
14th World Congress in Computational Mechanics (WCCM)

ECCOMAS Congress 2020
Virtual Congress: 11 – 15 January 2021

F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

ADAPTING COMPLEX AND CLUMSY CFD CODE TO RAPIDLY

CHANGING SUPERCOMPUTING REALITIES

ANDREY GOROBETS¹

 ¹ Keldysh Institute of Applied Mathematics (Russian Academy of Sciences),

4, Miusskaya Sq., Moscow, 125047, Russia

andrey.gorobets@gmail.com, http://caa.imamod.ru/

Key words: Supercomputer simulation, heterogeneous computing, compressible flow,

unstructured mesh, MPI, OpenMP, OpenCL

Abstract. This work is devoted to acceleration and upgrade of the CFD code NOISEtte for

scale-resolving simulations of compressible turbulent flows using edge-based high-accuracy

methods on unstructured hybrid meshes. Attempts to extend the baseline multilevel

MPI+OpenMP parallelization towards GPU-based hybrid systems have faced the problem:

the code is too complex. It is an in-house research code with plenty of numerical methods,

schemes, models, most of which are experimental and are not used in practical simulations.

This chaotic zoo leads to excessive conditional branches, switches, redundant functional calls

that slow down computations. Although the parallel algorithm is fully adapted to the stream

processing paradigm, such an immense amount of code is too difficult to port efficiently to

OpenCL or CUDA and maintain it in consistency with the CPU version. An approach to

survive in the process of adaptation to hybrid systems has been elaborated. It consists of

various components, such as creation of a simplified configurations, combining different

stages of the algorithm in order to reduce memory traffic, collapsing multiple functions in one

function without branches and switches, mixing single and double precision, etc. As a result,

the upgraded code is about twice as fast on CPUs and can use GPUs from different

manufacturers - AMD, NVIDIA, Intel through the OpenCL standard.

1 INTRODUCTION

CPUs are currently trying to incorporate faster memory channels (such as Open Memory

Interface of IBM), and manycores with onboard high-bandwidth memory (such as Intel Xeon

Phi formerly or Fujitsu A64FX currently) are competing with GPUs. Meanwhile, high

performance computing (HPC) programmers for scientific applications have to make a

difficult choice – which potential architectures and software frameworks to rely on. What if

GPUs win and CPU performance will be incomparably smaller? What if CPUs strike back

and reach parity with GPUs? It seems better not to bet on either side and create codes that can

exploit any winner effectively. Currently CPUs are potentially much slower than high-end

GPUs, and there are many GPU-based systems available. Therefore, in order to use those

resources, simulation codes for CPUs must be somehow extended to GPUs. Once a version

for GPU is available, both kinds of devices, CPUs and GPUs, can be engaged (even

simultaneously), hence, no matter which of the kinds wins. In this context, the present work is

Andrey Gorobets

 2

devoted to acceleration and upgrade of the computational fluid dynamics (CFD) code

NOISEtte towards heterogeneous computing on CPUs and GPUs. This code is designed for

scale-resolving simulations of compressible turbulent flows using edge-based high-accuracy

methods on unstructured mixed-element meshes [1,2].

GPU computing is rather widely used in applications, although certainly not to the same

extent as computing on CPUs. Many examples of simulation codes capable of using multiple

GPUs can be found in the literature. Majority of simulation codes use CUDA, a proprietary

framework only for NVIDIA GPUs. For instance, simulating compressible flows on multiple

GPUs using an implicit method with a preconditioned BiCGSTAB solver is shown in [3],

which is very close to what is being done in the present work. An example of large multi-

GPU simulation of aerodynamic problems can be found in [4]. In that work, rather compute-

intensive high-order numerical schemes are used, which allows obtaining very high sustained

performance. In contrast, the schemes used in the present work are much cheaper

computationally, so the algorithm is clearly memory-bound. Another example of a CUDA-

based supercomputing code for aerodynamics problems can be found in [5]. Co-execution of

scale-resolving simulations on CPUs and GPUs is demonstrated there. However, it is an

"incompressible" code. The present work also considers a simulation code on unstructured

meshes for aerodynamics problems. But our code is “compressible”, therefore, it can be

applied not only to generate Q-criterion plots of a flow around an aircraft in landing

conditions, but mainly to obtain reasonably accurate results in a wide range of Mach numbers.

Another important difference is that the OpenCL computing standard is used instead of

CUDA in the present work in order to reach maximal portability. This standard is supported

by NVIDIA as well as by other major GPU vendors, such as AMD and Intel.

The proposed MPI+OpenMP+OpenCL parallelization can exploit most kinds of existing

supercomputer architectures. Examples of similar OpenCL-based approaches with static load

balancing can be found, for instance, in [6] for compressible flows and in [7] for

incompressible flows, respectively. Heterogeneous execution of simulations of

incompressible flows with dynamic load balancing between CPUs and GPUs is presented in

[8]. However, in these heterogeneous implementations [6–8], one MPI process can engage

CPU cores and multiple accelerators of a hybrid node by distributing roles among OpenMP

threads: some threads compute on CPUs, some threads execute OpenCL kernels on devices

and perform data transfer. In the present work, a simpler approach is chosen: one MPI process

per device, either a CPU or an accelerator, so the roles are distributed at the MPI level.

The baseline version of the NOISEtte code had multilevel MPI+OpenMP parallelization

[9] for tens of thousands of CPU cores that works fine on manycores such as Intel Xeon Phi.

However, attempts to improve its performance and extend it to GPU-based hybrid systems

have faced the problem: the code is too complex. It is an in-house research code with plenty

of numerical methods, schemes, models, most of which are experimental and are not used in

practical simulations. This chaotic zoo, combining 2D and 3D cell- and vertex-centered

approaches, leads to numerous conditional branches, switches, redundant functional calls that

slow down computations. Although the baseline parallel algorithm is fully adapted to the

stream processing paradigm, this immense amount of code is too difficult to port efficiently

and maintain. An approach to survive in the process of adaptation to hybrid systems has been

elaborated. It consists of various components described in the following sections, such as

improvement of reliability, creation of simplified configurations of the code for resource-

Andrey Gorobets

 3

intensive simulations, combining different stages of the algorithm in order to reduce memory

traffic, mixing single and double precision, creation of internal debug and testing

infrastructure for development and maintenance of OpenCL kernels.

2 PROBLEM STATEMENT

The code under consideration is the NOISETTE CFD code for solving aerodynamics and

aeroacoustics problems using scale-resolving methods in both research and applications. It is

based on solving Navier–Stokes equations for compressible viscous flows using high-

accuracy numerical schemes on unstructured mixed-element meshes [1, 2]. Hybrid RANS-

LES approaches, such as DES and its variants [10], are used for turbulence modeling. Explicit

Runge-Kutta and implicit Newton-based schemes are used for time integration.

The code is written in C++. The baseline parallel implementation for CPUs has combined

MPI+OpenMP parallelization based on multilevel decomposition. It is well suited for big

supercomputers made of multi-socket nodes with manycore CPUs. Detailed description of the

parallelization for CPUs and its parallel efficiency in simulations using more than 10

thousand cores is demonstrated in [9]. The OpenMP parallelization can deal efficiently with

hundreds of threads, targeting such devices as Intel Xeon Phi. It was giving about ×2 speedup

on a 68-core Intel Xeon Phi 7250 compared to a 16-core CPU Intel Xeon v4.

The algorithm is rather simple to parallelize, it fits MIMD parallelism and stream

processing parallel paradigm (with certain minor modifications). Thus, it seemed easy to

implement it on GPUs. But the problem appeared to be not the parallel algorithm but the code

itself. It appeared difficult to make it work fine with a reasonable effort. Making it reliable,

modifiable and easy to maintain is not an easy task. The problem is its complexity and

clumsiness, which comes from combining two contradictory things: 1) a playground for

development of new numerical methods, which implies having many numerical methods

inside, together with an infrastructure for implementing, testing and comparing them; 2) a tool

for industrial applications, which needs high computing performance, efficiency and

reliability.

A heterogeneous implementation for GPUs complicates the things significantly, so

intrinsic simplicity of the code is required. The proposed approach mainly consists in fighting

with complexity and achieving reliability, which appeared to be difficult to preserve in an

intensively modified heterogeneous code.

3 IMPROVEMENT OF RELIABILITY

Reliability from a software perspective assumes that errors can hardly penetrate into

production, and if they do, those nasty bugs are easy to localize and catch. Of course, there

must be sufficient quality assurance (QA) coverage. Apart from QA, correctness checks can

be massively placed throughout the code to prevent bugs. But those assertions may introduce

significant overhead in terms of performance, slowing down resource-intensive simulations.

Therefore, before starting work on the GPU implementation, a “safe-mode” configuration

was introduced, which seems a rather common thing. It allows extensive correctness checks to

be disabled in the release configuration and easily enabled in the case if any problem appears.

Firstly, functions of the code were split into two categories: low-level functions, which

process a single mesh object (cell, node, face, etc.), and high-level functions that process sets

Andrey Gorobets

 4

of many mesh objects. Those low-level functions form the performance-critical part of the

code. For such high-frequency calls, correctness checks produce notable overhead. In

contrast, in high-level functions, the performance impact of checks is negligible due to the

high computational load. In accordance with this, the checks were divided into two parts for

high and low levels, respectively. The checks in low-level functions can be disabled in the

release configuration. This is implemented with two macro wrappers, such as

ASSERT(<condition>, <diagnostic message>) for the high level, which is always enabled,

and similar SAFE_ASSERT, which is only enabled in the safe-mode configuration. Most

arrays are also accessed with explicit correctness checks in the safe-mode configuration. For

instance, the basic array containers in the code have access operators (operator[] in C++) with

the range check in the safe mode. In the case of a wrong access, those checks allow to identify

the place and particular array explicitly without using any debug tools, which work orders of

magnitude slower and are hardly applicable if an error appears in a big simulation. Further

details can be found in [11].

4 SIMPLIFICATION AND IMPROVEMENT OF PERFORMANCE

Then, to start with GPUs, we need to find a solution for the problem of the code’s

superfluous complexity. Apart from difficulties in dealing with the heterogeneous

implementation, this complexity also leads to a lot of branches, switch operators, inner

function calls at low level, which, in turn, produce significant slowdown in terms of

performance. Fighting this complexity, on the one hand, is needed to approach GPU

computing, and, on the other hand, it appears to significantly speed up the code on CPUs.

In main low-level functions, such as the computation of fluxes through a face between

control volumes, there are a lot of switch operators and nested function calls for different

versions of methods and implementations. Figure 1 shows how this might look.

Figure 1: Outline of the call tree structure that indicates superfluous complexity, which affects performance

Andrey Gorobets

 5

The problem of such a superfluous complexity could be easily solved just by throwing

away all this unnecessary and obsolete functionality, but not in the case of a scientific code. In

such a code, it becomes a social problem: scientists take it as a personal offence if one tries to

remove their abandoned stuff from the code. But this social problem has a rather simple

software solution. In order to hide this overhead on superfluous branching at the low level, the

“playground” configuration was introduced. All the numerical schemes, models,

reconstruction options, Riemann solvers, etc., used in some research and comparative studies

but not in practical resource-intensive applications, were hidden under a macro definition.

This definition is only enabled in the playground configuration. Doing so, a significant part of

the code can be dropped in the release configuration, as shown in Figure 2.

Figure 2: The playground vs release configurations: most experimental and research functionality available in

the playground configuration is disabled (grayed out) in the release build

Furthermore, it appeared that if we combine for some particular numerical method settings

all the inner functions, such as reconstruction of variables, Riemann solver, low-Mach

preconditioner, viscous fluxes calculation, etc., into one big function without branching and

nested function calls, then it works nearly twice faster (sequential execution, explicit scheme).

To get these performance benefits, we created such combined functions for those

configurations, which are most commonly used in resource-intensive simulations. Basically,

there are two combined functions – for subsonic flows (schemes EBR3, EBR5 [1], with low-

Mach preconditioner, without limiters for discontinuities) and for supersonic flows based on

WENO reconstruction (EBR-WENO3, EBR-WENO5 [2]). These combined versions of the

main flux calculation functions (see Figure 3) are called “business-lunch” in an analogy with

a restaurant, where usually there is a big menu at full price and long preparation time and a

lunch menu with few sets of dishes, which is served much faster and cheaper.

Apart from saving time on function calls and branching, significant improvement has been

achieved by combining convective and viscous fluxes in one function in the case of an

Andrey Gorobets

 6

implicit scheme. Separate functions have to access the very large Jacobi matrix twice.

Combining these expensive memory accesses into one has significantly reduced memory

traffic. Furthermore, since GPU memory is very limited, we developed a simplified version of

the viscous fluxes calculation method by reducing the number of coefficients and using mixed

single and double precision floating point formats. Details about this new method to compute

viscous fluxes much cheaper can be found in [12].

Figure 3: The “business-lunch” configuration: combining many functions inside the flux calculation stage in one

in order to save time on function calls, branching and memory access

In resource-intensive applications, this “business-lunch” configuration works about 15–

20% faster than the baseline full version, called “playground”. Using the simplified method

for viscous fluxes and mixed single-double precision (the Jacobi matrix and some memory-

consuming coefficients for viscous fluxes are in single precision) gives further speedup about

1.7 times. In total, the new version works about twice faster in simulations on CPUs with

MPI+OpenMP parallelization.

These improvements in reliability and significant simplification of major computing

routines have allowed us to proceed with implementation for GPUs.

5 IMPLEMENTATION FOR GPU COMPUTING

The OpenCL computing standard was chosen for its portability in order to use GPUs of

NVIDIA, AMD, Intel, as well as manycore CPUs. Most computing kernels were “naïvely”

ported by taking loop bodies of operation over sets of mesh objects and replacing the loop

counters with the work-item number. However, several performance-critical kernels were

significantly modified. The changes mainly consisted in making each formerly loop iteration

processed by multiple work items in order to increase occupancy of compute units. Among

those kernels are the sparse matrix-vector product (SpMV) with a small-block matrix, the

calculation of gradients, and some more kernels. More fundamental changes were needed for

reduction operations (norms, minimum, maximum, dot product) and other operations with

data interdependency between loop iterations. In particular, the calculation of fluxes through

faces between cells was adapted to the stream processing paradigm by decomposing this

operation into two kernels, one for calculation of fluxes and the other for summation of fluxes

Andrey Gorobets

 7

into sells, using an intermediate storage for fluxes in faces.

It must be noted that the OpenCL kernel code is configured at runtime of the CPU

program. Preprocessor definitions are extensively used for that purpose. This approach allows

to eliminate most branches and switch operators inside kernels, which slow the code down a

lot, and to use inner loops with constant range, which are more efficiently unrolled by the

compiler.

Finally, to improve reliability, each OpenCL kernel is equipped with a consistency check

that compares results of its CPU counterpart ensuring that there is no discrepancy. Before

running any simulation on GPUs, each kernel used for this particular configuration of the

numerical method is tested against its CPU version. Then, several timesteps are performed

with both CPU and OpenCL versions separately, and consistency of results of these full

timesteps is checked. This automatic testing at the initialization stage ensures consistency of

the CPU and OpenCL versions.

The QA procedure has been modified accordingly. The set of QA tests has been replicated

in order to ensure consistency of the baseline “playground” version, the “business-lunch”

version and the OpenCL version. In doing so, results of all three versions are compared within

QA procedure.

Multi-GPU parallelization relies on the same infrastructure for MPI communications on

the CPU side of the code. MPI exchanges have been supplemented with intranode data

transfers between the CPU and devices. Of course, the overlap of computations and

communications is used in order to hide the communication overhead. This overlap speeds up

multi-GPU execution significantly, especially in the case of an implicit Newton-based

scheme, where rather fast and computationally cheap SpMV operations in the linear solver

require frequent halo updates.

The scalability of the multi-GPU version (or multi-accelerator, since it’s a portable

implementation) is principally unchanged compared to the baseline version for CPUs. It can

potentially use hundreds of devices efficiently as well.

The OpenCL version includes the set of numerical schemes EBR-LO, EBR-3, EBR-5,

EBR-WENO-LO, EBR-WENO-3, EBR-WENO-5, Riemann solvers, including Roe [13] with

the Turkel preconditioner [14] for low-Mach flows, our simplified method for viscous fluxes

[12], the set of RANS, LES models and hybrid approaches of the DES family (including

IDDES [10]), explicit Runge–Kutta and implicit BDF1, BDF2 schemes, the preconditioned

BiCGSTAB solver [15].

6 HETEROGENEOUS EXECUTION ON CPU AND GPU

The use of CPUs and GPUs on hybrid cluster nodes, so-called co-execution, is

implemented by means of multilevel decomposition and spawning one MPI process per

device, either CPU or GPU. This approach allows to engage efficiently both kinds of devices

with minimal changes in the code. The changes mainly consist in multilevel partitioning with

empirically defined weights of second-level subdomains according to the actual performance

ratio between devices. Then, at the beginning of the heterogeneous execution, MPI processes

running on the same node are grouped together and their roles are distributed according to

their local rank in the subgroup of the node. This approach turned out to be no less effective,

but more convenient than our previous approach using one MPI process per node. Formerly,

Andrey Gorobets

 8

multiple devices of a hybrid node, CPUs and GPUs, were engaged by one MPI process [6, 7].

The roles were distributed among OpenMP threads: some threads computed on CPU cores,

some managed the GPU workload and communications. Apart from the higher complexity,

another minor drawback is that a single MPI process can hardly saturate the available network

bandwidth of multiple network adapters, which are usually 2 or 4 on a modern cluster node.

In the present work, multiple MPI processes per hybrid node are placed, the CPU-only and

GPU-only roles are distributed among MPI processes, as shown in Figure 4. Processes with

the GPU-only role occupy its GPU and a few CPU cores, the rest of the cores are given to the

CPU-only processes, which spawn OpenMP computing threads on their cores. On multi-

socket nodes, one CPU-only MPI process is placed at each socket to avoid the NUMA factor

between sockets.

Figure 4: Heterogeneous execution on CPUs and GPUs of a hybrid node spawning one MPI process per device

It must be noted, that this co-execution is not used in practice on our local equipment

(described further), because the GPUs are too powerful compared to the CPUs (about 7:1 for

NVIDIA V100 vs 16-core Intel Xeon Gold), therefore, CPUs are used for parallel processing

of the data exchange of devices and have no time to compute. On former equipment, the

performance ratio was about 2:1 (NVIDIA K10 vs 14-core Intel Xeon v3), hence the

heterogeneous mode was much more beneficial. Thus, the co-execution mode is waiting for

better times when CPUs will take revenge and regain a better performance ratio with GPUs.

7 PERFORMANCE IN REAL APPLICATIONS

The only experience gained with the new version for GPUs is running urgent industry-

oriented simulations on our small hybrid cluster K-60. Its hybrid nodes are equipped with two

16-core CPUs Intel Xeon Gold 6142 (120 GB/s) and four GPUs NVIDIA V100 (32 GB,

900GB/s, PCIe-4). The nodes are interconnected with the InfiniBand FDR network (2

network cards per node).

The performance has been evaluated only for the primary “business-lunch” configuration:

the EBR5 scheme in space, the implicit BDF2 scheme in time, turbulence modelling IDDES

[10] (with the alternative LES model [16] and the subgrid scale [17]), mixed accuracy. The

Andrey Gorobets

 9

most important metric for us from a practical point of view is the actual performance ratio on

GPUs vs CPUs. In other words, it is the equivalent of how many CPU cores we get from one

GPU device. The memory bandwidth ratio 7.5:1 suggests the expected speedup. It appeared

that the actual speedup varies around this value depending on the mesh size: the bigger is the

mesh, the higher is the speedup.

For a test mesh of about 1 million nodes (flow around a sphere) the performance ratio is

7.4:1, which means that one GPU is equivalent to 119 CPU cores. All 4 GPUs of one hybrid

node give us performance of 374 CPU cores. This corresponds to about 80% efficiency,

which would be unachievable for such a small mesh without the overlap of computations and

communications. However, notable degradation of performance indicates that the computing

load is insufficient to fully hide communications. Similarly, for a twice bigger mesh (flow

around a rotor blade) we get the ratio 8.7:1, so one GPU gives us 139 CPU cores. 4 devices

perform as 491 CPU cores, showing parallel efficiency about 90%.

Finally, the performance is compared for a real application with a mesh of 83 million

nodes. A flow around the low-pressure turbine cascade T106C [18] was considered. 3 hybrid

nodes with 4 V100 GPUs each (the minimal number of devices needed to fit in memory) gave

us performance of about 1500 CPU cores (nearly 125 CPU cores from 1 GPU).

Regarding the simulation, its cost is about ~2.7K CPU core hours per convective time unit.

The goal of these simulations was to reproduce and study the effect of increasing the total

pressure loss as the Reynolds number decreases (ranging from 500000 to 90000). These scale-

resolving simulations were needed as reference solutions to tune the RANS models (with

consideration of laminar-turbulent transition) for simulation of a real low-pressure turbine of a

jet engine. Examples of instantaneous flow fields and some plots are shown in Figure 5.

Figure 5: Examples of instantaneous flow fields (density gradient and Q-criterion, top) and some resulting plots

for one of the Reynolds numbers (Re=200000, bottom)

Andrey Gorobets

 10

A volume synthetic turbulence generator (based on [19]) is used upstream the blade in

order to correctly reproduce the physically realistic flow conditions observed in the reference

experimental study [18]. Details about these simulations will be presented in a future work by

Alexey Duben et al.

Further tests with jet flows from the former numerical study [20] and the currently running

scale-resolving simulations of helicopter main rotors on meshes with up to 95 million nodes

using up to 20 GPUs have confirmed the performance ratio reported above.

8 CONCLUSIONS

We are happy with the obtained performance on GPUs. In multi-GPU and multi-node

simulations, one GPU device NVIDIA V100 gives us the equivalent of roughly 120-140 cores

of a modern processor. There is still potential for performance improvement of around 20-

30%. In particular, boundary conditions need more upgrade and processing of results can be

further improved. But the main problem is the limited GPU memory. We used to have at least

1 GB per core when running on CPUs. With GPUs, it is now about 4 times less considering

the performance ratio. We had to significantly reduce memory consumption using mixed

accuracy. And still one device with 32 GB can take only 6–7 million mesh nodes. It seems not

so much for something that outperforms a hundred CPU cores.

 In summary, the “business lunch” version with combined functions and mixed accuracy is

about twice as fast on CPUs as the base version. The use of mixed accuracy speeds up the

code about 1.6 – 1.7 times and saves memory nearly twice with no effect on accuracy of

results, as shown in [12]. The OpenCL version of the code gives significant acceleration, one

GPU performs like 7-8 modern multicore CPUs, which is in good agreement with the

memory bandwidth ratio between CPU and GPU. On the other hand, it has become more

difficult to maintain the code and introduce changes. New modifications must pass through

the three versions of code: the full version for CPUs (the so-called “playground”), the

“business lunch” reduced version for resource-intensive simulations on CPUs, the OpenCL

version for GPUs. However, the good thing is that the amount of the kernel code has been

minimized. It fits 5 thousand lines so far, while the full version is about 200 thousand lines.

Consistency between the three versions is ensured by an automated QA procedure that

includes dozens of tests.

Finally, several scale-resolving applications have proven robustness and performance of

the heterogeneous version with the multilevel MPI+OpenMP+OpenCL parallelization.

Acknowledgements. This work has been funded by the Russian Science Foundation,

project 19-11-00299. The K60 hybrid cluster of the Collective Usage Centre of KIAM RAS

has been used for computations.

REFERENCES

[1] I. Abalakin, P. Bakhvalov, T. Kozubskaya. Edge-based reconstruction schemes for

unstructured tetrahedral meshes. International Journal for Numerical Methods in Fluids

(2016) 81(6):331–356. DOI: 10.1002/fld.4187

[2] P. Bakhvalov, T. Kozubskaya. EBR-WENO scheme for solving gas dynamics problems

with discontinuities on unstructured meshes. Computers and Fluids (2017) 157:312–324.

Andrey Gorobets

 11

DOI: 10.1016/j.compfluid.2017.09.004

[3] A. N. Bocharov, N. M. Evstigneev, V. P. Petrovskiy, O. I. Ryabkov, I. O. Teplyakov.

Implicit method for the solution of supersonic and hypersonic 3D flow problems with

Lower-Upper Symmetric-Gauss-Seidel preconditioner on multiple graphics processing

units. Journal of Computational Physics (2020) 406:109189. DOI:

10.1016/j.jcp.2019.109189

[4] P. E.Vincent, F. Witherden, B. Vermeire, J. S. Park, A. Iyer. Towards green aviation with

python at petascale. In: SC16: International conference for high performance computing,

networking, storage and analysis. IEEE (2016) 1–11. DOI: 10.1109/SC.2016.1

[5] R. Borrell, D. Dosimont, M. Garcia-Gasulla, G. Houzeaux, O. Lehmkuhl, V. Mehta,

H. Owen, M. Vázquez, G. Oyarzun. Heterogeneous CPU/GPU co-execution of CFD

simulations on the POWER9 architecture: Application to airplane aerodynamics. Future

Generation Computer Systems (2020) 107:31–48. DOI: 10.1016/j.future.2020.01.045

[6] A. Gorobets, S. Soukov, P. Bogdanov. Multilevel parallelization for simulating turbulent

flows on most kinds of hybrid supercomputers. Computers and Fluids (2018) 173:171–

177. DOI: 10.1016/j.compfluid.2018.03.011

[7] X. Alvarez-Farre, A. Gorobets, F. X. Trias. A hierarchical parallel implementation for

heterogeneous computing. Application to algebra-based CFD simulations on hybrid

supercomputers. Computers and Fluids (2021) 214:104768. DOI:

10.1016/j.compfluid.2020.104768

[8] G. Oyarzun, R. Borrell, A. Gorobets, F. Mantovani, A. Oliva. Efficient CFD code

implementation for the ARM-based Mont-Blanc architecture. Future Generation

Computer Systems (2018) 79(3):786–796. DOI: 10.1016/j.future.2017.09.029

[9] A.Gorobets. Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations.

Lobachevskii Journal of Mathematics (2018) 39(4):524–532. DOI:

10.1134/S1995080218040078

[10] M. Shur, P. Spalart, M. Strelets, and A. Travin. An enhanced version of DES with rapid

transition from RANS to LES in separated flows. Flow, Turbulence and Combustion

(2015) 95:709–737. DOI: 10.1007/s10494-015-9618-0

[11] A. Gorobets, P. Bakhvalov. Improving Reliability of Supercomputer CFD Codes on

Unstructured Meshes. Supercomputing Frontiers and Innovations (2019) 6:44–56.

DOI: 10.14529/jsfi190403

[12] A. Gorobets, P. Bakhvalov, A. Duben, P. Rodionov. Acceleration of NOISEtte Code for

Scale-resolving Supercomputer Simulations of Turbulent Flows. Lobachevskii Journal of

Mathematics (2020) 41(8):1463–1474. DOI: 10.1134/S1995080220080077

[13] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.

Journal of Computational Physics (1981) 43:357–372. DOI: 10.1016/0021-

9991(81)90128-5

[14] E. Turkel. Preconditioning Techniques in Computational Fluid Dynamics. Annual Re-

view of Fluid Mechanics (1999) 31:385-416. DOI: 10.1146/annurev.fluid.31.1.385

[15] Van der Vorst H.A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for

the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical

Computing (1992) 13:631–644. DOI: 10.1137/0913035

[16] F. X. Trias, D. Folch, A. Gorobets, A. Oliva. Building proper invariants for eddy-viscosity

subgrid-scale models. Physics of Fluids (2015) 27:065103. DOI: 10.1063/1.4921817

Andrey Gorobets

 12

[17] F. X. Trias, A. Gorobets, A. Oliva. A new subgrid characteristic length for large-eddy

simulation. Physics of Fluids (2017) 29:115109. DOI: 10.1063/1.5012546

[18] S. Stotz, Y. Guendogdu, R. Niehuis. Experimental Investigation of Pressure Side Flow

Separation on the T106C Airfoil at High Suction Side Incidence Flow. Journal of

Turbomachinery (2017) 139(5):051007. DOI: 10.1115/1.4035210

[19] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin. Synthetic Turbulence Generators for

RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems.

Flow, Turbulence and Combustion (2014) 93:63–92. DOI: 10.1007/s10494-014-9534-8

[20] A. P. Duben, T. K. Kozubskaya. Evaluation of Quasi-One-Dimensional Unstructured

Method for Jet Noise Prediction. AIAA Journal (2019) 57(12):5142–5155. DOI:

10.2514/1.J058162

