
14th World Congress in Computational Mechanics (WCCM) 

ECCOMAS Congress 2020 
Virtual Congress: 11 – 15 January 2021 

F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds) 

 
 

 

ADAPTING COMPLEX AND CLUMSY CFD CODE TO RAPIDLY 

CHANGING SUPERCOMPUTING REALITIES   

ANDREY GOROBETS¹ 

 ¹ Keldysh Institute of Applied Mathematics (Russian Academy of Sciences),  

4, Miusskaya Sq., Moscow, 125047, Russia  

andrey.gorobets@gmail.com, http://caa.imamod.ru/ 

 

Key words: Supercomputer simulation, heterogeneous computing, compressible flow, 

unstructured mesh, MPI, OpenMP, OpenCL 

Abstract. This work is devoted to acceleration and upgrade of the CFD code NOISEtte for 

scale-resolving simulations of compressible turbulent flows using edge-based high-accuracy 

methods on unstructured hybrid meshes. Attempts to extend the baseline multilevel 

MPI+OpenMP parallelization towards GPU-based hybrid systems have faced the problem: 

the code is too complex. It is an in-house research code with plenty of numerical methods, 

schemes, models, most of which are experimental and are not used in practical simulations. 

This chaotic zoo leads to excessive conditional branches, switches, redundant functional calls 

that slow down computations. Although the parallel algorithm is fully adapted to the stream 

processing paradigm, such an immense amount of code is too difficult to port efficiently to 

OpenCL or CUDA and maintain it in consistency with the CPU version. An approach to 

survive in the process of adaptation to hybrid systems has been elaborated. It consists of 

various components, such as creation of a simplified configurations, combining different 

stages of the algorithm in order to reduce memory traffic, collapsing multiple functions in one 

function without branches and switches, mixing single and double precision, etc. As a result, 

the upgraded code is about twice as fast on CPUs and can use GPUs from different 

manufacturers - AMD, NVIDIA, Intel through the OpenCL standard. 

1 INTRODUCTION 

CPUs are currently trying to incorporate faster memory channels (such as Open Memory 

Interface of IBM), and manycores with onboard high-bandwidth memory (such as Intel Xeon 

Phi formerly or Fujitsu A64FX currently) are competing with GPUs. Meanwhile, high 

performance computing (HPC) programmers for scientific applications have to make a 

difficult choice – which potential architectures and software frameworks to rely on. What if 

GPUs win and CPU performance will be incomparably smaller? What if CPUs strike back 

and reach parity with GPUs? It seems better not to bet on either side and create codes that can 

exploit any winner effectively. Currently CPUs are potentially much slower than high-end 

GPUs, and there are many GPU-based systems available. Therefore, in order to use those 

resources, simulation codes for CPUs must be somehow extended to GPUs. Once a version 

for GPU is available, both kinds of devices, CPUs and GPUs, can be engaged (even 

simultaneously), hence, no matter which of the kinds wins. In this context, the present work is 
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devoted to acceleration and upgrade of the computational fluid dynamics (CFD) code 

NOISEtte towards heterogeneous computing on CPUs and GPUs. This code is designed for 

scale-resolving simulations of compressible turbulent flows using edge-based high-accuracy 

methods on unstructured mixed-element meshes [1,2].  

GPU computing is rather widely used in applications, although certainly not to the same 

extent as computing on CPUs. Many examples of simulation codes capable of using multiple 

GPUs can be found in the literature. Majority of simulation codes use CUDA, a proprietary 

framework only for NVIDIA GPUs. For instance, simulating compressible flows on multiple 

GPUs using an implicit method with a preconditioned BiCGSTAB solver is shown in [3], 

which is very close to what is being done in the present work. An example of large multi-

GPU simulation of aerodynamic problems can be found in [4]. In that work, rather compute-

intensive high-order numerical schemes are used, which allows obtaining very high sustained 

performance. In contrast, the schemes used in the present work are much cheaper 

computationally, so the algorithm is clearly memory-bound. Another example of a CUDA-

based supercomputing code for aerodynamics problems can be found in [5]. Co-execution of 

scale-resolving simulations on CPUs and GPUs is demonstrated there. However, it is an 

"incompressible" code. The present work also considers a simulation code on unstructured 

meshes for aerodynamics problems. But our code is “compressible”, therefore, it can be 

applied not only to generate Q-criterion plots of a flow around an aircraft in landing 

conditions, but mainly to obtain reasonably accurate results in a wide range of Mach numbers. 

Another important difference is that the OpenCL computing standard is used instead of 

CUDA in the present work in order to reach maximal portability. This standard is supported 

by NVIDIA as well as by other major GPU vendors, such as AMD and Intel.  

The proposed MPI+OpenMP+OpenCL parallelization can exploit most kinds of existing 

supercomputer architectures. Examples of similar OpenCL-based approaches with static load 

balancing can be found, for instance, in [6] for compressible flows and in [7] for 

incompressible flows, respectively. Heterogeneous execution of simulations of 

incompressible flows with dynamic load balancing between CPUs and GPUs is presented in 

[8]. However, in these heterogeneous implementations [6–8], one MPI process can engage 

CPU cores and multiple accelerators of a hybrid node by distributing roles among OpenMP 

threads: some threads compute on CPUs, some threads execute OpenCL kernels on devices 

and perform data transfer. In the present work, a simpler approach is chosen: one MPI process 

per device, either a CPU or an accelerator, so the roles are distributed at the MPI level. 

The baseline version of the NOISEtte code had multilevel MPI+OpenMP parallelization 

[9] for tens of thousands of CPU cores that works fine on manycores such as Intel Xeon Phi. 

However, attempts to improve its performance and extend it to GPU-based hybrid systems 

have faced the problem: the code is too complex. It is an in-house research code with plenty 

of numerical methods, schemes, models, most of which are experimental and are not used in 

practical simulations. This chaotic zoo, combining 2D and 3D cell- and vertex-centered 

approaches, leads to numerous conditional branches, switches, redundant functional calls that 

slow down computations. Although the baseline parallel algorithm is fully adapted to the 

stream processing paradigm, this immense amount of code is too difficult to port efficiently   

and maintain. An approach to survive in the process of adaptation to hybrid systems has been 

elaborated. It consists of various components described in the following sections, such as 

improvement of reliability, creation of simplified configurations of the code for resource-



Andrey Gorobets 

 3 

intensive simulations, combining different stages of the algorithm in order to reduce memory 

traffic, mixing single and double precision, creation of internal debug and testing 

infrastructure for development and maintenance of OpenCL kernels. 

2 PROBLEM STATEMENT  

The code under consideration is the NOISETTE CFD code for solving aerodynamics and 

aeroacoustics problems using scale-resolving methods in both research and applications. It is 

based on solving Navier–Stokes equations for compressible viscous flows using high-

accuracy numerical schemes on unstructured mixed-element meshes [1, 2]. Hybrid RANS-

LES approaches, such as DES and its variants [10], are used for turbulence modeling. Explicit 

Runge-Kutta and implicit Newton-based schemes are used for time integration.  

The code is written in C++. The baseline parallel implementation for CPUs has combined 

MPI+OpenMP parallelization based on multilevel decomposition. It is well suited for big 

supercomputers made of multi-socket nodes with manycore CPUs. Detailed description of the 

parallelization for CPUs and its parallel efficiency in simulations using more than 10 

thousand cores is demonstrated in [9]. The OpenMP parallelization can deal efficiently with 

hundreds of threads, targeting such devices as Intel Xeon Phi. It was giving about ×2 speedup 

on a 68-core Intel Xeon Phi 7250 compared to a 16-core CPU Intel Xeon v4.  

The algorithm is rather simple to parallelize, it fits MIMD parallelism and stream 

processing parallel paradigm (with certain minor modifications). Thus, it seemed easy to 

implement it on GPUs. But the problem appeared to be not the parallel algorithm but the code 

itself. It appeared difficult to make it work fine with a reasonable effort. Making it reliable, 

modifiable and easy to maintain is not an easy task. The problem is its complexity and 

clumsiness, which comes from combining two contradictory things: 1) a playground for 

development of new numerical methods, which implies having many numerical methods 

inside, together with an infrastructure for implementing, testing and comparing them; 2) a tool 

for industrial applications, which needs high computing performance, efficiency and 

reliability.  

A heterogeneous implementation for GPUs complicates the things significantly, so 

intrinsic simplicity of the code is required. The proposed approach mainly consists in fighting 

with complexity and achieving reliability, which appeared to be difficult to preserve in an 

intensively modified heterogeneous code.  

3 IMPROVEMENT OF RELIABILITY 

Reliability from a software perspective assumes that errors can hardly penetrate into 

production, and if they do, those nasty bugs are easy to localize and catch. Of course, there 

must be sufficient quality assurance (QA) coverage. Apart from QA, correctness checks can 

be massively placed throughout the code to prevent bugs. But those assertions may introduce 

significant overhead in terms of performance, slowing down resource-intensive simulations. 

Therefore, before starting work on the GPU implementation, a “safe-mode” configuration 

was introduced, which seems a rather common thing. It allows extensive correctness checks to 

be disabled in the release configuration and easily enabled in the case if any problem appears.   

Firstly, functions of the code were split into two categories: low-level functions, which 

process a single mesh object (cell, node, face, etc.), and high-level functions that process sets 
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of many mesh objects. Those low-level functions form the performance-critical part of the 

code. For such high-frequency calls, correctness checks produce notable overhead. In 

contrast, in high-level functions, the performance impact of checks is negligible due to the 

high computational load. In accordance with this, the checks were divided into two parts for 

high and low levels, respectively. The checks in low-level functions can be disabled in the 

release configuration. This is implemented with two macro wrappers, such as 

ASSERT(<condition>, <diagnostic message>) for the high level, which is always enabled, 

and similar SAFE_ASSERT, which is only enabled in the safe-mode configuration. Most 

arrays are also accessed with explicit correctness checks in the safe-mode configuration. For 

instance, the basic array containers in the code have access operators (operator[] in C++) with 

the range check in the safe mode. In the case of a wrong access, those checks allow to identify 

the place and particular array explicitly without using any debug tools, which work orders of 

magnitude slower and are hardly applicable if an error appears in a big simulation. Further 

details can be found in [11].  

4 SIMPLIFICATION AND IMPROVEMENT OF PERFORMANCE 

Then, to start with GPUs, we need to find a solution for the problem of the code’s 

superfluous complexity. Apart from difficulties in dealing with the heterogeneous 

implementation, this complexity also leads to a lot of branches, switch operators, inner 

function calls at low level, which, in turn, produce significant slowdown in terms of 

performance. Fighting this complexity, on the one hand, is needed to approach GPU 

computing, and, on the other hand, it appears to significantly speed up the code on CPUs. 

In main low-level functions, such as the computation of fluxes through a face between 

control volumes, there are a lot of switch operators and nested function calls for different 

versions of methods and implementations. Figure 1 shows how this might look. 

 
Figure 1: Outline of the call tree structure that indicates superfluous complexity, which affects performance  
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The problem of such a superfluous complexity could be easily solved just by throwing 

away all this unnecessary and obsolete functionality, but not in the case of a scientific code. In 

such a code, it becomes a social problem: scientists take it as a personal offence if one tries to 

remove their abandoned stuff from the code. But this social problem has a rather simple 

software solution. In order to hide this overhead on superfluous branching at the low level, the 

“playground” configuration was introduced. All the numerical schemes, models, 

reconstruction options, Riemann solvers, etc., used in some research and comparative studies 

but not in practical resource-intensive applications, were hidden under a macro definition. 

This definition is only enabled in the playground configuration. Doing so, a significant part of 

the code can be dropped in the release configuration, as shown in Figure 2.  

 

 
Figure 2: The playground vs release configurations: most experimental and research functionality available in 

the playground configuration is disabled (grayed out) in the release build 

Furthermore, it appeared that if we combine for some particular numerical method settings 

all the inner functions, such as reconstruction of variables, Riemann solver, low-Mach 

preconditioner, viscous fluxes calculation, etc., into one big function without branching and 

nested function calls, then it works nearly twice faster (sequential execution, explicit scheme). 

To get these performance benefits, we created such combined functions for those 

configurations, which are most commonly used in resource-intensive simulations. Basically, 

there are two combined functions – for subsonic flows (schemes EBR3, EBR5 [1], with low-

Mach preconditioner, without limiters for discontinuities) and for supersonic flows based on 

WENO reconstruction (EBR-WENO3, EBR-WENO5 [2]). These combined versions of the 

main flux calculation functions (see Figure 3) are called “business-lunch” in an analogy with 

a restaurant, where usually there is a big menu at full price and long preparation time and a 

lunch menu with few sets of dishes, which is served much faster and cheaper.  

Apart from saving time on function calls and branching, significant improvement has been 

achieved by combining convective and viscous fluxes in one function in the case of an 
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implicit scheme. Separate functions have to access the very large Jacobi matrix twice. 

Combining these expensive memory accesses into one has significantly reduced memory 

traffic. Furthermore, since GPU memory is very limited, we developed a simplified version of 

the viscous fluxes calculation method by reducing the number of coefficients and using mixed 

single and double precision floating point formats. Details about this new method to compute 

viscous fluxes much cheaper can be found in [12]. 

 
Figure 3: The “business-lunch” configuration: combining many functions inside the flux calculation stage in one 

in order to save time on function calls, branching and memory access 

In resource-intensive applications, this “business-lunch” configuration works about 15–

20% faster than the baseline full version, called “playground”. Using the simplified method 

for viscous fluxes and mixed single-double precision (the Jacobi matrix and some memory-

consuming coefficients for viscous fluxes are in single precision) gives further speedup about 

1.7 times. In total, the new version works about twice faster in simulations on CPUs with 

MPI+OpenMP parallelization.  

These improvements in reliability and significant simplification of major computing 

routines have allowed us to proceed with implementation for GPUs.  

5 IMPLEMENTATION FOR GPU COMPUTING 

The OpenCL computing standard was chosen for its portability in order to use GPUs of 

NVIDIA, AMD, Intel, as well as manycore CPUs. Most computing kernels were “naïvely” 

ported by taking loop bodies of operation over sets of mesh objects and replacing the loop 

counters with the work-item number. However, several performance-critical kernels were 

significantly modified. The changes mainly consisted in making each formerly loop iteration 

processed by multiple work items in order to increase occupancy of compute units. Among 

those kernels are the sparse matrix-vector product (SpMV) with a small-block matrix, the 

calculation of gradients, and some more kernels. More fundamental changes were needed for 

reduction operations (norms, minimum, maximum, dot product) and other operations with 

data interdependency between loop iterations. In particular, the calculation of fluxes through 

faces between cells was adapted to the stream processing paradigm by decomposing this 

operation into two kernels, one for calculation of fluxes and the other for summation of fluxes 
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into sells, using an intermediate storage for fluxes in faces.  

It must be noted that the OpenCL kernel code is configured at runtime of the CPU 

program. Preprocessor definitions are extensively used for that purpose. This approach allows 

to eliminate most branches and switch operators inside kernels, which slow the code down a 

lot, and to use inner loops with constant range, which are more efficiently unrolled by the 

compiler.  

Finally, to improve reliability, each OpenCL kernel is equipped with a consistency check 

that compares results of its CPU counterpart ensuring that there is no discrepancy. Before 

running any simulation on GPUs, each kernel used for this particular configuration of the 

numerical method is tested against its CPU version. Then, several timesteps are performed 

with both CPU and OpenCL versions separately, and consistency of results of these full 

timesteps is checked. This automatic testing at the initialization stage ensures consistency of 

the CPU and OpenCL versions.  

The QA procedure has been modified accordingly. The set of QA tests has been replicated 

in order to ensure consistency of the baseline “playground” version, the “business-lunch” 

version and the OpenCL version. In doing so, results of all three versions are compared within 

QA procedure.  

Multi-GPU parallelization relies on the same infrastructure for MPI communications on 

the CPU side of the code. MPI exchanges have been supplemented with intranode data 

transfers between the CPU and devices. Of course, the overlap of computations and 

communications is used in order to hide the communication overhead. This overlap speeds up 

multi-GPU execution significantly, especially in the case of an implicit Newton-based 

scheme, where rather fast and computationally cheap SpMV operations in the linear solver 

require frequent halo updates.  

The scalability of the multi-GPU version (or multi-accelerator, since it’s a portable 

implementation) is principally unchanged compared to the baseline version for CPUs. It can 

potentially use hundreds of devices efficiently as well.  

The OpenCL version includes the set of numerical schemes EBR-LO, EBR-3, EBR-5, 

EBR-WENO-LO, EBR-WENO-3, EBR-WENO-5, Riemann solvers, including Roe [13] with 

the Turkel preconditioner [14] for low-Mach flows, our simplified method for viscous fluxes 

[12], the set of RANS, LES models and hybrid approaches of the DES family (including 

IDDES [10]), explicit Runge–Kutta and implicit BDF1, BDF2 schemes, the preconditioned 

BiCGSTAB solver [15].   

6 HETEROGENEOUS EXECUTION ON CPU AND GPU 

The use of CPUs and GPUs on hybrid cluster nodes, so-called co-execution, is 

implemented by means of multilevel decomposition and spawning one MPI process per 

device, either CPU or GPU. This approach allows to engage efficiently both kinds of devices 

with minimal changes in the code. The changes mainly consist in multilevel partitioning with 

empirically defined weights of second-level subdomains according to the actual performance 

ratio between devices. Then, at the beginning of the heterogeneous execution, MPI processes 

running on the same node are grouped together and their roles are distributed according to 

their local rank in the subgroup of the node. This approach turned out to be no less effective, 

but more convenient than our previous approach using one MPI process per node. Formerly, 
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multiple devices of a hybrid node, CPUs and GPUs, were engaged by one MPI process [6, 7]. 

The roles were distributed among OpenMP threads: some threads computed on CPU cores, 

some managed the GPU workload and communications. Apart from the higher complexity, 

another minor drawback is that a single MPI process can hardly saturate the available network 

bandwidth of multiple network adapters, which are usually 2 or 4 on a modern cluster node. 

In the present work, multiple MPI processes per hybrid node are placed, the CPU-only and 

GPU-only roles are distributed among MPI processes, as shown in Figure 4. Processes with 

the GPU-only role occupy its GPU and a few CPU cores, the rest of the cores are given to the 

CPU-only processes, which spawn OpenMP computing threads on their cores. On multi-

socket nodes, one CPU-only MPI process is placed at each socket to avoid the NUMA factor 

between sockets. 

 

 
Figure 4: Heterogeneous execution on CPUs and GPUs of a hybrid node spawning one MPI process per device 

It must be noted, that this co-execution is not used in practice on our local equipment 

(described further), because the GPUs are too powerful compared to the CPUs (about 7:1 for 

NVIDIA V100 vs 16-core Intel Xeon Gold), therefore, CPUs are used for parallel processing 

of the data exchange of devices and have no time to compute. On former equipment, the 

performance ratio was about 2:1 (NVIDIA K10 vs 14-core Intel Xeon v3), hence the 

heterogeneous mode was much more beneficial. Thus, the co-execution mode is waiting for 

better times when CPUs will take revenge and regain a better performance ratio with GPUs. 

7 PERFORMANCE IN REAL APPLICATIONS 

The only experience gained with the new version for GPUs is running urgent industry-

oriented simulations on our small hybrid cluster K-60. Its hybrid nodes are equipped with two 

16-core CPUs Intel Xeon Gold 6142 (120 GB/s) and four GPUs NVIDIA V100 (32 GB, 

900GB/s, PCIe-4). The nodes are interconnected with the InfiniBand FDR network (2 

network cards per node). 

The performance has been evaluated only for the primary “business-lunch” configuration: 

the EBR5 scheme in space, the implicit BDF2 scheme in time, turbulence modelling IDDES 

[10] (with the alternative LES model [16] and the subgrid scale [17]), mixed accuracy. The 
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most important metric for us from a practical point of view is the actual performance ratio on 

GPUs vs CPUs. In other words, it is the equivalent of how many CPU cores we get from one 

GPU device. The memory bandwidth ratio 7.5:1 suggests the expected speedup. It appeared 

that the actual speedup varies around this value depending on the mesh size: the bigger is the 

mesh, the higher is the speedup.  

For a test mesh of about 1 million nodes (flow around a sphere) the performance ratio is 

7.4:1, which means that one GPU is equivalent to 119 CPU cores. All 4 GPUs of one hybrid 

node give us performance of 374 CPU cores. This corresponds to about 80% efficiency, 

which would be unachievable for such a small mesh without the overlap of computations and 

communications. However, notable degradation of performance indicates that the computing 

load is insufficient to fully hide communications. Similarly, for a twice bigger mesh (flow 

around a rotor blade) we get the ratio 8.7:1, so one GPU gives us 139 CPU cores. 4 devices 

perform as 491 CPU cores, showing parallel efficiency about 90%.  

Finally, the performance is compared for a real application with a mesh of 83 million 

nodes. A flow around the low-pressure turbine cascade T106C [18] was considered. 3 hybrid 

nodes with 4 V100 GPUs each (the minimal number of devices needed to fit in memory) gave 

us performance of about 1500 CPU cores (nearly 125 CPU cores from 1 GPU). 

Regarding the simulation, its cost is about ~2.7K CPU core hours per convective time unit. 

The goal of these simulations was to reproduce and study the effect of increasing the total 

pressure loss as the Reynolds number decreases (ranging from 500000 to 90000). These scale-

resolving simulations were needed as reference solutions to tune the RANS models (with 

consideration of laminar-turbulent transition) for simulation of a real low-pressure turbine of a 

jet engine. Examples of instantaneous flow fields and some plots are shown in Figure 5. 

 

         

 

Figure 5: Examples of instantaneous flow fields (density gradient and Q-criterion, top) and some resulting plots 

for one of the Reynolds numbers (Re=200000, bottom) 
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A volume synthetic turbulence generator (based on [19]) is used upstream the blade in 

order to correctly reproduce the physically realistic flow conditions observed in the reference 

experimental study [18]. Details about these simulations will be presented in a future work by 

Alexey Duben et al. 

Further tests with jet flows from the former numerical study [20] and the currently running 

scale-resolving simulations of helicopter main rotors on meshes with up to 95 million nodes 

using up to 20 GPUs have confirmed the performance ratio reported above. 

8 CONCLUSIONS 

We are happy with the obtained performance on GPUs. In multi-GPU and multi-node 

simulations, one GPU device NVIDIA V100 gives us the equivalent of roughly 120-140 cores 

of a modern processor. There is still potential for performance improvement of around 20-

30%. In particular, boundary conditions need more upgrade and processing of results can be 

further improved. But the main problem is the limited GPU memory. We used to have at least 

1 GB per core when running on CPUs. With GPUs, it is now about 4 times less considering 

the performance ratio. We had to significantly reduce memory consumption using mixed 

accuracy. And still one device with 32 GB can take only 6–7 million mesh nodes. It seems not 

so much for something that outperforms a hundred CPU cores. 

 In summary, the “business lunch” version with combined functions and mixed accuracy is 

about twice as fast on CPUs as the base version. The use of mixed accuracy speeds up the 

code about 1.6 – 1.7 times and saves memory nearly twice with no effect on accuracy of 

results, as shown in [12]. The OpenCL version of the code gives significant acceleration, one 

GPU performs like 7-8 modern multicore CPUs, which is in good agreement with the 

memory bandwidth ratio between CPU and GPU. On the other hand, it has become more 

difficult to maintain the code and introduce changes. New modifications must pass through 

the three versions of code: the full version for CPUs (the so-called “playground”), the 

“business lunch” reduced version for resource-intensive simulations on CPUs, the OpenCL 

version for GPUs. However, the good thing is that the amount of the kernel code has been 

minimized. It fits 5 thousand lines so far, while the full version is about 200 thousand lines. 

Consistency between the three versions is ensured by an automated QA procedure that 

includes dozens of tests. 

Finally, several scale-resolving applications have proven robustness and performance of 

the heterogeneous version with the multilevel MPI+OpenMP+OpenCL parallelization. 
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