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Abstract. Flying insects are impressive creatures due in part to their small size and agile flight 
maneuvers. Additionally, butterflies can be highly efficient fliers, as evidenced by monarchs 
having the longest migration amongst insects. To begin uncovering the complex mechanisms 
enabling monarchs to migrate roughly 80 million times their average body length, high-fidelity 
modeling tools are required: These tools must consider the distinguishing features of monarchs 
– their low flapping frequency, high Reynolds number (amongst insects), large wings relative 
to their body, low wing loading, flexibility of their wings, and the highly coupled interplay 
between the instantaneous wing aerodynamics and dynamic body response. Many butterfly 
flight models to date have neglected the passive wing pitching arising from butterfly’s flexible 
wings. Here, we propose a framework that tightly couples the effects of all three physics solvers 
using a dynamic relaxation scheme. As such, the highly nonlinear interplay between fluid, body, 
and passive wing dynamics is efficiently accounted for in each time step. We apply the model 
to the free flight of monarch butterflies, resulting in stable motion for many periods without any 
controllers. 
 
1 INTRODUCTION 
 Flying insects have been the topic of study for many different disciplines in recent decades 
due to their small sizes and impressive aerial maneuverability [1]. Monarch butterflies stand 
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out amongst other insects due to their impressive migratory capabilities. In fact, the efficiency 
enabling their annual migration, which is the longest among insects, remains an unsolved 
mystery [2]. Like other insects, butterflies rely on flapping motions to generate lift which is 
enhanced due to several unsteady mechanisms [1,3–5]. They also have a large pair of flexible 
wings relative to their body [6] which flap at a low frequency f » 10 Hz compared to the flapping 
frequencies of hawkmoths » 26 Hz [7], bumblebees » 140 Hz [8], and fruit flies » 230 Hz [9]. 
As a potential result of these features, the body motion of monarchs is closely coupled to the 
instantaneous aerodynamics and wing dynamics, which may not be the case for smaller insects 
with higher flapping frequency. This close coupling is manifested as translational undulations 
in the butterfly flight trajectory and large body pitch rotations occurring at frequencies very 
close to the flapping wing motion.  
 Many high-fidelity frameworks have been developed to model butterflies and uncover their 
unique flight characteristics [10–24]. However, none of these frameworks include all of the 
following capabilities, which can be essential for modeling freely flying butterflies: i) high-
fidelity, unsteady aerodynamics at Reynolds numbers of O(103-4) to capture the insect-scale lift 
enhancing mechanisms; ii) multi-body dynamics of the wing-body system to capture the closely 
coupled interplay between body dynamics and wing aerodynamics iii) flexibility of the large 
wings to model the passively pitching wings; iv) strong coupling of all models to ensure 
numerical stability and efficiency of the fluid-structure-interaction (FSI); and v) anchoring of 
the coupled numerical model with experimental comparisons.  
 For example, none of the previous studies incorporate a strongly coupled wing flexibility 
model. Instead, one-way coupling of the aerodynamics, body dynamics, and passive pitch 
dynamics of the wing is often used, neglecting the two-way coupling effects. Additionally, 
many of the butterfly models [10,12,14–17] utilize an immersed boundary method to account 
for the no-slip condition on the moving wing surface. The accurate computation of the pressure 
on and vorticity near the wing surface is challenging using such methods at the Reynolds 
numbers relevant to butterflies. There have also been frameworks for tightly modeling the two-
way coupling of fluid and body dynamics of insects in free flight, but do not include any passive 
wing pitch modeling [22,23]. 
 The objective of this study is two-fold: i) first, we present a three-way tightly coupled 
numerical framework comprised of a high-fidelity 3D NS aerodynamics solver, a multi-body 
flight dynamics solver, and a torsional spring wing flexibility model; ii) we then apply 
experimentally measured monarch butterfly morphological parameters and kinematic inputs 
and compare the numerical results against the corresponding experimental results. We show 
that the high fidelity, tightly coupled model can generate flight trajectories that are qualitatively 
like those obtained for monarch butterflies in free flight. 

2 METHODOLOGY 
 We consider a model butterfly (Fig. 1) that is comprised of a body, abdomen, and left and 
right wings, where the fore- and hind wings are combined into single wings of zero thickness. 
The left and right wings, along with the abdomen, are capable of motion relative to the butterfly 
body via spherical joints that attach them to the body. This framework was previously used in 
[25] for prescribed body pitch and wing pitch motion. Here, we allow for the body pitch to 
evolve as an additional unknown degree of freedom [21]. The body dynamics framework is 
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summarized in Section 2.2.  
 We are interested in modeling the passive pitch of the monarch wings too assess their effect 
on the resulting body dynamics. As such, a torsional spring is located at the wing root (Fig. 1b), 
such that the wing can passively pitch in the chordwise direction, about the torsional axis. This 
flexibility model is reflective of the setup used for experimentally characterizing the 
aeromechanics of passive wing rotation in flapping flight [26]. Previous numerical frameworks 
have been developed around such a physical setup [8,27,28], but they have not included the 
effects of the body dynamics, since they investigated the passive pitch effects in a hovering 
flight mode. The passive wing pitch model with body-dynamics terms is described in Section 
2.3. 

 
Figure 1: a) Schematic of a butterfly in free-flight with the inertial axis frame  in black and body-fixed frame 

in blue. b) Representation of model with a cylindrical body and abdomen (gray), torsional spring along the ry 
axis, and example surface mesh of the right wing used in CFD calculations. 

 For the aerodynamic modeling, the forces and moments are solved for the right wing only 
and consider left-right symmetry of forces and moments about the longitudinal plane to account 
for the left wing’s aerodynamic contribution to the flight dynamics. The body and abdomen 
aerodynamic force calculations are neglected as they have been shown to be orders of 
magnitude less than the aerodynamic forces generated by the wings in forward flying butterflies 
[21]. Additionally, the body dynamics model includes the inertial effects of the left and right 
wings, body, and abdomen, as well as the aerodynamic force contributions of the left and right 
wings. The passive wing pitch dynamics include the aerodynamic and inertial forces of the 
wings, as well as the relative motion induced on the wings by the body motion. The strong 
coupling method is described in Section 2.4. 

2.1 Aerodynamic Modeling 
 To accurately account for the unsteady, low-Reynolds number flow dynamics associated 
with the flapping wings, we directly solve the three-dimensional incompressible Navier-Stokes 
equations given by 

   (1) 
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dynamic viscosity coefficient of the fluid, and  is the velocity field. These equations are 
solved using a well-validated structured, finite volume, pressure-based incompressible NS 
equation solver used extensively in flapping wing studies [29–32]. 

2.2 Multi-body Dynamics Modeling 
 To account for the coupling between the aerodynamics and body response, we use a multi-
body dynamics solver that has previously been employed for monarch butterfly flight dynamic 
analysis [25]. A full description of the model derivation is shown in our previous work [25]. To 
define the multi-body dynamics, the three-dimensional special orthogonal group is denoted by 

, where  is the identity matrix. The 

corresponding Lie algebra is  The hat map  is 
defined such that  for any . Next  denotes the i-th standard basis of 

 for an appropriate dimension n, e.g., . 

 
Figure 2: Right wing Euler angles: a) flapping φR, b) pitching θR and stroke plane β, c) deviation ψR. 

 Consider a flapping wing model that is composed of a body (combination of thorax and 
head), an abdomen, and two wings attached to the body (Fig. 1). Define an inertial frame 

, which is compatible to the NED (north-east-down) frame (Fig. 1a). The various 
components of the model are summarized as follows. 

• Body: The origin of the body-fixed frame  is defined at the mass center 
of the body. Its attitude is given by  and the position of the center of mass is 
given by  in . The kinematics of the attitude is , where  is the 
angular velocity of the body resolved in . The attitude of the body is defined as 

, where θB is the pitch angle of the body. 
• Right wing: Let  be the frame fixed to the right wing at its root. Let 

 be the stroke frame obtained by translating the origin of  to the center 

of the wing root and rotating it about  by . Let  be the fixed 

vector from the origin of  to that of . The attitude of the right wing relative to  
namely is described by 1-3-2 Euler angles  φR(t), θR(t), ψR(t) (Fig. 2) as 
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. 
• Left wing: Similarly, for the left wing,  

with the set of Euler angles  φL(t), θL(t), ψL(t), and for . 
• Abdomen: The abdomen is considered as a rigid body attached to the body via a 

spherical joint. The frame fixed to the abdomen is , and its attitude 

relative to the body is denoted by  with for . The attitude 
of the abdomen relative to the body is defined as . 

 The Euler-Lagrange equations of motion can be expressed as 

 . (2)  

where , Jg(ξ) is the inertia tensor for the complete flapping wing 

vehicle,  is the co-adjoint operator, Lg(ξ) represents the effects of the dependency of the 
inertia on the configuration, fa and fa are the aerodynamic and gravitational force and moment 
contributions, respectively, and fτ represents the control torque. The explicit expressions for 
the terms in the above equation are available in [25], where the present study considers the 
configuration for the prescribed flap and deviation angles of the wing as well as the abdomen 
angle: φR,L(t), ψR,L(t), θA. The pitch angles of the wing and body, θR,L and θB, as well as the 
position of the body center of mass x are the main solutions. 

2.3 Passive Wing Pitch Dynamics Modeling 
 Torsional springs are located at the root of the right and left wings, such that the 
corresponding torsional axes are aligned with ry and ly, respectively (as seen in Fig. 1b). The 
balance of the angular momentum in the rotating frame of the right wing  can be written as 

   (3) 
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The y-component of torque, resulting from evaluating this equation is 

   (4) 

where ,  and  due to the perpendiuclar axis theorem. The 

translational acceleration of the right wing in  is a result of the body translation and rotation 
and expressed as 

 .  (5) 

Similarly, the right wing rotational acceleration is related to the body dynamics in  as  

 . (6) 
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solving the body dynamics equations of motion, Eqn. (2). The ODE for the wing structural 
dynamics can then be expressed in terms of the body-dynamics as 

   (7) 
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each time step, the fluid, structural and flight dynamic equations of motion solvers are called 
one after the other until sufficient convergence on the displacements of the shared interface is 
met via inner FSI iterations before advancing to the next time step.  
 The schematic in Fig. 3 describes the details of the FSI scheme, where the states are the right 
wing pitch Euler angle  for the wing structural dynamics and the longitudinal body 

position and pitch angle  for the body dynamics. The time step iterations are 
denoted by n and the inner FSI iterations are denoted by k. To accelerate convergence, the 
Aitken relaxation method [33] is implemented. The FSI-coupling for partitioned domains can 
be summarized for the FSI-interface Γ as , where F Γ denotes the fluid 

solver, SΓ denotes the structural solver, and  is the displacement of the interface Γ at the 

next time level n+1, and  is the displacement output from the structural solver. Time 
integration is achieved using a semi-implicit Newmark-Beta integration scheme. 
 

 
Figure 3: Tightly coupled FSI scheme for convergence between the flow field, body, and wing pitch dynamics. 

2.5 Validation of Coupled Aerodynamic and Passive Wing Pitch Without Body Motion 
 The coupling between the unsteady wing aerodynamics and torsional spring dynamics is 
validated by comparing the passive pitch wing angle and the lift against two data from the 
literature: experimental measurements by Whitney and Wood [26] and numerical solutions by 
Kolomenskiy et al. [8]. Here, we compare the present numerical framework to the ‘short hinge’ 
case of Whitney and Wood [26], where no body motion is imposed. In this case the body-related 
velocities and accelerations in Eqn. (7) become zero. There is a close agreement between the 
three solutions as seen in Fig. 4. 
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Figure 4: a) Passive pitch θ angle and b) lift for the present framework compared to [8,26]. 

2.6 Experimental Data Reduction of Climbing Monarchs 
 Freely flying monarch butterflies were tracked using a VICON motion tracking system 
[25,34]. A sample butterfly with tracking markers and 3D reconstruction ca be found in Fig. 
5a,b. The resulting climbing trajectories of a single monarch can be found in Fig. 5c, which are 
used as reference cases for the numerical model results. The corresponding wing kinematics for 
the flapping and pitching of the nine trajectories, along with their ensemble average values 
(black) and Fourier representations (red dashed) can be found in Fig. 6. Similar time histories 
were also generated for the body and abdomen pitch values, θB and θA, respectively.  

 
Figure 5: a) Generic monarch with markers, b) 3D marker reconstruction, and c) climbing trajectories. 

 
Figure 6: a) Flapping and b) pitching angles from nine experimental recordings. 
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2.7 Model Inputs 
 The Fourier coefficients for wing flapping and deviation, along with the abdomen pitch angle 
were taken from the experimental data and applied to the monarch simulation. The additional 
kinematic and morphological inputs used for the simulations are found in Table 1. 

Table 1: Morphological and kinematics variables used for monarch simulations. 

Param. Description Value Units Param. Description Value Units 

f flapping 
frequency 

10.2 Hz mB body mass 0.22 mg 

β stroke plane 
angle 

25.4 deg mA  abdomen mass 25.39 deg 

l single 
wingspan 

5.2 cm mR right wing 
mass 

3.535 – 
3.725 

mg 

S single wing 
area 

15.2 cm2 κT torsional 
spring const. 

0.15 mN-m 

 
 The simulations were run with an FSI tolerance of 1´10-8 and an initial velocity of 

 m/s. All wing and body states were prescribed for the first 10 time steps 
before beginning the time integration of the body and wing equations of motion. 

3 RESULTS AND DISCUSSION 
 A design space was run around the nominal monarch values obtained and described in 
Section 2.6. The primary design variable is the wing mass mR. A change in the wing mass affects 
the total mass as well as the wing moments of inertia, which, in turn, have effects on both the 
body and wing dynamics. The wing mass mR was varied between 3.535 and 3.725 mg. 

3.1 Trajectories 
 Below are the resulting trajectories from the design space which varied the wing mass. 
Results for all cases can be found in Fig. 7a, where the case that most closely matches the 
experimental trajectories (mR=3.625 mg) is highlighted in red and plotted against the 
experimental measurements in Fig. 7b. It can be seen in Fig. 7b that the body undulation 
amplitude, frequency, and climb angle closely match those of the experiments. 

 
Figure 7: a) All trajectories and b) “best” trajectory for simulated monarch compared to experiments. 
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3.2 Forces and Passive Pitching Angles 
 There is very good agreement between the simulation and experiments with respect to the 
forces in the body frame (Fig. 8a,b), as well as the passive pitch angles of the wing and body 
(Fig. 8c,d). This indicates that model captures the necessary features for simulating dimensional 
monarch butterfly flight trajectories. Note that the simulation is only shown for six flapping 
cycles, after which a pitch instability results in a sever pitch down motion due to the open-loop 
nature of this simulation. 
 

 
Figure 8: a) Thrust, b) lift, c) passive right wing, and d) passive body pitching angles. 

3.3 Visualization of Flow Structures, Surface Pressure, and Flight Path 
 Example flow field visualization is shown in Fig. 9 at the upstroke position at t/T = 0.5 in 
Fig. 9a and the downstroke position, starting a new flapping period at t/T = 3.0 in Fig. 9b. The 
trajectory of the simulation is shown in red which tracks the time history of the body CG. This 
is compared to the black traces which are the experimental measurements of the CG location 
of the monarch butterfly across nine trials (Section 2.6). There is close agreement in both the 
flight path angle and amplitude of the body undulations between the simulation and experiment, 
as also demonstrated in Fig. 7. The vortex dynamics are visualized by the iso-Q surfaces which 
are colored by the vorticity magnitude along ry. Additionally, the wing surfaces are colored by 
the coefficient of pressure, revealing that the coherent large-scale vortices generate low pressure 
regions and pressure gradients on the wing surface. 
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Figure 9: Visualization of vortical structures and surface pressure coefficient at a) t/T = 0.5 and b) 3.0.  

4 CONCLUSIONS 
- A three-way strongly coupled framework has been established for modeling the 

passive wing and body pitch of freely flying monarch butterflies. 
- The model tightly couples unsteady NS aerodynamic solutions to a multi-body 

dynamics solver and a Newton-Euler-based passive wing pitch dynamics solver. 
- Good agreement is found between numerical simulations and experimental 

measurements for a climbing monarch butterfly with passive wing pitch. 
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