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Abstract

This work presents a general formulation and implementation in solid-shell
elements of the re�ned zigzag theory and the trigonometric shear deformation
theory in an uni�ed way. The model thus conceived is aimed for use in the
analysis, design and veri�cation of structures made of composite materials,
in which shear strains have a signi�cant prevalence. The re�ned zigzag the-
ory can deal with composite laminates economically, adding only two nodal
degrees of freedom, with very good accuracy. It assumes that the in-plane
displacements have a piece-wise linear shape across the thickness depending
on the shear sti�ness of each composite layer. The trigonometric theory as-
sumes a cosine variation of the transverse shear strain. A modi�cation of
this theory is presented in this paper allowing its implementation with C0

approximation functions. Two existing elements are considered, an eight-
node tri-linear hexahedron and a six-node triangular prism. Both elements
use a modi�ed right Cauchy-Green deformation tensor C̄ where �ve of its
six components are linearly interpolated from values computed at the top
and bottom surfaces of the element. The sixth component is computed at
the center of the element and it is enhanced with an additional degree of
freedom. This basic kinematic is improved with a hierarchical �eld of in-
plane displacement expressed in convective coordinates. The objective of
this approach is to have a simple and e�cient �nite element formulation
to analyze composite laminates under large displacements and rotations but
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small elastic strains. The assumed natural strain technique is used to prevent
transverse shear locking. An analytic through-the-thickness integration and
one point integration on the shell plane is used requiring hourglass stabiliza-
tion for the hexahedral element. Several examples are considered on the one
hand to compare with analytical static solutions of plates, and on the other
hand to observe natural frequencies, buckling loads and the non-linear large
displacement behavior in double curved shells. The results obtained are in a
very good agreement with the targets used.

Keywords: Solid-shell, Transverse shear, Composite laminate, Large
displacements.

1. Introduction

The development and use of solid-shell elements have notably increased
in the last decade. Particularly by the use of enhanced assumed strain (EAS)
techniques in elements with reduced integration on the shell plane (8-node el-
ements). The solid-shell elements have important advantages compared with
shell elements as they allow to use three-dimensional constitutive relations, to
get rid of rotational degrees of freedom, to modelize geometrical details and
boundary conditions more faithfully, to deal with contact conditions on the
real contact external surfaces, etc. Unfortunately this better geometric repre-
sentation involves a greater computational cost for the through-the-thickness
numerical integration. Solid-shell elements behave similar to shells elements
based on the �rst order shear deformation theory (FSDT) as they naturally
include the transverse shear strains, although the plane stress condition is
imposed in an integral sense and not point-wise as shell elements do.

According to the properties of the composite laminates and the expected
accuracy(in terms of stresses or displacements), di�erent approaches are con-
sidered for the structural analysis. For through-the-thickness highly hetero-
geneous laminates, the classical laminated plate theory (CLPT) leads to poor
predictions. Similar unacceptable results are obtained with the FSDT even
if suitable shear correction factors (SCF) are used to include the e�ect of
the through-the-thickness heterogeneity. The main drawbacks are derived
from the assumption of linear displacement across the thickness, which can-
not intrinsically satisfy the interlaminar shear stress continuity (IC) and the
surface conditions prescribed by the equilibrium equations [6]. The CLPT
and FSDT are only advisable when the length-to-thickness ratio is high and
global structural responses are required [20, 22]. A further improvement in
this direction comes from the higher order transverse shear theories (HOT)
that belong, as well as CLPT and FSDT, to the so-called equivalent single
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layer theories (ESL). In these theories, the in-plane displacements are suit-
able smooth functions of the transverse coordinate, with the number of the
published shear shape functions assumption being large and varied (see for
instance [5, 16, 17, 19, 26, 31, 32]). HOT are more accurate than CLPT and
FSDT, but the continuity of the shear strains at interfaces leads to a discon-
tinuity in the shear stress distribution, and although they do not require in
principle the use of SCF, for highly heterogeneous laminates they lead to a
very sti� behavior.

The most suitable technique for the analysis of composite materials is
the use of three-dimensional solid �nite elements. However it becomes pro-
hibitively expensive as the number of layers in the laminate increase (it can be
as large as one hundred), in optimization analysis or for non-linear problems.
It is feasible to group multiple layers within one single layer with combined
properties in order to maintain the number of degrees of freedom (DOFs)
of the problem within manageable limits as suggested in [18]. The accu-
racy in transverse shear stresses can also be improved using hybrid elements
including stresses as additional DOFs [35].

Layer-wise approaches, in which the thickness of the laminate is divided
into a number of layers which may or may not coincide with the physical
number of layers, are more accurate than ESL theories. A through-the-
thickness approximation of the displacements at layer level is assumed. A
review of these techniques can be seen in [27]. This technique has the same
drawback of using three dimensional solid elements as the number of layers
increases.

For angle-ply laminates and those with a low order of heterogeneity one
can consider a smooth transverse shear variation across the thickness as pro-
posed by HOT including, for instance, the trigonometric shear deformation
theory (TSDT) [5, 17, 24, 25].

For sections with a high degree of heterogeneity, the analysis with solid
models and layer-wise approaches shows that the in-plane displacements pro-
�les are far from a smooth curve that could be approximated by a polynomial
of third order or higher. This has led to the so called zigzag theories where
the in-plane displacements functions are only Co continuous with a zigzag
pro�le, possibly with strong discontinuities in the derivatives (associated to
the transverse shear strain) to �t the IC of adjacent layers with shear modu-
lus that can di�er by several orders of magnitude. A review of the evolution
of these theories can be seen in [2]. More recently, a re�ned version of this
approach has been presented [28], where two hierarchical DOFs are added
to the �ve DOFs of the FSDT enhancing the linear through-the-thickness
interpolation. This approach leads to constant transverse shear stresses at
each layer (i.e. discontinuous) as they are computed from the constitutive
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equations; however it allows dealing with clamped boundary conditions, a
limitation of the previous zigzag theories in which it is based on.

This re�ned zigzag theory (RZT), that makes the use of SCF unneces-
sary, has been implemented in 2D beam �nite elements [12, 23, 3, 21], in
�at plate �nite elements [28, 4, 13, 34, 1] where a very good approxima-
tion to the in-plane displacements has been reported, in shell �nite elements
with linear kinematics [33]and with large displacements and small strains [8].
The piece-wise constant transverse shear stresses calculated directly from
the computed strains and the constitutive relations for each layer show fre-
quently a poor approximation. An accurate evaluation of shear stresses re-
quires the through-the-thickness integration of the in-plane equilibrium equa-
tions, which involves ad hoc schemes for the computation of the derivatives
of the in-plane stresses between �nite elements. To avoid the a posteriori

integration of the equilibrium conditions and to improve the predicting ca-
pabilities of the RZT, a mixed approach has been developed for beams with
linear kinematics[30]. Based on the latter a so denoted RZTm(3,2) has been

developed for beams[15], where the mixed approach is combined with im-
provements in both the in-plane and transverse displacements interpolation.
Smeared quadratic and cubic terms are added to the piece-wise linear zigzag
interpolation that meets the stress boundary conditions at external surfaces
while a quadratic interpolation of the transverse displacement is included.
An extension to �at plates of the mixed approach, considering two sepa-
rate states of cylindrical bending, has been presented in [14]. Such mixed
approach is not yet available for general double-curved shells.

In this paper a general formulation for the mechanical analysis of com-
posite laminated structures is proposed. The model employs solid-shell �nite
elements with large displacements and considers di�erent transverse shear
strains approximations in a uni�ed way. The elements considered are a tri-
linear 8-node hexahedron[9] and a 6-node triangular prism[7] in which two
re�ned zigzag approaches (RZT), and a HOT (TSDT) are implemented. To
attain this purpose the TSDT kinematic is modi�ed and suited to work with
FSDT-shell and solid-shell �nite elements. In addition, this modi�cation al-
lows to unify the general formulation presented in this paper. The scope of
this work is restricted to small elastic strains but large displacements and
rotations.

An outline of this paper is as follows. Next section provides a short de-
scription of the formulation of the solid-shell elements considered. Then the
additional displacement �elds and the associated strains are introduced. Re-
sulting elasticity matrices for the new generalized stress and strain measures
are then evaluated. Several examples are presented in Section 5 to show the
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very good correlation with theoretical results, with shell models and with 3D
solid discretizations. Finally some conclusions are summarized.

2. Solid-Shell Elements

Two prismatic solid-shell elements are considered, namely a triangular
(NN = 6) and a quadrilateral (NN = 8) based one. The original and de-
formed geometries of the element are described by the standard isoparametric
approximations [36].

x (ξ) =
NN∑
I=1

N I (ξ) xI =
NN∑
I=1

N I (ξ)
(
XI + uI

)
(1)

where XI , xI and uI are the original coordinates, the present coordinates and
the displacements of node I respectively. The shape functions N I (ξ) are the
usual Lagrangian interpolation functions in terms of the local coordinates
ξ = (ξ, η, ζ) of the corresponding master element (ξI =

(
ξI , ηI , ζI

)
are the

coordinates of node I of the master element in the parametric space)

• for the 8-node brick element

N I (ξ) =
1

8

(
1 + ξξI

) (
1 + ηηI

) (
1 + ζζI

)
(2)

• for the 6 node prism element the in-plane interpolation uses area coor-
dinates (ξ1, ξ2, ξ3) = (ξ, η, 1− ξ − η) instead

N I (ξ) =
1

2
(1− ζ) ξI I = 1..3 (3)

N I (ξ) =
1

2
(1 + ζ) ξI−3 I = 4..6 (4)

Following a standard approach, at each point of interest the Cartesian
derivatives are computed using the Jacobian matrix

J =
∂X

∂ξ
= X,ξ (5)

N I
,X = J−1 N I

,ξ (6)

At each element center a local Cartesian system is de�ned with the �rst
two axes in the plane tangent to the shell mid-surface, that may coincide
with principal directions of the laminate or any other convenient condition
(see Figure 2)

R = [t1, t2, t3] (7)
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such that Cartesian derivatives with respect to this local system (Y) are

N I
,Y = RT N I

,X (8)

that allows to compute the deformation gradient F in terms of the present
nodal coordinates (Latin indices i, j = 1..3)

Fij =
NN∑
I=1

N I
,Yj
xIi (9)

and the components of the right Cauchy-Green tensor C

Cij = FkiFkj (10)

from which the Green-Lagrange strain tensor can be computed as

Eij =
1

2
(Cij − δij) (11)

As explained below, a modi�ed version of tensor C is computed using
assumed strain techniques that in one case include an additional DOF α,
leading to an improved tensor C̄. The equilibrium equations to solve (weak
formulation) for large displacements are of the form:

g1 (u, α) =

∫
Vo

1

2
S
(
C̄
)

: δuC̄ dV0 + gext = 0 (12)

g2 (u, α) =

∫
Vo

1

2
S
(
C̄
)

: δαC̄ dV0 = 0 (13)

where S is the second Piola-Kirchho� stress tensor. The second equation is
solved at element level and allows to condense the additional DOF α in the
solution scheme.

2.1. Improvements of the standard elements

To use these solid elements in large-displacements shell problems their
formulation must be substantially improved. In the sequel a modi�ed right
Cauchy-Green C̄ tensor is introduced where its components, as well as the
components of the deformation gradient, are all written in the local system
de�ned in (7).

The discretization process of a laminate with solid elements involves two
steps: a) a discretization of the shell middle surface with triangles or quadri-
laterals, b) a discretization in the thickness direction with one or more solid
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elements from the element de�ned on the middle surface. It will be assumed
that the element connectivities are introduced with the �rst local nodes 1
to NF (= NN/2) associated with the lower surface and the last NF nodes
are above the �rst ones in the thickness direction at a distance equal to the
laminate thickness or a fraction of it in case more than one element are used.
In this way the surface normal direction is practically coincident with the
third component t3 of local system de�ned in (7) (see Figures 1-2).

As the strain measure considered above for the solid element is de�ned
in term of the right Cauchy-Green tensor, an interesting possibility is to
modify the components of C (or E) directly associated to the behavior to be
improved. Distinguishing each component of C with a superscript

C =

 Cm
11 Cm

12 Cs
13

Cm
21 Cm

22 Cs
23

Cs
31 Cs

32 Ct
33

 (14)

where the components with an index m are components which mainly in�u-
ence the in-plane behavior, those with an index s are mainly associated with
the transverse shear behavior, while index t indicates the component associ-
ated with the transverse normal strain. This allows to split the deformation
tensor into three parts

C = Cm + Cs + Ct (15)

=
2∑

α=1

2∑
β=1

Cm
αβt

α ⊗ tβ +
2∑

α=1

Cs
α3

(
tα ⊗ t3 + t3 ⊗ tα

)
+ Ct

33t
3 ⊗ t3

2.2. In-plane behavior

The membrane and bending behavior are de�ned in terms of the in-plane
components of C computed at the center of the lower and upper surfaces.
The values at the center of each face f are calculated as the weighted average
of the values computed at each mid-side point of the face (Greek indices
α, β = 1..2):

C̄f
aβ =

1

Af

NF∑
K=1

JK CK
αβ

NF∑
K=1

JK = Af (16)

where JK is the Jacobian determinant at each mid-side point K. Figure 1
shows the sampling points K1 = 1..NF at the bottom face (f 1) and sampling
points K2 = 1..NF for the upper face (f 2) for both element types. This
average approximation of the �rst fundamental form of each face surface
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may be seen as an assumed strain approach. The in-plane components of the
Green-Lagrange strain tensor at the face center can be written as

Ēαβ =
1

2

1

Af

NF∑
K=1

JK
[
CK
αβ − oCK

αβ

]
(17)

=
1

2

(
C̄αβ − δαβ

)
(18)

with δαβ the Kronecker delta and the left index �o� denotes that is computed
at the original con�guration. The in-plane components of the right Cauchy-
Green tensor at each face are linearly interpolated across the thickness:

C̄m
αβ (ζ) =

1

2
(1− ζ) C̄1

αβ +
1

2
(1 + ζ) C̄2

αβ = L1 C̄1
αβ + L2 C̄2

αβ (19)

The associated tangent matrix B̄f
m relating tensor components increments

with displacement increments δu stems from:

δ

 1
2
C̄11

1
2
C̄22

C̄12

 = L1 δ

 1
2
C̄1

11
1
2
C̄1

22

C̄1
12

+ L2

 1
2
C̄2

11
1
2
C̄2

22

C̄2
12

 = δ

 Ē11

Ē22

2Ē12

 (20)

and

δ

 1
2
C̄f

11
1
2
C̄f

22

C̄f
12

 =
1

Af

NF∑
K=1

JK

NF∑
J=1

 fK1 N
J
,1

fK2 N
J
,2(

fK1 N
J
,2 + fK2 N

J
,1

)
 δuJ = B̄f

mδu
f
e (21)

where the vector δufe includes the nodes of the face f (lower or upper) only.
Then we can write as follows[

B̄m

]
3×(3NN)

=
[
L1B̄1

m L2B̄2
m

]
(22)

Note that each matrix is associated with a di�erent set of nodes, as matrix
B̄1
m (B̄2

m) multiplies only DOFs of the nodes in the lower (upper) face.
Furthermore, assuming a constant Jacobian determinant across the thick-

ness (that strictly requires the same discretization of both lower and upper
surface and a constant thickness), and comparing with the strain measures
of shell theories, it is possible to compute the Green-Lagrange strain tensor
at the middle surface and the changes of curvatures as

Em =
1

2

(
Ē1
f + Ē2

f

)
(23)

χb =
1

h

(
Ē2
f − Ē1

f

)
(24)
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that allows to write the in-plane strains across the thickness as (with z ∈[
−h

2
,+h

2

]
the local Cartesian coordinate in the normal direction):

Ē (z) = Em + zχb (25)

while the associated tangent matrices can respectively be written as (keep in
mind that each B̄f

m is associated to a di�erent set of DOFs):

B̄m =
1

2

[
B̄1
m, B̄2

m

]
(26)

B̄b =
1

h

[
−B̄1

m, B̄2
m

]
(27)

The numerical integration is performed with a single point in the shell
plane, this requires an stabilization scheme for the hexahedral element. Here
we will follow a similar strategy to that proposed in [10] as described in [9].

2.3. Transverse shear strains

To approximate the components most relevant to the transverse shear, an
assumed natural strain (ANS) approach is used for each (upper and lower)
face. A linear interpolation in natural coordinates of mixed (natural in the
plane and local Cartesian in the normal direction) strains is adopted. Mid-
side points are used as sampling points where the tangent-to-the-side shear
strain components are computed. More details can be found in [7] for the
6-node prism element and in [9] for the hexahedron. The interpolations may
be written at each face as:

[
Cξ3
Cη3

]
= P (ξ, η) c̃ = P0 c̃ + PH (ξ, η) c̃ (28)

where c̃ gathers the shear strains at the sampling points and P are the
linear (in terms of natural coordinates) interpolation polynomials. These
polynomials P are evaluated at the center of each face for the numerical
integration (P 0) and the resulting strains are linearly interpolated across the
thickness. The di�erence (P − P0 = PH) is used for hourglass stabilization
purposes in the case of the hexahedron. The interpolated components in (28)
allows to write

C̄s = Cξ3
(
tξ ⊗ t3 + t3 ⊗ tξ

)
+ Cη3

(
tη ⊗ t3 + t3 ⊗ tη

)
(29)

where
[

tξ tη t3
]
are the dual base vectors of the local mixed triad[

tξ tη t3
]

=
[
∂X
∂ξ

∂X
∂η

∂X
∂y3

]
that allows to compute the modi�ed (improved)
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Cartesian components

C̄α3 = tα · C̄s · t3 = tα ·
[
Cξ3

(
tξ ⊗ t3 + t3 ⊗ tξ

)
+ Cη3

(
tη ⊗ t3 + t3 ⊗ tη

)]
· t3
(30)

where denoting by aji = ti · tj (with i = 1, 2, 3 and j = ξ, η, 3) we can write

C̄α3 = Cξ3

(
aξαa

3
3 + a31a

ξ
3

)
+ Cη3

(
aηαa

3
3 + a31a

3
η

)
= Cξ3a

ξ
α + Cη3a

η
α (31)

Finally using the condition a3i = δ3i we have[
C̄13

C̄23

]
=

[
aξ1 aη1
aξ2 aη2

] [
Cξ3
Cη3

]
= J−1

p

[
Cξ3
Cη3

]
(32)

where J−1
p is the inverse of the Jacobian matrix of the isoparametric inter-

polation restricted to the tangent plane in each face. Then these values are
interpolated across the thickness at the element axis.

C̄s = L1 C̄s1 + L2 C̄s2 (33)

where C̄sf results from (32) computed at face f .

2.4. Transverse normal strain

To avoid numerical locking due to the Poisson e�ect (transverse normal
strain due to in-plane strains) an enhanced assumed strain (EAS) approach
is considered. Note �rst that at the element center the component CC

33 can
be computed from

fC3 =
NN∑
I=1

N IC
,3 xI (34)

then the enhanced version is de�ned here as:

C̄33 = fC3 · fC3 + 2αz = CC
33 + 2αz (35)

For the linear interpolation (1) the transverse component CC
33 is constant

in the normal direction. With the enhanced version

Ē33 (z) =
1

2

(
C̄33 − 1

)
= EC

33 + αz (36)

The variation of this Green-Lagrange strain component is

δĒ33 =
1

2
δC̄33 = δfC3 · fC3 + zδα

=
NN∑
I=1

N I
,3f

C
3 + zδα = BC

3 δue + zδα (37)
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where N I
,3 = ∂NI

∂Y3
are the shape functions derivatives with respect to the

shell normal coordinate computed at the element center, fC3 = ∂x
∂Y3
|ξ=0 is the

deformation gradient component in the normal direction also computed at
the element center and δue gathers the displacements of the NN nodes of

the element (i.e. [δue]
T =

{[
δuf1e

]T
,
[
δuf2e

]T}
).

Note that for a �at plate with linear kinematics, equation (36) can be
seen as

Ē33 (z) = E0
33 + αz =

∂uz
∂z

=
uTz − uBz

h
+ αz =

∂uz
∂z

(38)

where uTz and uBz are the normal displacement at the top and bottom surface
respectively. This expression can be integrated across the thickness leading
to

uz (z) = uBz +

∫ z

−h/2

(
uTz − uBz

h
+ αz

)
dz

= uBz
1

2

(
1− 2z

h

)
+ uTz

1

2

(
1 +

2z

h

)
− αh2

8

[
1−

(
2z

h

)2
]

(39)

that allows to interpret the EAS parameter α as an element-wise (non-
conforming) hierarchical DOF ∆uz = −αh2

8
at the element center.

3. Additional displacement �eld

The above described elements have a linear variation across the thickness
of all the strain components. To enhance such interpolation, an additional
(hierarchical) displacement vector �eld is included. These additional dis-
placements are introduced in the local convective coordinate system with
components in the tangent plane (Y1, Y2) only, namely[

ua1 (Y1, Y2, Y3)
ua2 (Y1, Y2, Y3)

]
=

NF∑
I=1

N I (Y1, Y2)

[
φ1 (Y3)

φ2 (Y3)

] [
ψI1
ψI2

]

ua (Y1, Y2, Y3) =
NF∑
I=1

N I (Y1, Y2)φ (Y3)ψ
I (40)

with the condition that the associated shape functions φα (z) are null at both
upper and lower surfaces

φ

(
±h

2

)
= 0 (41)
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The functions φα have units of length while the amplitude ψα is nondimen-
sional. Three options has been considered here for φ, two are associated
with re�ned zigzag theories and the third one with the trigonometric shear
deformation theory. The RZT splits the transverse shear stresses into a dis-
continuous and a continuous part

τ kαz (z) = Gk
αzηα +Gk

αz

[(
1 + βkα

)
ψ1

]
= Gk

αzηα + τ̄ kαz (z) (42)

where ηα = γbα − ψα is a shear strain measure (with γbα the transverse shear
strain computed from the base displacements (1) alone) constant or linear
across the thickness (and thus leading to stress discontinuities between lay-
ers), while τ̄ kαz (z) is assumed continuous. The �rst option, denoted here by
RZT, is the approach in the original work or Tessler [28] where the slopes
βα = φα,z are assumed constant at each layer thus allowing to compute βkα
as a function of the shear elasticity modulus Gαz for each direction tα of the
composite laminate. Denoting by φkα = φα

(
zk
)
(with zk the coordinate of

the top of layer k, see Figure 3.a for an example), it can be found that:∫
h

βdz = φN − φ0 =
∑

βkαhk = 0 (43)

βkα =
φkα − φk−1

α

hk
=

h

Gk
αz

∑
hi
Giαz

− 1 (44)

φα (z) = φk−1
α + βkα

(
z − zk−1

)
zk−1 ≤ z ≤ zk (45)

It has been shown that this piece-wise linear approximation leads to very
good results for sandwich sections with large ratios between the Gk

αz of each
layer.

The second RZT approach, that will be denoted here by RZT(3), is due
to Iurlaro et al [15]. In this case the continuous τ̄ kαz (z) is additionally con-
strained to nullify at both external surfaces. These two additional conditions
are satis�ed by augmenting the piece-wise linear zigzag function with smeared
quadratic and cubic terms (see [15] for details):

φα (z) = ϕkα
(
zk−1

)
+ ρkα

(
z − zk−1

)
+ χ0z

2 + ω0z
3 zk−1 ≤ z ≤ zk (46)

ρkα =
ϕkα − ϕk−1

α

hk
(47)

The third option is a sinusoidal function that will be written as (φ1 = φ2

in this case):

φ (z) = h sin
(πz
h

)
− 2z (48)

β (z) = π cos
(πz
h

)
− 2 (49)
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Figure 3: Additional displacements. (a) φα function (b) total in-plane displacement Uα
(c) total shear strain γα

This approach may be associated to a modi�ed version of the TSDT.
The TSDT[32] pertains to HOT and in its original form requires C1 approx-
imations. For the uni�ed formulation proposed in this work, this approach is
modi�ed and rewritten considering the standard kinematics of FSDT and the
compatibility with TSDT. Such compatibility is achieved after equaling the
sum of shear strains and/or the displacements at free top and bottom layer
surfaces (see Appendix). This third function leads to a continuous transverse
shear strain that nulli�es at the external surfaces only if ηα vanishes.

None of the approximations ensures meeting of the IC condition, nor of
the stress boundary conditions at surfaces. In the RZT(3) approach both
conditions are satis�ed if the strain measure ηα vanishes. For homogeneous
sections the RZT functions as de�ned above are null but a simple technique
allows to obtain non-trivial functions[29]; in contrast the trigonometric ap-
proach is independent of the material. It must be noted that the implemen-
tation presented here allows to easily include other through the thickness
interpolation functions with a minimum cost of additional codi�cation.

Figure 3.a shows the di�erent φ functions considered here for a three
layer laminate, while 3.b-c show a possible con�guration of in-plane displace-
ments and shear strains resulting from the sum of the linear interpolation
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in (1) and the additional displacements in (40). Remind that the additional
displacements are only in the in-plane directions (Y1, Y2) of the convective
system and note that as they are hierarchical displacements they do not in-
terfere with rigid body motions. In contrast the base displacements are in
the global Cartesian system and must be kept in such system to preclude
problems with rigid body motions, especially if the focus is on geometrically
non-linear problems.

The additional displacements lead to additional strains in both in-plane
and transverse shear components as described next.

3.1. In-plane strains

The total in-plane strains (the expression below includes the transverse
normal strain E33 that has an important in�uence into the in-plane stresses)
results the sum of the di�erent contributions:


ε11
ε22
2ε12
ε33

 =


Ē11

Ē22

2Ē12

Ē33


z=0

+ z


χ11

χ22

2χ12

α

+


φ1ψ1,1

φ2ψ2,2

φ1ψ1,2 + φ2ψ2,1

0


= [14, z14,Φ]

 Em

χ
∇ψ


ε = Spεp (50)

Where the symbol εαβ has been used to denote the total strain, to emphasize
that it is assumed small and can be computed as the sum of the di�erent
contributions. Above 14 is the identity matrix of order 4 and the additional
strains have been expressed as the product of the matrix Φ and array ∇ψ
de�ned respectively by

Φ =


φ1 0 0 0
0 φ2 0 0
0 0 φ1 φ2

0 0 0 0

 ∇ψ =


ψ1,1

ψ2,2

ψ1,2

ψ2,1

 . (51)

Using for the additional in-plane strains a similar approximation to that
used for the original in-plane strains (Equation 16) the gradient ∇ψ is com-
puted at each mid-side point and is then averaged at the center

ψ̄α,β =
1

Af

NF∑
k=1

JK ψKα,β (52)
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such that the matrix relating incremental additional strains with incremental
additional displacements can be written as:

B̄I
φ =

1

Af

NF∑
K=1

JK


N I
,1

N I
,2

N I
,2

N,I1


K

(53)

that allows to de�ne additional stabilization strains, necessary for the hexa-
hedral element only:

ψKH1,2 = ψK1,2 − ψ̄1,2 (54)

3.2. Transverse shear strains

The total transverse shear strains are[
2ε13
2ε23

]
(z) =

[
C̄13

C̄23

]
+

[
β1ψ1

β2ψ2

]
=

[
12,

[
β1

β2

]] [
c̄s

ψ

]
= [12,β]

[
c̄s

ψ

]
γ (z) = Skt εt (55)

where 12 is the order 2 identity matrix and a diagonal matrix β has been
de�ned.

To avoid numerical locking, an ANS approach for ψ is considered, that
is almost identical to that used for Cs. The di�erences are that ψ does not
vary along z (such variation is implicit in β) and that the de�nition of the
component ψα is simpler than that of Cα3. Then tangent components of ψ
computed at each mid side point (middle surface) are linearly interpolated
as in (28).

4. Equivalent elasticity matrices and stress measures

For a linear elastic composite laminate the internal strain energy per unit
of middle surface can be written as a quadratic form of the generalized strains
de�ned in (50) and (55):

W =
1

2

∫
h

(ε · σ + γ · τ ) dz

=
1

2

∫
h

(
εTp STp DpSpεp + εTt STt DtStεt

)
dz (56)

=
1

2

∫
h

εTp
 13

z13

ΦT

Dp [13, z13,Φ] εp + εTt

[
12

β

]
Dt [12,β] εt

 dz

16



that allows to obtain conjugated generalized stresses. The constitutive ma-
trices Dp and Dt used above (that change from layer to layer) result from
a standard full 3D elastic relation split into in-plane (including transverse
normal strain) and transverse shear behavior. We can de�ne for the shell
in-plane components as follows

(
D̄p

)
12×12

=

∫
h

 Dp Dpz Dpφ
Dpz

2 Dpφz
sym. φTDpφ

 dz
=


(
D11
p

)
4×4

(
D12
p

)
4×4

(
D13
p

)
4×4(

D22
p

)
4×4

(
D23
p

)
4×4

sym.
(
D33
p

)
4×4

 (57)

Using the notation z̄k = 1
2

(
zk+1 + zk

)
and φ̄k = 1

2

(
φk+1 + φk

)
, these in-

tegrals for the RZT case (β constant in each layer k) result (with NL the
number of composite layers):

D̄11
p =

NL∑
k=1

Dk
phk D̄12

p =
NL∑
k=1

Dk
phkz̄k D̄13

p =
NL∑
k=1

Dk
pφ̄khk

D̄22
NL∑
k=1

Dk
p

(
z̄2k +

h2k
12

)
hk D̄23

p =
NL∑
k=1

Dk
p

[
φ̄kz̄k + βk

h2k
12

]
hk

D̄33
p =

NL∑
k=1

[
φ̄
T
kDk

pφ̄k +
(
βk
)T

Dk
pβ

kh
2
k

12

]
hk (58)

While for the transverse shear components(
D̄t

)
4×4

=

∫
h

[
Dt Dtβ
sym βDtβ

]
dz =

[
D11
t D12

t

sym D22
t

]
(59)

Where

D̄11
t =

NL∑
k=1

Dk
t hk D̄12

t =
NL∑
k=1

Dk
tβ

khk

(60)

D̄22
t =

NL∑
k=1

βkDk
tβ

khk

Thus the integrated forces and moments can be written as;[
(σp)12×1

(σt)4×1

]
16×1

=

[ (
D̄p

)
12×12

0

0
(
D̄t

)
4×4

]
16×16

[
(εp)12×1

(εt)4×1

]
16×1

(61)
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In a more detailed manner:
N
M
Mφ

Q
Qφ

 =


 D̄11

p D̄12
p D̄13

p

D̄22
p D̄23

p

sym D̄33
p

 0

0

[
D̄11
t D̄12

t

sym D̄22
t

]



Em

χ
∇ψ
c̄s

ψ

 (62)

To emphasize the relation between stresses and integrated forces, note
that N is:

N = D̄11
p Em + D̄12

p χ+ D̄13
p ∇ψ

=

∫
h

Dp (Em + zχ+ φ∇ψ) dz

=

∫
h

DpEdz =

∫
h

σpdz (63)

and that M is:

M = D̄21
p Em + D̄22

p χ+ D̄23
p ∇ψ

=

∫
h

Dpz (Em + zχ+ φ∇ψ) dz

=

∫
h

zDpEdz =

∫
h

zσpdz (64)

Note also that the �rst three components of N and M represent what
is usually understood as membrane forces and bending moments in shell
theories, while the fourth components in N and M do not appear in shell
theories based upon the plane stress hypothesis. N33 will be null if the plane
stress condition were point-wise met while the fourth component in M is the
balance equation for the internal DOF α of the EAS approach. Besides

Q = D̄11
t c̄s + D̄12

t ψ

=

∫
h

Dt (c̄s + βψ) dz =

∫
h

τdz (65)

represents the transverse shear forces.
The in-plane gradient of the additional displacements leads to additional

integrated moments

Mφ = D̄31
p Em + D̄32

p χ+ D̄33
p ∇ψ

=

∫
h

Dpφ
T
(
Em + zχ+ φk∇ψ

)
dz

=

∫
h

φTDpEdz =

∫
h

φTσpdz (66)
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while due to the out-of-plane gradient of the additional displacements, addi-
tional transverse shear forces also appear:

Qφ = D̄21
t c̄s + D̄22

t ψ

=

∫
h

βTDt (c̄s + βψ) dz =

∫
h

βTτdz (67)

It must be emphasized that the strain measures (Em,χ,∇ψ) are associ-
ated with the middle surface and are constant in the element (one in-plane
integration point is considered). But the transverse shear strains c̄s are lin-
ear across the thickness and although ψ are associated to the middle surface,
the di�erent slopes βkα at each layer lead to di�erent transverse shear strains
across the thickness, that is evidenced in the de�nition of matrix D̄IJ

t .

5. Examples

The examples below are mainly intended to show that the results of plate
cases converge to analytical or numerical results reported in the literature
for the RZT , i.e. the objective is to validate the implementation in solid-
shell �nite elements. They are not intended to assess the RZT by comparing
pro�les of displacements and stresses across the thickness of the laminate, as
this has already been extensively done by other authors. Besides, when non-
linear geometric analysis of sandwich curved shells is considered, comparisons
are made against numerical models discretized with solid �nite elements. In
that case those examples are intended to show that the deformed con�g-
urations are broadly similar in both models but no comparison of stresses
or displacements pro�les across the thickness of the laminate are intended.
The two solid-shell elements presented above are respectively denoted by SH

(hexahedron) and SP (triangular prism). For numerical comparisons, results
obtained with shell elements combined with the RZT as shown in [8] are
used, these are a four-node quadrilateral (denoted here as SQ) and a linearly
interpolated six-node triangle (denoted here as ST). Also the eight-node solid
element presented in [11], denoted here as S8, is used. This solid element
uses an ANS approach for the transverse shear strains that allows to con-
sider elements with a high aspect ratio between the in-plane and the normal
directions. Element S8 can then be used to model shell structures including
two or more elements across the thickness.

The transverse sections considered in the examples are mainly sandwich
laminates although a angle-ply laminate is also taken into account. So three
types of materials are involved, those to be used as external layers, those to be
used as the core of sandwich sections and an orthotropic lamina for angle-ply
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assemblies. Tables 1-2 show the properties of these material, that include four
sti� materials (1,2, 6 and 7) used as external walls of sandwich sections, four
soft materials (4, 5, 8 and 9) used as the core part of sandwich sections and
an orthotropic lamina (3). Three symmetric and two asymmetric sections are
considered. Table 3 shows the stacking sequence of the symmetric sandwich
sections, all of them with 5 layers, where α (in degrees) indicates the angle
of material direction 1 with local laminate direction 1. The Table 4 shows
the stacking sequence of the two asymmetric sections, a sandwich one made
with isotropic materials and an angle ply.

Mat E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

1 50 10 10 0.05 0.05 0.25 5 5 5

2 131 10.34 10.34 0.22 0.22 0.49 6.895 6.205 6.895

3 20 1.0 0.833 0.25 0.00 0.00 0.6 0.6 0.5

4 10−5 10−5 0.07585 0.01 0.01 0.01 0.0225 0.0225 0.0225

5 0.01 0.01 0.07585 0.01 0.01 0.01 0.0225 0.0225 0.0225

Table 1: Orthotropic material properties used in the laminates (EI and GIJ in GPa)

Mat E ν

6 730 0.25

7 219 0.25

8 0.00689 0.00

9 0.730 0.25

Table 2: Isotropic material properties used in the laminates (E in GPa)

Mat hk[%] α
1 5 0
1 5 90
4 80 0
1 5 90
1 5 0

Mat hk[%] α
1 5 0
1 5 90
5 80 0
1 5 90
1 5 0

Mat hk[%] α
2 4.1667 0
2 4.1666 90
6 83.334 0
2 4.1666 90
2 4.1667 0

(1) (2) (3)

Table 3: Symmetric laminates stacking sequence.

5.1. Cantilever beam under end point load

A simple cantilever beam under a point load is initially considered. Al-
though this is not the focus of this element, allows a detailed comparison of
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Mat hk[%]
6 10
9 80
7 10

Mat hk[%] α
3 25 0
3 25 30
3 25 -30
3 25 90

(4) (5)

Table 4: Asymmetric laminates stacking sequence.

the results obtained with an expensive solid model and the present formu-
lation. This example for a wide range of aspect ratios has been analyzed
in [21]. Here the geometric parameters considered are: length L = 200mm,
section width b = 40mm and thickness h = 20mm, while the applied load is
P = 20N . The section used is number 4, a three-layered asymmetric sand-
wich laminate (see Table 4), where the core is eight times thicker than each
face sheet. This example was chosen because the results obtained with beam
�nite elements including the RZT approach are in excellent agreement with
the analytical ones. In this case a solid �nite element model using element
S8 is used for comparison. It includes 20 equal elements along the length and
four elements for each layer leading to 240 elements and 546 nodes. All the
displacement DOFs are constrained at the root and, in order to avoid an ad

hoc distribution of the point load over the 26 nodes at the end section, all
the nodes at the free end are constrained to displace by the same value in the
normal direction (leading to uLz = 0.027888mm). For the present formulation
(RZT(3) is used), 20 equal elements are also considered in the discretization
and the same constraints of the solid model are applied at the root and at
the loaded end (uLz = 0.027877mm is obtained in this case). The di�erence in
the tip displacement is less than 0.04%. A detailed comparison of the results
from both models is presented for the section at mid span, i.e. far from both
boundaries. Figure 4.a shows a plot of the displacement pro�les across the
thickness. It can be seen that the axial displacements (u1) are practically
coincident. The average transverse displacements (uz) are di�erent. At the
beam axis the displacement obtained with the solid model is uS8z = 0.011234
while with the present element it is slightly less uSHz = 0.011216. For an eas-
ier comparison of the pro�les in Figure 4.a, the results obtained with the solid
model S8 are shifted −0.000018 to match the displacement of the SH model at
the beam axis. It can be seen that in doing so the pro�les are coincident. The
quadratic variation of the uSHz (z) is computed using equation (39). Figure
4.b plots the axial and transverse shear stresses. The axial stresses σ11 (z)
are almost coincident for both models. For the shear stress τ1z four curves
are plotted: a) S8-τ1z is the value obtained with the solid model, it must be
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Figure 4: Three-layer cantilever beam. (a) Displacements (b) Stresses

noted that the ANS of element S8 leads to constant shear stress across the
element thickness, for that reason, the same values appear at two di�erent
integration points; b) Int-τ1z is the value obtained integrating the equilibrium
equation in z direction from the axial stress SH-σ11 (Y1, z); c)SH-τ1z is the
value obtained consistently from the present element kinematics using the
constitutive equation at each layer; and d)SH-τ1zC is the latter's continuous
component τ̄ k1z (see equation 42). The excellent correlation between S8-τ1z
and Int-τ1z is a consequence of the excellent correlation in σ11. It is worth
noting that the continuous part SH-τ1zC is also coincident with those results.
As the whole RZT(3) formulation does not meet the boundary conditions at
the external surfaces, the curve SH-τ1z over predicts shear stresses at the
bottom layer and under predicts shear stresses at the top layer.

5.2. Simply supported square plate under sinusoidal load

The second example considered is a simple supported square plate under
sinusoidal load for which an analytical solution based on the FSDT plus
the RZT was given in [13]. The transverse section corresponds to sandwich
laminate 1 with a total thickness of t = 0.5m. The side of the square plate
is a = 10m so the aspect ratio is a/h = 20. The transverse load, applied
at the top surface, has a sinusoidal variation in both in-plane directions
with a maximum amplitude q0 = 1kPa at the center and null at the simple
supported sides.

One quarter of the plate is discretized due to double symmetry with the
center of the plate located at the origin of the coordinate system. The simply
supported boundary condition implies that the nodes on the upper surface
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Ref. SH+RZT SP+RZT SQ+RZT ST+RZT FSDT CLPT

uz 0.6742 0.6722 0.6738 0.6740 0.6752 0.2472 0.2350
uz[%] 100.00 99.70 99.94 99.97 100.14 36.67 34.85

Table 5: Simple supported square plate under sinusoidal load

(T ) have identical displacements to the nodes on the lower surface (B) but
with the opposite sign:

Boundary uB1 uB2 uBz uT1 uT2 uTz ψ1 ψ2

Y1 = 0 0.0 0.0 0.0
Y2 = 0 0.0 0.0 0.0
Y1 = a/2 −uB1 −uB2 −uBz 0.0
Y2 = a/2 −uB1 −uB2 −uBz 0.0

A structured mesh, with a uniform increment in both directions of ∆ =
0.15625m has been considered, that implies 33 nodes per side, 1089 nodes
over each surface and 1024 hexahedral 8-node elements (SH) or 2048 pris-
matic 6-node elements (SP) and 8259 degrees of freedom (DOFs). Due to the
sandwich-type properties of the laminate, the RZT interpolation has been
considered.

The normal displacement at the plate center indicated in the Reference
[13] is

uz (0, 0) = 0.1118× D11

a4
q0 = 0.6742mm

Table 5 shows the displacement of the central point (average of upper
and lower surface) obtained with both elements developed here and other
models for comparison purposes. The results show a very good correlation
between shell and solid-shell elements enhanced with the RZT kinematic in
both cases. Figure 5 illustrates the amplitude of the additional displacements
for the two solid-shell elements presented here.

5.3. Clamped square plate under uniform load

The same geometry of previous example but under uniform load q =
1KPa and clamped boundary was also considered. In this case the compari-
son is made against a �nite element model of standard 20-node solid elements
(S20) with a mesh of 16×16×9 elements (one element per layer for the outer
layers and �ve elements for the core). For the latter model, used as a refer-
ence, the displacement of the center of the plate is wS20max = 0.6936 (average
between bottom and top surfaces). The results in Table 6 show a very good
correlation between the solid, the solid-shell and shell models. Note the very
low values predicted by standard shell theories FSDT and CLPT.
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Figure 5: Amplitude of the additional displacement in Y1 direction (ψ1). (a) SH element
(b) SP element

S20 SH+RZT SP+RZT SQ+RZT ST+RZT FSDT CLPT

uz 0.6936 0.6881 0.6912 0.6916 0.6985 0.1134 0.0954
uz[%] 100.00 99.21 99.65 99.71 100.71 16.35 13.75

Table 6: Clamped square plate under uniform load

5.4. Natural frequencies of a clamped-free cylindrical panel

This example is intended to assess the importance of the additional dis-
placements for the global response of the structure when the section is an
angle-ply laminate. The geometry of the shallow cylindrical panel is shown
in Figure 6. The length is L = 300mm, the radius is R = 1000mm, and the
subtended angle is α = 0.2. The thickness of the panel is h = 10mm, leading
to an aspect ratio αR/h = 20. The panel is clamped along the curved sides
and free along the straight sides. The section considered is the asymmetric
four-layer angle-ply laminate 5 (see Table 4). It must be noted that lumped
mass matrices (with a mass density ρ = 2000 kg

m3 ) were considered in the anal-
ysis leading to di�erent rotatory inertia in shell and solid-shell models. For all
the models, the mid-surface is discretized with 60 elements along the cylinder
axis and 40 elements along the parallel. The other �nite element models used
for comparison are the shell element SQ with and without RZT and a solid
model including eight S8 elements across the thickness (2 elements per ply).
Table 7 shows the �rst twelve natural frequencies f for the di�erent numeri-
cal models beginning with the values obtained with the solid model (S8) fS8.
For an easier comparison the table is completed with the percentage di�er-

ences with respect to the solid model frequency, i.e. 100 ×
(

f
fS8
− 1
)
. The
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Figure 6: Clamped-free cylindrical panel

angle-ply laminate does no lead to high ratios between the shear modulus
of the di�erent layers as for sandwich shells (G13/G23 = 1.2 in this case).
That is why the shell sti�ness (and consequently the natural frequencies)
does no di�er very much between the alternative numerical models. The
percentage di�erences between present element and the solid model are gen-
erally not greater than the di�erences between the shell model and the solid
model. Finally the vibration modes associated with natural frequencies 9-12
are plotted in Figure 7, where the contour-�ll of the component along the
globalX3 = Z coordinate is also shown. The vibration modes obtained are
almost identical to those obtained with the solid model (not shown).

Mode S8 SQ+RZT SH+RZT SH+RZT3 SH+TRIG FSDT

1 42.12 0.776 0.450 0.499 0.331 0.714
2 45.24 0.401 0.328 0.101 -0.109 0.288
3 87.13 0.207 -0.580 -0.724 -0.763 -0.039
4 107.80 1.276 0.743 0.828 0.475 1.148
5 111.64 0.906 0.547 0.371 -0.004 0.729
6 146.49 0.791 -0.247 -0.599 -0.800 0.424
7 183.72 0.406 -1.415 -1.490 -1.401 -0.100
8 197.34 1.710 0.920 1.055 0.512 1.500
9 202.01 1.413 0.728 0.633 0.068 1.161
10 222.79 0.652 -1.301 -1.679 -1.711 0.031
11 234.68 1.330 0.009 -0.355 -0.762 0.877
12 294.60 1.140 -0.981 -1.563 -1.766 0.426

Table 7: Clamped-free cylindrical panel. Natural frequencies and percentage di�erences
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Figure 7: Clamped-free cylindrical panel. Vibration modes 9-12

5.5. Spherical sector with line loads

To test the present formulation in double curved shells with geometric
non-linearities, a simple spherical sector as shown in Figure 8 with radius
R = 10m and an angle α = 30o was analyzed. The applied loads are uniform
line loads parallel to the X −Y plane (see the orientation axis in the �gure),
outward along meridian A-A (+X) and C-C (−X) and inward along meridian
B-B (−Y ) and D-D (+Y ).

The section considered is number 2 with a total thickness t = 0.2m. The
reference line load q0 is 1MN/m. The �nite element discretization covers
one fourth of the geometry with 40 divisions in the parallel direction and 13
along the meridian, leading to 1230 nodes and 520 hexahedral elements or
1040 prismatic elements. In this case comparisons are made against a 3D
solid element model (S8) with the same surface discretization but 6 element
layers across the thickness.

The maximum inward displacement considered is 3m (30% of the radius).
Figure 9 plots the inward (larger) and outward displacements of the loaded
points of the free lower border (average between top and bottom surfaces).
The results obtained with solid elements (S8) are assumed as �target values�,
but the results obtained with shell elements (SQ with RZT) are also included
for comparison. The results obtained with the prismatic element including
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Figure 9: Spherical sector with line loads

the RZT kinematic (SP) show a very good correlation with those obtained
with both shell elements and solid elements. The hexahedral element includ-
ing the RZT kinematic (SH) results show a more �exible behavior that may
be due to the reduced integration.

5.6. Buckling of a cylindrical shell

This example is intended to study the stability of a clamped cylindrical
shell under axial and external pressure loads. The geometrical parameters of
the cylinder are radius R = 10m, length L = 20m and thickness t = 0.25m
while the transverse section is de�ned by the laminate 2 where the sti�er
direction is associated with the cylinder axis. Only one eighth of the total
cylinder has been discretized (one quadrant and half the length) enforcing
symmetry conditions on three sides and a clamped boundary condition at the
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remaining side. The objective of these assumptions, that arbitrary restrict
the bifurcation modes to these symmetries, is to have a manageable solid (S8)
�nite element model for comparison purposes. The discretization with SH

elements includes 5246 nodes and 2520 elements resulting from a structured
mesh with 60 equal divisions along the quadrant considered and 42 divisions
along half the cylinder length. As the transverse section is of the sandwich
type, the RZT interpolation is used for the additional in-plane DOFs. The
solid model used for comparison has the same discretization of the middle
surface and 7 elements across the thickness.

Table 8 shows the critical loads for both axial load and external pressure
for the di�erent numerical models. A very good correlation can be seen be-
tween the results obtained with the solid model, the shell model (SQ+RZT)
and the solid-shell models presented here. The Table also includes for refer-
ence the buckling loads obtained using the CLPT and the FSDT with the
isotropic shear factor 5/6.

Model Axial Load [MN/m] External Pressure [MPa]

S8 7.040 0.3888
SQ+RZT 7.093 0.3988
SH+RZT 6.983 0.4056
SP+RZT 7.221 0.4053
FSDT 20.529 0.6583
CLPT 20.614 0.6616

Table 8: Critical loads

Figure 10 shows the buckling modes due to axial load while Figure 11
shows those due to external pressure. It can be seen that not only the critical
loads are similar, but the buckling modes are also similar for the di�erent
models considered. In contrast the buckling modes obtained using the CLPT
or the FSDT (SCF=5/6) lead to di�erent buckling modes (not shown).

6. Conclusions

A general formulation for the mechanical analysis of composite laminated
structures with large displacements is proposed in this work. The model em-
ploys solid-shell �nite elements and considers the RZT and a modi�ed TSDT
in a uni�ed way. The elements considered are a tri-linear hexahedron and
a 6-node triangular prism. Both elements use as strain measure a modi�ed
right Cauchy-Green deformation tensor, where 5 (those associated with the
in-plane and transverse shear strains) of its 6 components are computed at
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(a) (b) (c)

Figure 10: Buckling mode under axial load (a) S8; (b) SH; (c) SQ

the center of both the lower and upper surfaces using assumed strain tech-
niques and are linearly interpolated across the element thickness. The sixth
component (transverse normal strain) is computed at the element center and
enhanced with an additional degree of freedom using the enhanced assumed
strain (EAS) technique.

The main aspects of the implementation are:

• The additional displacements are hierarchical displacement components
in a convective local systems de�ned over the shell middle surface.

• The constitutive models are restricted to small elastic deformations
thus making it unnecessary to distinguish between di�erent strain mea-
sures.

• The strains are computed as the sum of those due to changes in the
element con�guration plus those due to the hierarchical displacements.

• The ANS approach used for the transverse shear strains in the original
elements is also used for the additional shear strains.
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(a) (b) (c)

Figure 11: Buckling mode under external pressure (a) S8; (b) SH; (c) SQ

• For the hexahedral element, the stabilization schemes used for the ad-
ditional strains are similar to those used in the original element, for
both the in-plane and transverse shear strains.

• A lumped mass matrix has been used for the computation of natural
frequencies.

The main conclusions that can be drawn are:

• For the linear examples considered, both static equilibrium analysis and
natural frequencies computation, the elements presented here lead to
results similar to those obtained with shell elements based on a seven
parameter approach (5 from the FSDT plus 2 hierarchical DOFs)

• For double curved shells with geometrical non-linearities, the compar-
isons with solid elements show a very good correlation.

• Linear buckling analysis of cylindrical shell shows an excellent corre-
lation between solid and solid-shell models for both critical loads and
buckling modes. It also shows the strong limitations of classical ap-
proximations (FSDT and CLPT) for sandwich shells.
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• The ANS used for transverse shear strains avoids the numerical locking.
The stabilization schemes for the reduced integrated SH element also
work properly.
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Appendix

The trigonometric shear deformation theory (TSDT) kinematic assump-
tion for plates [32] may be recast for symmetric laminates as (α = 1, 2)

utrα (z) = −z ∂uz
∂Xα

+ sin
(πz
h

)
hϕα (68)

where uz are the transverse displacement of the middle surface (assumed
uniform across the thickness) and±hϕα are additional in-plane displacements
at the external surfaces. The associated transverse shear strains are

γtrα =
∂uz
∂Xα

+
∂uα
∂z

= cos
(πz
h

)
πϕα (69)

where γα vanish at external surfaces.
The �rst order shear deformation theory (FSDT) assumes a linear varia-

tion of in-plane displacements in terms of the normal plate rotation (θα) and
leads to a constant shear strain

ufα (z) = zθα (70)

γfα =
∂uz
∂Xα

+ θα (71)

The augmented FSDT kinematic de�ned by equation (48) particularized for
�at plates is

ufaα (z) = zθα + ψαφα (z) = zθα + ψα

[
h sin

(πz
h

)
− 2z

]
(72)

γfaα =
∂uz
∂Xα

+ θα + ψα
∂φα (z)

∂z
= γf − 2ψα + πψα cos

(πz
h

)
(73)

Note that both the TSDT and the augmented FSDT has a cosine variation
of the shear strain across the thickness, and are identical only if ϕα = ψα and
γf = 2ψα (i.e. when the augmented FSDT shear vanishes at external sur-
faces). Now equaling the average transverse shear strain across the thickness
for TSDT and augmented FSDT approaches

γ̄tr =
1

h

∫
h

γtrdz =
1

h

∫
h

γfadz = γ̄fa

1

h
ϕαπ

∫
h

cos
πz

h
dz = γf +

1

h
ψα

∫
h

∂φα (z)

∂z
dz

ϕx sin
πz

h

∣∣∣h/2
−h/2

= γf +
1

h
ψα [φα (h/2)− φα (−h/2)]

2ϕx = γfα (74)
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As expected the additional displacements for the FSDT do not modify the
average shear strain (this is true for any continuous additional displacements
that satis�es (41)) and both approaches have the same average shear strain
as long as eq. (74) is satis�ed. If we now compare the in-plane displacements
at the external surfaces when (74) is satis�ed

utrα

(
z =

h

2

)
= −h

2

∂uz
∂Xα

+ hϕα =
h

2

(
− ∂uz
∂Xα

+ 2ϕα

)
ufaα

(
z =

h

2

)
=
h

2
θα =

h

2

(
− ∂uz
∂Xα

+ γfα

)
=
h

2

(
− ∂uz
∂Xα

+ 2ϕx

)
This shows that if eq. (74) is satis�ed, the proposed augmented FSDT kine-
matic leads to the same in-plane displacement at the plate external surfaces.

Note that for �at plates the TSDT is a three-parameter theory while
the augmented FSDT leads to a �ve-parameter theory that does not assure
that transverse shear strains will vanish at the external surfaces, and a more
�exible behavior is expected.
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