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The aim of this work is to integrate and analyze the performance of a path planning method based on Time Elastic Bands (TEB) in
real research platform based onAckermannmodel.Moreover, it will be proved that all modules related to the navigation can coexist
and work together to achieve the goal point without any collision. The study is done by analyzing the trajectory generated from
global and local planners.The software prototyping tool is Robot Operating System (ROS) fromOpen Source Robotics Foundation
and the research platform is the iCab (Intelligent Campus Automobile) from University Carlos III. This work has been validated
froma test inside the campuswhere the iCab has performed the navigation between the starting point and the goal pointwithout any
collision. During the experiment, we proved the low sensitivity of the TEBmethod to variations of the vehicle model configuration
and constraints.

1. Introduction

Autonomous vehicles base their decisions on planner mod-
ules that create the collision-free waypoints in the path to
reach the destination point. These modules are capable of
finding the optimal solution minimizing the computational
time and distance covered by the vehicle avoiding static and
dynamic obstacles. Some research groups test these modules
on real vehicles such as PROUD in Parma in 2013 [1] or
Karlsruhe Institute of Technology (KIT) driving around the
cities with advanced technology in perception, navigation,
and decision making [2]. In all cases, the navigation module
is divided into a global planner and a local planner, where
the first one finds the optimal path with a prior knowledge
of the environment and static obstacles, and the second one
recalculates the path to avoid dynamic obstacles.

The main contribution of this work is to demonstrate
the integration of using TEB local planner in an Ackermann
model with real test. The platform used is the iCab (Intel-
ligent Campus Automobile) which works with the software
prototyping tool ROS. Additionally, it has been discovered
that the capacity of the vehicle to follow the local plan with

accuracy is not mandatory. The vehicle is able to reach the
goal with modest errors when following the local plan. This
characteristic is really important in real life when the vehicle
model depends on multiple factors as the pressure of the
tires, the number of passengers, and the battery of the vehicle.
When this mathematical model varies from the nominal
values, the vehicle will not reach point by point the provided
local plan, so TEB local planner ismore robust to face changes
in the configuration of the mathematical model.

In order to prove that theTEB local planner is able towork
along the other processes involved in the vehicle, it is neces-
sary to solve several problems related to the localization in
the environment (initial localization), the ego-motion of the
vehicle (odometry), environment understanding (perception
andmapping), which path should the vehicle take (planning),
and movement (low level control). Hence, this document
gathers all the solutions for each task for navigation and then
tests the Dijkstra method for global planning and the Time
Elastic Bands method used for local planning.

This document is divided into six sections. Section 2
describes current planning methods used in the autonomous
vehicles research field. Section 3 describes the research
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platform and themodules related to the navigation. Section 4
describes the experimental setup. Section 5 summarizes the
results. Finally, the last section contains the conclusions and
the future work.

2. Path Planning

The path planning problem is a well-known NP-hardness
[3] where the complexity increases with the degrees of
freedom of the vehicle. In this work, the ground vehicle is
reduced to a 2D space of a single plane 𝑋-𝑌 where the 𝑍
component is neglected and the vehicle is restricted by some
constraints due to the Ackermann configuration [4].The aim
of solving this NP-hardness is not to find one solution that
connects the start point and the goal point, but the optimal
solution with the minimum distance and the smoothest
maneuvers and without hitting any known obstacles. Usually,
this module is divided into the global planner, which uses
a priori information of the environment to create the best
possible path, if any, and the local planner, which recalculates
the initial plan to avoid possible dynamic obstacles. The
generated plan is a collection of waypoints for global, 𝑃𝑖 =
(𝑥𝑖, 𝑦𝑖)𝑇, and local 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖, 𝜃𝑖)𝑇, ∈ R2 × 𝑆1, where 𝑆 is the
navigation plane where the vehicle is able to move.

2.1. Global Planner. As said before, the global planner
requires a map of the environment to calculate the best
route. Depending on the analysis of the map, some methods
are based on Roadmaps like Silhouette [5] proposed by
Canny in 1987 or Voronoi [6] in 2007. Some of them solve
the problem by assigning a value to each region of the
roadmap in order to find the path with minimum cost. Some
examples are the Dijkstra [7] algorithm, Best First [8], and
𝐴∗ [9]. Another approach is by dividing the map into small
regions (cells) called cell decomposition as mentioned in
[10]. A similar approach by using potential fields is described
in [11], the most extended algorithm used few years ago
rapidly exploring random trees [12] or the new approach
based on neural networks [13]. Some solutions combine the
aforementioned algorithms improving the outcome at the
cost of high computational power.

So, for this work and for testing purposes, the selected
method is the Dijkstra algorithm because of the simplicity for
debugging and its good performance on the experiments. It
is necessary to remark that the goal of this paper is not to find
the best and fastest solution, but it is to prove that all modules
of navigation are working together and the vehicle is able to
navigate from one point to another.

Dijkstra uses the roadmap approach to convert the prob-
lem into a graphic search method using the information of a
grid cellmap.Thismethod starts with a set of candidate nodes
where the vehicle is able to navigate (free space) assigning
a cost value to each of them. From the starting point, this
value is increased by the necessary number of nodes to pass
through to reach each node. For example, in Figure 1, the free
space around the starting point takes the value of one unit
and for the second generation of neighbors takes the value of
two units and so on. For each cell with value, a checked cell is

assigned and the method continues with the next generation
of neighbors until the goal point is reached. The minimum
value of the sum of all nodes from the starting point and the
end point is the shortest path. After the success of finding
the global path from the start to the goal, all the selected
nodes are translated into positions in the reference axes as the
form 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖)𝑇. The global planner divides the map into
nodes for each free cell but the outcome is not smooth and
some points are not compliant with the vehicle geometry and
kinematics.

2.2. Local Planner. In order to transform the global path into
suitable waypoints, the local planner creates new waypoints
taking into consideration the dynamic obstacles and the
vehicle constraints. So, to recalculate the path at a specific
rate, themap is reduced to the surroundings of the vehicle and
is updated as the vehicle ismoving around. It is not possible to
use the whole map because the sensors are unable to update
the map in all regions and a large number of cells would raise
the computational cost. Therefore, with the updated local
map and the global waypoints, the local planning generates
avoidance strategies for dynamic obstacles and tries to match
the trajectory as much as possible to the provided waypoints
from the global planner. Different approaches are based on
trajectory generation using Clothoids lines [16], Bezier lines
[17], arcs and segments [18], or splines [19]. All of them create
intermediate waypoints following the generated trajectory.
The selected method for local planning is Time Elastic Bands
[15, 20] which consists of deforming the initial global plan
considering the kinematic model of the vehicle and updating
the local path based on dynamic obstacles or the possible
deviation from the path. This method has been selected
because of the integration of the trajectory planning and
obstacle detection with avoidance at low computational cost
fulfilling the requirements of the local planner in the research
platform iCab.

Time Elastic Bands (TEB) create a sequence of interme-
diate vehicle poses 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝜃𝑖)𝑇 modifying the initial
global plan. It requires the velocity and acceleration limits
of the vehicle, the security distance of the obstacles and the
geometric, and kinematic and dynamic constraints of the
vehicle. All of this configuration generates a set of commands
for speed (V) and steering angle (𝛿), as cmd𝑖 = (V𝑖, 𝛿𝑖)𝑇,
required to achieve the intermediate waypoints, while the
vehicle is moving. Figure 2 shows a robot moving from
the starting point to the goal point passing through four
waypoints in the smoothest way possible between obstacles.
One of the drawbacks of this method is the influence of
the dynamic obstacles direction in the generation of the
recalculated local path. For example, when a pedestrian is
crossing from east to west the trajectory generated which
connects a point from the south to the north (Figure 3), the
recalculation of the new trajectory will still be on the left of
the obstacle but further. The solution is the creation of three
elastic bands: one updated each iteration, one is recalculated
from the original path, and the last one is created from scratch
each time. The selected one is the shortest of the three that is
compliant with all requirements.
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Figure 1: Dijkstra method to find the optimal path [14].

Figure 2: Description of Time Elastic Bands from [15].

Goal Goal Goal Goal

Start Start Start Start

Figure 3: Pedestrian crossing from east to west of the trajectory
generated.

Figure 4: iCab with sensors.

3. Platform Description

The research platform is a modified golf cart equipped with
several sensors such as wheel encoders, a Lidar with 16 laser
planes on the top, a single plane laser located in the front, a
stereo camera located in the front, and a GPS-IMU-Compass
located on the top, as shown in Figure 4.Themovement of the
vehicle is done by a 36VDCmotor for the linear acceleration
and another 36V DC motor for the steering wheel. More
information and tools are available in [21–23].

Additionally, the vehicle includes two computers to
gather information from the sensors, process it, and perform
the navigation decisions. The main computer is in charge of
the wheel encoders, images, laser, imu, GPS, and compass
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Figure 5: System communications.

and generates the maps. Therefore, the system provides
wheel odometry, obstacle detection, and maps. The second
computer processes the point cloud generated from the Lidar
and computes the Lidar odometry. The software used, as
aforementioned said, is ROS. This tool allows the vehicle
to share and synchronize messages between nodes in the
same computer and, additionally, with the computers and
microcontrollers in the vehicle by the network using ROS
core master. Furthermore, using a master discovery tool for
all the ROS core masters in the network (one core master for
each vehicle), the systems are able to share messages between
vehicles, infrastructures, and pedestrians [24].The use of one
coremaster for each vehicle allows the inner communications
even when there is no Internet connection, as shown in
Figure 5.

A brief graphical description of the nodes and connec-
tions is shown in Figure 6. From left to right, the nodes are as
follows:

(i) Global map is responsible for loading the global grid
map for the campus as navigation msgs/Occupancy-
Grid.msg. The selected grid size has a resolution
of 0.156m used in the analysis of the previously
recorded point cloud obtainedwith the Lidar (a priori
knowledge).

(ii) Global planner uses the Dijkstra algorithm to create
the/global plan to reach the goal point using the
global map. This path message is a standard type
navigation msgs/Path.msg which contains the way-
points without the orientation.

(iii) Lidar odometry and wheel odometry are in charge
of creating the ego-motion measurements from the
starting point of the vehicle. The messages used are
the type of navigation msgs/Odometry.msg.

(iv) Odometry manager is responsible for the fusion and
adding the initial localization for the conversion
between global and local odometry.

(v) Costmap 2D uses the laser sensor information to
create a local Costmap in front of the vehicle. The
Costmap values represent the proximity of the vehicle
to an obstacle using the geometry of the vehicle.
The resulting map has the obstacles inflated by a
security perimeter where the vehicle should not allow
entering. Additionally, this map is used for TEB local
planner in order tomodify the local path based on the
distance from the vehicle to the obstacles.

(vi) TEB local planner needs a global plan, Costmap,
and vehicle odometry. It publishes the local plan
(at a specific rate) with a configurable lookahead
distance, and additionally, it publishes the control
commands ackermann cmd with the type ackerman-
nDriveStamped.msg. The selected lookahead distance
is 10m because it is suitable to avoid big obstacles like
other vehicles or groups of students.

(vii) Obstacle manager is responsible for sending a warn-
ing message to the movement manager for possible
threats like pedestrians or obstacles in front of the
vehicle. The type of this message is custom and has
a list of obstacles with the information of distance
and area for each obstacle. This node also returns
the distance to the closest obstacle to take into
consideration for emergency brake.

(viii) Task manager is in charge of selecting the task for the
autonomous vehicle. For other projects, it is possible
to configure different behaviors like platooningmode,
drive between boundaries, or manual mode. This
node receives information of the possible threats in
the environment in order to stop the vehicle if nec-
essary. This package publishes the reference velocity
and reference steering angle.

(ix) PID velocity is responsible for creating the PWM
necessary to the rear wheels DC motor. It takes as
input the current velocity. The type of message is
standard as std msgs/Float64.msg.

(x) Movement manager is a driver in charge of checking
all limits and possible wrong velocity messages. It
sends the desired acceleration to the DC motor and
the selected angle for the steering angle.

Transformation Trees (tf). One of the most important aspects
to consider whenworking with vehicle odometry is the frame
of reference and the coordinates. This node is in charge
of transforming the movement of the vehicle from its ego-
motion local reference to the global reference adding the
initial position and orientation. Therefore, global and local
path need the transformation between local coordinates and
global coordinates. The odometry manager module is in
charge of fusing the odometries and publishing the trans-
formation between global and local coordinates using the
initial localization in the map of the vehicle. Figure 7 shows
all the frames involved in the architecture for one vehicle.The



Journal of Advanced Transportation 5

Global map

Velodyne
odometry

odometry

/map Global planner
(Djikstra)

/global_plan

/odometry

Odometry
manager

/velodyne_odometry

/wheel_odometry

Wheel

Costmap 2D

/costmap

TEB local
planner

Geometry model
Kinematics model
Dynamics model
Velocity limits
Acceleration limits

/ackermann_cmd

Obstacle
manager

/threat

Task
manager

/pwm

/current_velocity

/reference_steering

/reference_velocity

/reference_steering

/reference_velocity

Movement
manager

PID
velocity

Figure 6: Software nodes sharing messages by topics in the partial software architecture.
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Figure 7: Transformation Tree for iCab1 showing all the sensors.

appropriate configuration of these transformations allows the
system to collaborate with other coexisting heterogeneous
vehicles under a vehicle namespace such as in this case icab1.

4. Experimental Setup

Aiming to test the path planner in the real platform, a simple
test has been prepared where the vehicle navigates from
a starting point and finishes in a goal point. The selected
location takes place in a zone where a circular building is
occluding the direct path trajectory. The data is recorded
into a bag file, while the vehicle performs the experiment for
posterior offline analysis. In Figure 8, the global map used to

calculate the global plan is shown and the experiment zone is
located inside of the red square.

This map has been generated using the Lidar 3D points
with the Lidar odometry and mapping [25] adapted to work
with the correct axes reference. Afterwards, the point cloud
has been processed to extract the floor at a specific height.
The last step is to project this point cloud to the 2D space to
have all the static obstacles (notice that the cup of the trees is
taken into account as an obstacle due to the possible collision
with the leaves and the top of the vehicle).

The representation of the vehicle, the maps, and the
movements are easily analyzed using the RVIZ tool. Figure 9
describes the localization of the vehicle in the environment
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(a) (b)

Figure 8: Satellite image of the Campus granted by Google Maps on (a). Campus gridmap on (b), the experiment is located inside of the red
square.

(a) (b)

Figure 9: On (a), starting point of the vehicle oriented to the local odometry. On (b), zoom in the details of the vehicle geometry.

where the green rectangular shape represents the geometry
and the red arrow represents the orientation.

After introducing the goal point, the representation of
the lines for the paths is shown in Figure 10 where the
blue line is the global path generated from the global
planning using the current localization and the goal point.
The input goal point is generated from the RVIZ visualizer
using move base msgs/MoveBaseGoal.msg and clicking on
the screen. The orange line is the local path generated
from the TEB local planner and each cycle of the node is
recalculated.

5. Results

All trajectories generated from the TEB local planner are
evaluated offline by the data recorded, while the experiment
is running.

5.1. Evaluation Metrics. The evaluation metrics used in this
section are the Euclidean distance (DGL) between the Global
Plan Waypoints (GPW) and Local Plan Waypoints (LPW)
as shown in (1). The algorithm to find the best local plan is
constantly updating it in order to avoid obstacles in the route

or because the vehicle is not able to follow the previous local
path.

DGL𝑖 = √(GPW𝑖 − LPW𝑖)2 ∀𝑖 ∈ 𝑄. (1)

5.2. Data Analysis. The experiment has been done by the
lookahead distance configured to 10m for the TEB algorithm
because if an obstacle is above the global plan (a dynamic
obstacle or a static obstacle which are not on the global map),
this lookahead distance should be big enough to find another
path even if it is far away from the global plan. Figure 11
represents the global plan generated with Dijkstra method
on blue. In Figure 12, each line represents the local plan
generated from the position of the vehicle while moving.The
representation of multiple lines is due to the recalculation of
the local trajectories. It is possible to appreciate the details
of some lines that do not end into the goal point because
of the lookahead distance configuration. Figure 13 represents
the position of the vehicle at each moment in red dots. It is
possible to appreciate all the graphs combined in the Figure 14
and with the details of the first three meters of the movement
in Figure 15. Each red dot is the current odometry of the
vehicle, the big blue line is the Dijkstra global plan, and each
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Figure 10: Global plan in blue. Local plan in orange. Overlay of global map and local Costmap 2D.
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Figure 11: Global path.
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Figure 12: Local path.
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thin line in multicolor corresponds to each TEB local plan. It
is possible to appreciate the recalculations of the local plan in
some dots where the vehicle is not able to follow the proposed
trajectory (multicolor lines). Even if the vehicle does not
follow perfectly the path due to the mathematical model
variations configured into the TEB local planner parameters
such as steering angle velocity, it seems that the header of the
vehicle is different than in the calculated plan which follows
into a wrong steering angle velocity configuration.

Euclidean Distance between Local and Global Path. The error
between the global path and the local path determines how
accurate the recalculation of the trajectory is. In Figure 16,
each line represents the distance error for all local trajectories
planned, while the vehicle was moving.

In Figure 16, the Euclidean distance between the first
points of the local trajectory and the first points of the global
trajectory from the position of the vehicle is described for all
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Figure 18: Max error.

paths generated.The reason for this first point is because, after
the recalculation of the new local path, the old path is not
useful anymore. For the analysis, the seven first points have
been selected for each local plan. Regarding this graph, it is
possible to notice the incremental growth of the Euclidean
distance point by point.The reason for this growth is because
the vehicle is not able to follow properly the generated local
path. Figure 17 is the result of computing the mean of the
seven first values for every path. After the initial rise, there is
a tendency around 1.42m.The maximum Euclidean distance
error for all paths generated between local path and global
path is detailed in Figure 18. Due to the avoidance of an
obstacle at the beginning, the local path deviates further from
the global path.

Speed and Steering Angle. For the analysis of the control
commands of the speed and steering angle granted by the
TEB local planner module, Figure 19 shows the values in
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Figure 20: Steering.

real time provided to the vehicle. For the steering angle in
Figure 20, it is possible to appreciate the variations of the
commands each time the local plan is recalculated. At the
beginning of the experiment, the steering angle provided is
positive (turn to the left) until the vehicle reaches the position
in the world where the circular building is left behind and
starts to turn to the right with a negative angle.

6. Conclusions and Future Work

The first conclusion of this work determines that the use of
Time Elastic Bands is a good choice even if the model for the
kinematics of the vehicle is not precisely adjusted or when
the vehicle is out of the path. This algorithm is useful in
both of these events and when a dynamic obstacle is in front
of the vehicle because of the continuous update of the local
path. The second conclusion is that this method has been
tested in a real vehicle where the proper configuration of

the kinematics, dynamics, and geometry model could differ
from the real model. This issue generates trajectories slightly
different because the expected movement of the vehicle
and the real movement of the vehicle are lightly different.
Moreover, the TEB local planner generates the commands of
velocities and steering angles that allow the vehicle to reach
the goal.

For future work, more experiments are planned such
as the comparison between this method and the Dynamic
Window Approach and changing the control over the line
generated with different path followers such as Pure Pursuit,
Optimal Path Controller based on LQR, or Follow the Carrot.
More complex scenarios will be added where pedestrians
intersect with the trajectory generated and the vehicle should
act accordingly, avoiding the pedestrian over the correct side
in order to test the aforementioned solution for the elastic
bands where a pedestrian is crossing in front of the vehicle.
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Supplementary Materials

The supplementary material of this work consists of a video
of the real performance of the vehicle in the place where the
experiment was done. In the video, it is possible to appreciate
the visualizer RVIZ from ROS with two more windows.
The top right window displays the left camera of the stereo
vision system mounted on the vehicle. Below this window,
the laser readings converted into a local map is placed. The
background is composed of the global Costmap 2D and the
overlay of the local Costmap 2D. On this map, the black
squares correspond to obstacles and the color lines describe
the trajectories. The blue line represents the global path
generated by theDijkstra algorithmand the orange represents
the local path generated by the Time Elastic Bands algorithm.
The green square on the bottom of the video represents the
dimensions of the vehicle. As soon as the vehicle moves,
the red arrows represent the movement and orientation of
the vehicle and all of them are superimposed on each other
because of the update of the odometry. The vehicle is able
to navigate from one point to another without any collision.
(Supplementary Materials)
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