comparing to a conventional recycling
scheme, the proposed strategy is significantly faster as it shifts a large part of operations to an
offline stage.
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